quack-kernels 0.1.4__py3-none-any.whl → 0.1.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- quack/__init__.py +1 -1
- quack/cross_entropy.py +292 -5
- quack/reduction_base.py +1 -4
- quack/rmsnorm.py +385 -8
- quack/utils.py +3 -18
- {quack_kernels-0.1.4.dist-info → quack_kernels-0.1.5.dist-info}/METADATA +1 -1
- quack_kernels-0.1.5.dist-info/RECORD +11 -0
- quack_kernels-0.1.4.dist-info/RECORD +0 -11
- {quack_kernels-0.1.4.dist-info → quack_kernels-0.1.5.dist-info}/WHEEL +0 -0
- {quack_kernels-0.1.4.dist-info → quack_kernels-0.1.5.dist-info}/licenses/LICENSE +0 -0
- {quack_kernels-0.1.4.dist-info → quack_kernels-0.1.5.dist-info}/top_level.txt +0 -0
quack/__init__.py
CHANGED
quack/cross_entropy.py
CHANGED
|
@@ -1,3 +1,5 @@
|
|
|
1
|
+
# Copyright (c) 2025, Wentao Guo, Ted Zadouri, Tri Dao.
|
|
2
|
+
|
|
1
3
|
import math
|
|
2
4
|
import torch
|
|
3
5
|
from typing import Optional, Type
|
|
@@ -200,7 +202,7 @@ class CrossEntropy(ReductionBase):
|
|
|
200
202
|
mLSE[row] = lse
|
|
201
203
|
|
|
202
204
|
|
|
203
|
-
def
|
|
205
|
+
def _cross_entropy(
|
|
204
206
|
x: torch.Tensor,
|
|
205
207
|
target: torch.Tensor,
|
|
206
208
|
return_lse: bool = False,
|
|
@@ -241,15 +243,300 @@ def cross_entropy(
|
|
|
241
243
|
stream = cuda.CUstream(torch.cuda.current_stream().cuda_stream)
|
|
242
244
|
|
|
243
245
|
compile_key = (dtype, N, lse is not None)
|
|
244
|
-
if compile_key not in
|
|
246
|
+
if compile_key not in _cross_entropy.compile_cache:
|
|
245
247
|
cross_entropy_op = CrossEntropy(dtype, N)
|
|
246
|
-
|
|
248
|
+
_cross_entropy.compile_cache[compile_key] = cute.compile(
|
|
247
249
|
cross_entropy_op, x_tensor, target_tensor, loss_tensor, lse_tensor, stream
|
|
248
250
|
)
|
|
249
|
-
|
|
251
|
+
_cross_entropy.compile_cache[compile_key](
|
|
250
252
|
x_tensor, target_tensor, loss_tensor, lse_tensor, stream
|
|
251
253
|
)
|
|
252
254
|
return loss if not return_lse else (loss, lse)
|
|
253
255
|
|
|
254
256
|
|
|
255
|
-
|
|
257
|
+
_cross_entropy.compile_cache = {}
|
|
258
|
+
|
|
259
|
+
|
|
260
|
+
class CrossEntropyBackward:
|
|
261
|
+
def __init__(self, dtype: Type[cutlass.Numeric], N: int):
|
|
262
|
+
self.dtype = dtype
|
|
263
|
+
self.N = N
|
|
264
|
+
self.vecsize = 128 // dtype.width
|
|
265
|
+
|
|
266
|
+
def _calculate_threads_per_row(self):
|
|
267
|
+
N = self.N
|
|
268
|
+
return (
|
|
269
|
+
8
|
|
270
|
+
if N <= 64
|
|
271
|
+
else (
|
|
272
|
+
16
|
|
273
|
+
if N <= 128
|
|
274
|
+
else (32 if N <= 3072 else (64 if N <= 6144 else (128 if N <= 16384 else 256)))
|
|
275
|
+
)
|
|
276
|
+
)
|
|
277
|
+
|
|
278
|
+
def _get_tv_layout(self):
|
|
279
|
+
N = self.N
|
|
280
|
+
vecsize = self.vecsize
|
|
281
|
+
num_threads = 128 if N <= 16384 else 256
|
|
282
|
+
threads_per_row = self._calculate_threads_per_row()
|
|
283
|
+
cols_per_block = num_threads // threads_per_row
|
|
284
|
+
num_blocks_N = cute.ceil_div(min(N, 16384) // vecsize, threads_per_row)
|
|
285
|
+
tiler_mn = (cols_per_block, vecsize * num_blocks_N * threads_per_row)
|
|
286
|
+
tv_layout = cute.make_layout(
|
|
287
|
+
((threads_per_row, cols_per_block), (vecsize, num_blocks_N)),
|
|
288
|
+
stride=(
|
|
289
|
+
(vecsize * cols_per_block, 1),
|
|
290
|
+
(cols_per_block, cols_per_block * vecsize * threads_per_row),
|
|
291
|
+
),
|
|
292
|
+
)
|
|
293
|
+
return tiler_mn, tv_layout
|
|
294
|
+
|
|
295
|
+
@cute.jit
|
|
296
|
+
def __call__(
|
|
297
|
+
self,
|
|
298
|
+
mX: cute.Tensor,
|
|
299
|
+
mTarget: cute.Tensor,
|
|
300
|
+
mDLoss: cute.Tensor,
|
|
301
|
+
mdX: cute.Tensor,
|
|
302
|
+
mLSE: cute.Tensor,
|
|
303
|
+
stream: cuda.CUstream,
|
|
304
|
+
):
|
|
305
|
+
assert mX.element_type == self.dtype
|
|
306
|
+
assert mdX.element_type == self.dtype
|
|
307
|
+
|
|
308
|
+
tiler_mn, tv_layout = self._get_tv_layout()
|
|
309
|
+
num_threads = cute.size(tv_layout, mode=[0])
|
|
310
|
+
|
|
311
|
+
mDLoss = cute.make_tensor(
|
|
312
|
+
mDLoss.iterator, cute.append(mDLoss.layout, cute.make_layout((self.N,), stride=(0,)))
|
|
313
|
+
)
|
|
314
|
+
mTarget = cute.make_tensor(
|
|
315
|
+
mTarget.iterator, cute.append(mTarget.layout, cute.make_layout((self.N,), stride=(0,)))
|
|
316
|
+
)
|
|
317
|
+
mLSE = cute.make_tensor(
|
|
318
|
+
mLSE.iterator, cute.append(mLSE.layout, cute.make_layout((self.N,), stride=(0,)))
|
|
319
|
+
)
|
|
320
|
+
|
|
321
|
+
smem_size = cute.size_in_bytes(
|
|
322
|
+
mX.element_type, cute.make_ordered_layout(tiler_mn, order=(1, 0))
|
|
323
|
+
)
|
|
324
|
+
|
|
325
|
+
self.kernel(
|
|
326
|
+
mX,
|
|
327
|
+
mTarget,
|
|
328
|
+
mDLoss,
|
|
329
|
+
mdX,
|
|
330
|
+
mLSE,
|
|
331
|
+
mX.shape,
|
|
332
|
+
tv_layout,
|
|
333
|
+
tiler_mn,
|
|
334
|
+
).launch(
|
|
335
|
+
grid=[
|
|
336
|
+
cute.ceil_div(mX.shape[0], tiler_mn[0]),
|
|
337
|
+
cute.ceil_div(mX.shape[1], tiler_mn[1]),
|
|
338
|
+
1,
|
|
339
|
+
],
|
|
340
|
+
block=[num_threads, 1, 1],
|
|
341
|
+
smem=smem_size,
|
|
342
|
+
stream=stream,
|
|
343
|
+
)
|
|
344
|
+
|
|
345
|
+
@cute.kernel
|
|
346
|
+
def kernel(
|
|
347
|
+
self,
|
|
348
|
+
mX: cute.Tensor, # (M, N)
|
|
349
|
+
mTarget: cute.Tensor, # (M,)
|
|
350
|
+
mDLoss: cute.Tensor, # (M,)
|
|
351
|
+
mdX: cute.Tensor, # (M, N)
|
|
352
|
+
mLSE: cute.Tensor, # (M,)
|
|
353
|
+
shape: cute.Shape,
|
|
354
|
+
tv_layout: cute.Layout,
|
|
355
|
+
tiler_mn: cute.Shape,
|
|
356
|
+
):
|
|
357
|
+
tidx, _, _ = cute.arch.thread_idx()
|
|
358
|
+
bidx, bidy, _ = cute.arch.block_idx()
|
|
359
|
+
|
|
360
|
+
smem = cutlass.utils.SmemAllocator()
|
|
361
|
+
sX = smem.allocate_tensor(
|
|
362
|
+
mX.element_type, cute.make_ordered_layout(tiler_mn, order=(1, 0)), byte_alignment=16
|
|
363
|
+
)
|
|
364
|
+
|
|
365
|
+
idX = cute.make_identity_tensor(shape)
|
|
366
|
+
|
|
367
|
+
gX, gdX, cX, gTarget, gDLoss, gLse = [
|
|
368
|
+
cute.local_tile(mT, tiler_mn, (bidx, bidy))
|
|
369
|
+
for mT in (mX, mdX, idX, mTarget, mDLoss, mLSE)
|
|
370
|
+
]
|
|
371
|
+
|
|
372
|
+
copy_atom_load_X = cute.make_copy_atom(
|
|
373
|
+
cute.nvgpu.CopyUniversalOp(), gX.element_type, num_bits_per_copy=128
|
|
374
|
+
)
|
|
375
|
+
copy_atom_load_X_async = cute.make_copy_atom(
|
|
376
|
+
cute.nvgpu.cpasync.CopyG2SOp(), gX.element_type, num_bits_per_copy=128
|
|
377
|
+
)
|
|
378
|
+
copy_atom_store_O = cute.make_copy_atom(
|
|
379
|
+
cute.nvgpu.CopyUniversalOp(), gdX.element_type, num_bits_per_copy=128
|
|
380
|
+
)
|
|
381
|
+
|
|
382
|
+
thr_copy_X = cute.make_tiled_copy(copy_atom_load_X, tv_layout, tiler_mn).get_slice(tidx)
|
|
383
|
+
thr_copy_X_async = cute.make_tiled_copy(
|
|
384
|
+
copy_atom_load_X_async, tv_layout, tiler_mn
|
|
385
|
+
).get_slice(tidx)
|
|
386
|
+
thr_copy_O = cute.make_tiled_copy(copy_atom_store_O, tv_layout, tiler_mn).get_slice(tidx)
|
|
387
|
+
|
|
388
|
+
#### Thread View
|
|
389
|
+
tXgX = thr_copy_X_async.partition_S(gX)
|
|
390
|
+
tXsX = thr_copy_X_async.partition_S(sX)
|
|
391
|
+
|
|
392
|
+
tXcX = thr_copy_X.partition_S(cX)[(0, None), None, None]
|
|
393
|
+
tXcFull = thr_copy_X.partition_S(cX) # improve
|
|
394
|
+
|
|
395
|
+
tXgO = thr_copy_O.partition_D(gdX)
|
|
396
|
+
|
|
397
|
+
# allocate fragments for gmem->rmem
|
|
398
|
+
tXrX, tXrO = [cute.make_fragment_like(thr) for thr in (tXgX, tXgO)]
|
|
399
|
+
|
|
400
|
+
is_even_N = cutlass.const_expr(shape[1] % tiler_mn[1] == 0)
|
|
401
|
+
row = tXcX[0][0]
|
|
402
|
+
|
|
403
|
+
tXpX = (
|
|
404
|
+
utils.predicate_k(thr_copy_X_async.partition_S(cX), limit=shape[1])
|
|
405
|
+
if not is_even_N
|
|
406
|
+
else None
|
|
407
|
+
)
|
|
408
|
+
|
|
409
|
+
if row < shape[0]:
|
|
410
|
+
cute.copy(copy_atom_load_X_async, tXgX, tXsX, pred=tXpX)
|
|
411
|
+
cute.arch.cp_async_commit_group()
|
|
412
|
+
cute.arch.cp_async_wait_group(0)
|
|
413
|
+
if cutlass.const_expr(not is_even_N):
|
|
414
|
+
utils.fill_oob(tXsX, tXpX, -tXsX.element_type.inf)
|
|
415
|
+
|
|
416
|
+
cute.autovec_copy(tXsX, tXrX)
|
|
417
|
+
x = tXrX.load().to(cute.Float32)
|
|
418
|
+
|
|
419
|
+
label = cute.Int32.zero
|
|
420
|
+
dloss = cute.Float32.zero
|
|
421
|
+
lse = cute.Float32.zero
|
|
422
|
+
if row < shape[0]:
|
|
423
|
+
label = cute.Int32(mTarget[row])
|
|
424
|
+
dloss = cute.Float32(mDLoss[row])
|
|
425
|
+
lse = cute.Float32(mLSE[row])
|
|
426
|
+
|
|
427
|
+
log2_e = math.log2(math.e)
|
|
428
|
+
probs = utils.exp2f((x - lse) * log2_e)
|
|
429
|
+
prob_shifted = probs - 1.0
|
|
430
|
+
|
|
431
|
+
mask = cute.make_fragment_like(tXrX, cutlass.Boolean)
|
|
432
|
+
for i in cutlass.range_constexpr(cute.size(tXcFull)):
|
|
433
|
+
mask[i] = tXcFull[i][1] == label
|
|
434
|
+
|
|
435
|
+
mask = mask.load()
|
|
436
|
+
grad = cute.where(mask, prob_shifted, probs)
|
|
437
|
+
grad = grad * dloss
|
|
438
|
+
|
|
439
|
+
tXrO.store(grad.to(tXrO.element_type))
|
|
440
|
+
tOpO = (
|
|
441
|
+
utils.predicate_k(thr_copy_O.partition_S(cX), limit=shape[1]) if not is_even_N else None
|
|
442
|
+
)
|
|
443
|
+
if row < shape[0]:
|
|
444
|
+
cute.copy(copy_atom_store_O, tXrO, tXgO, pred=tOpO)
|
|
445
|
+
|
|
446
|
+
|
|
447
|
+
def _cross_entropy_backward(
|
|
448
|
+
x: torch.Tensor,
|
|
449
|
+
target: torch.Tensor,
|
|
450
|
+
dloss: torch.Tensor,
|
|
451
|
+
lse: torch.Tensor,
|
|
452
|
+
inplace_backward: bool = False,
|
|
453
|
+
) -> torch.Tensor:
|
|
454
|
+
"""Cross entropy backward pass.
|
|
455
|
+
Args:
|
|
456
|
+
x: Input logits tensor of shape (M, N)
|
|
457
|
+
target: Target class indices tensor of shape (M,)
|
|
458
|
+
dloss: Upstream gradients tensor of shape (M,)
|
|
459
|
+
lse: Log-sum-exp values tensor of shape (M,)
|
|
460
|
+
Returns:
|
|
461
|
+
Input gradients tensor of shape (M, N)
|
|
462
|
+
"""
|
|
463
|
+
assert x.dim() == 2, "Input must be 2D"
|
|
464
|
+
assert target.dim() == 1, "Target must be 1D"
|
|
465
|
+
assert dloss.dim() == 1, "dloss must be 1D"
|
|
466
|
+
assert lse.dim() == 1, "lse must be 1D"
|
|
467
|
+
assert x.shape[0] == target.shape[0], "Batch dimensions must match"
|
|
468
|
+
assert x.shape[0] == dloss.shape[0], "Batch dimensions must match"
|
|
469
|
+
assert x.shape[0] == lse.shape[0], "Batch dimensions must match"
|
|
470
|
+
assert (
|
|
471
|
+
x.is_cuda and target.is_cuda and dloss.is_cuda and lse.is_cuda
|
|
472
|
+
), "Tensors must be on CUDA device"
|
|
473
|
+
assert x.dtype in [torch.float16, torch.bfloat16, torch.float32], "Unsupported input dtype"
|
|
474
|
+
assert target.dtype in [torch.int32, torch.int64], "Target must be int32 or int64"
|
|
475
|
+
|
|
476
|
+
M, N = x.shape
|
|
477
|
+
dx = torch.empty_like(x) if not inplace_backward else x
|
|
478
|
+
dtype = torch2cute_dtype_map[x.dtype]
|
|
479
|
+
|
|
480
|
+
convert_from_dlpack = lambda tensor: (
|
|
481
|
+
from_dlpack(tensor.detach(), assumed_align=16).mark_compact_shape_dynamic(
|
|
482
|
+
mode=0, stride_order=(0, 1)
|
|
483
|
+
)
|
|
484
|
+
)
|
|
485
|
+
x_tensor = convert_from_dlpack(x)
|
|
486
|
+
dx_tensor = convert_from_dlpack(dx)
|
|
487
|
+
dloss_tensor = from_dlpack(dloss.detach(), assumed_align=16).mark_compact_shape_dynamic(mode=0)
|
|
488
|
+
lse_tensor = from_dlpack(lse.detach(), assumed_align=16).mark_compact_shape_dynamic(mode=0)
|
|
489
|
+
target_tensor = from_dlpack(target.detach(), assumed_align=32).mark_compact_shape_dynamic(
|
|
490
|
+
mode=0
|
|
491
|
+
)
|
|
492
|
+
stream = cuda.CUstream(torch.cuda.current_stream().cuda_stream)
|
|
493
|
+
|
|
494
|
+
compile_key = (dtype, N)
|
|
495
|
+
if compile_key not in _cross_entropy_backward.compile_cache:
|
|
496
|
+
cross_entropy_backward_op = CrossEntropyBackward(dtype, N)
|
|
497
|
+
_cross_entropy_backward.compile_cache[compile_key] = cute.compile(
|
|
498
|
+
cross_entropy_backward_op,
|
|
499
|
+
x_tensor,
|
|
500
|
+
target_tensor,
|
|
501
|
+
dloss_tensor,
|
|
502
|
+
dx_tensor,
|
|
503
|
+
lse_tensor,
|
|
504
|
+
stream,
|
|
505
|
+
)
|
|
506
|
+
_cross_entropy_backward.compile_cache[compile_key](
|
|
507
|
+
x_tensor, target_tensor, dloss_tensor, dx_tensor, lse_tensor, stream
|
|
508
|
+
)
|
|
509
|
+
return dx
|
|
510
|
+
|
|
511
|
+
|
|
512
|
+
_cross_entropy_backward.compile_cache = {}
|
|
513
|
+
|
|
514
|
+
|
|
515
|
+
class CrossEntropyFunction(torch.autograd.Function):
|
|
516
|
+
@staticmethod
|
|
517
|
+
def forward(ctx, x, target, inplace_backward=False):
|
|
518
|
+
loss, lse = _cross_entropy(x, target, return_lse=True)
|
|
519
|
+
ctx.save_for_backward(x, target, lse)
|
|
520
|
+
ctx.inplace_backward = inplace_backward
|
|
521
|
+
return loss
|
|
522
|
+
|
|
523
|
+
@staticmethod
|
|
524
|
+
def backward(ctx, dloss):
|
|
525
|
+
x, target, lse = ctx.saved_tensors
|
|
526
|
+
dx = _cross_entropy_backward(x, target, dloss, lse, inplace_backward=ctx.inplace_backward)
|
|
527
|
+
return dx, None, None
|
|
528
|
+
|
|
529
|
+
|
|
530
|
+
def cross_entropy(
|
|
531
|
+
x: torch.Tensor, target: torch.Tensor, inplace_backward: bool = False
|
|
532
|
+
) -> torch.Tensor:
|
|
533
|
+
"""Cross entropy loss with automatic differentiation support.
|
|
534
|
+
|
|
535
|
+
Args:
|
|
536
|
+
x: Input logits tensor of shape (M, N)
|
|
537
|
+
target: Target class indices tensor of shape (M,)
|
|
538
|
+
|
|
539
|
+
Returns:
|
|
540
|
+
Cross entropy loss tensor of shape (M,)
|
|
541
|
+
"""
|
|
542
|
+
return CrossEntropyFunction.apply(x, target, inplace_backward)
|
quack/reduction_base.py
CHANGED
|
@@ -6,8 +6,6 @@ from typing import Type, Tuple, Optional
|
|
|
6
6
|
import cutlass
|
|
7
7
|
import cutlass.cute as cute
|
|
8
8
|
|
|
9
|
-
import quack.utils as utils
|
|
10
|
-
|
|
11
9
|
|
|
12
10
|
torch2cute_dtype_map = {
|
|
13
11
|
torch.float16: cutlass.Float16,
|
|
@@ -39,7 +37,6 @@ class ReductionBase:
|
|
|
39
37
|
vecsize = copy_bits // self.dtype.width
|
|
40
38
|
assert self.N % vecsize == 0, f"Input N {self.N} is not divisible by vector size {vecsize}"
|
|
41
39
|
num_threads = self._get_num_threads()
|
|
42
|
-
num_warps = num_threads // cute.arch.WARP_SIZE
|
|
43
40
|
assert num_threads % cute.arch.WARP_SIZE == 0
|
|
44
41
|
|
|
45
42
|
threads_per_row = self._calculate_threads_per_row()
|
|
@@ -64,7 +61,7 @@ class ReductionBase:
|
|
|
64
61
|
|
|
65
62
|
def _get_reduction_buffer_layout(self, tv_layout: cute.Layout, cluster_n: int):
|
|
66
63
|
num_warps = cute.size(tv_layout, mode=[0]) // cute.arch.WARP_SIZE
|
|
67
|
-
warps_per_row =
|
|
64
|
+
warps_per_row = max(tv_layout.shape[0][0] // cute.arch.WARP_SIZE, 1)
|
|
68
65
|
return cute.make_ordered_layout(
|
|
69
66
|
(num_warps // warps_per_row, (warps_per_row, cluster_n), self.stage),
|
|
70
67
|
order=(1, 0, 2),
|
quack/rmsnorm.py
CHANGED
|
@@ -9,7 +9,6 @@ import cuda.bindings.driver as cuda
|
|
|
9
9
|
import cutlass
|
|
10
10
|
import cutlass.cute as cute
|
|
11
11
|
from cutlass.cute.runtime import from_dlpack
|
|
12
|
-
|
|
13
12
|
import quack.utils as utils
|
|
14
13
|
from quack.reduction_base import ReductionBase, torch2cute_dtype_map
|
|
15
14
|
|
|
@@ -210,20 +209,18 @@ class RMSNorm(ReductionBase):
|
|
|
210
209
|
cute.copy(copy_atom_store_O, tXrO, tXgO, pred=tOpO)
|
|
211
210
|
|
|
212
211
|
|
|
213
|
-
def
|
|
212
|
+
def _rmsnorm_fwd(
|
|
214
213
|
x: torch.Tensor,
|
|
215
214
|
weight: torch.Tensor,
|
|
216
215
|
eps: float = 1e-6,
|
|
217
216
|
return_rstd: bool = False,
|
|
218
217
|
) -> torch.Tensor:
|
|
219
218
|
"""RMSNorm forward pass.
|
|
220
|
-
|
|
221
219
|
Args:
|
|
222
220
|
x: Input tensor of shape (M, N)
|
|
223
221
|
weight: Weight tensor of shape (N,)
|
|
224
222
|
eps: Small value for numerical stability
|
|
225
223
|
return_rstd: Whether to return the reciprocal standard deviation
|
|
226
|
-
|
|
227
224
|
Returns:
|
|
228
225
|
Normalized output tensor of same shape as x
|
|
229
226
|
If return_rstd is True, also returns rstd tensor of shape (M,)
|
|
@@ -259,18 +256,18 @@ def rmsnorm(
|
|
|
259
256
|
)
|
|
260
257
|
current_stream = cuda.CUstream(torch.cuda.current_stream().cuda_stream)
|
|
261
258
|
compile_key = (dtype, N, rstd is not None)
|
|
262
|
-
if compile_key not in
|
|
259
|
+
if compile_key not in _rmsnorm_fwd.compile_cache:
|
|
263
260
|
rmsnorm_op = RMSNorm(dtype, N)
|
|
264
|
-
|
|
261
|
+
_rmsnorm_fwd.compile_cache[compile_key] = cute.compile(
|
|
265
262
|
rmsnorm_op, x_tensor, weight_tensor, out_tensor, rstd_tensor, current_stream
|
|
266
263
|
)
|
|
267
|
-
|
|
264
|
+
_rmsnorm_fwd.compile_cache[compile_key](
|
|
268
265
|
x_tensor, weight_tensor, out_tensor, rstd_tensor, current_stream, eps
|
|
269
266
|
)
|
|
270
267
|
return (out, rstd) if return_rstd else out
|
|
271
268
|
|
|
272
269
|
|
|
273
|
-
|
|
270
|
+
_rmsnorm_fwd.compile_cache = {}
|
|
274
271
|
|
|
275
272
|
|
|
276
273
|
def rmsnorm_ref(x, w, eps=1e-6):
|
|
@@ -283,3 +280,383 @@ def rmsnorm_ref(x, w, eps=1e-6):
|
|
|
283
280
|
def rstd_ref(x, eps=1e-6):
|
|
284
281
|
x_f32 = x.float()
|
|
285
282
|
return 1.0 / torch.sqrt(torch.mean(x_f32 * x_f32, dim=-1) + eps)
|
|
283
|
+
|
|
284
|
+
|
|
285
|
+
def rmsnorm_bwd_ref(x, w, dout, rstd, eps=1e-6):
|
|
286
|
+
"""Reference implementation for RMSNorm backward pass."""
|
|
287
|
+
x_f32 = x.float()
|
|
288
|
+
x_hat = x_f32 * rstd.unsqueeze(1)
|
|
289
|
+
wdy = dout * w
|
|
290
|
+
c1 = (x_hat * wdy).mean(dim=-1, keepdim=True)
|
|
291
|
+
dx = (wdy - x_hat * c1) * rstd.unsqueeze(1)
|
|
292
|
+
|
|
293
|
+
# dL/dW
|
|
294
|
+
dw = (dout * x_hat).sum(dim=0)
|
|
295
|
+
return dx.to(x.dtype), dw.to(w.dtype)
|
|
296
|
+
|
|
297
|
+
|
|
298
|
+
class RMSNormBackward(ReductionBase):
|
|
299
|
+
def __init__(self, dtype: cutlass.Numeric, N: int):
|
|
300
|
+
# 1 stage for computing mean of x_hat * wdy
|
|
301
|
+
super().__init__(dtype, N, stage=1, reduction_dtype=cutlass.Float32)
|
|
302
|
+
|
|
303
|
+
def _calculate_threads_per_row(self):
|
|
304
|
+
N = self.N
|
|
305
|
+
return (
|
|
306
|
+
8
|
|
307
|
+
if N <= 64
|
|
308
|
+
else (
|
|
309
|
+
16
|
|
310
|
+
if N <= 128
|
|
311
|
+
else (32 if N <= 3072 else (64 if N <= 6144 else (128 if N <= 16384 else 256)))
|
|
312
|
+
)
|
|
313
|
+
)
|
|
314
|
+
|
|
315
|
+
def _set_cluster_n(self):
|
|
316
|
+
N = self.N
|
|
317
|
+
if cutlass.const_expr(self.dtype.width == 16):
|
|
318
|
+
cluster_n = (
|
|
319
|
+
1
|
|
320
|
+
if N <= 16 * 1024
|
|
321
|
+
else (
|
|
322
|
+
2
|
|
323
|
+
if N <= 32 * 1024
|
|
324
|
+
else (4 if N <= 64 * 1024 else (8 if N <= 128 * 1024 else 16))
|
|
325
|
+
)
|
|
326
|
+
)
|
|
327
|
+
else: # fp32
|
|
328
|
+
cluster_n = (
|
|
329
|
+
1
|
|
330
|
+
if N <= 32 * 1024
|
|
331
|
+
else (
|
|
332
|
+
2
|
|
333
|
+
if N <= 64 * 1024
|
|
334
|
+
else (4 if N <= 128 * 1024 else (8 if N <= 256 * 1024 else 16))
|
|
335
|
+
)
|
|
336
|
+
)
|
|
337
|
+
self.cluster_n = cluster_n
|
|
338
|
+
|
|
339
|
+
@cute.jit
|
|
340
|
+
def __call__(
|
|
341
|
+
self,
|
|
342
|
+
mX: cute.Tensor,
|
|
343
|
+
mW: cute.Tensor,
|
|
344
|
+
mDout: cute.Tensor,
|
|
345
|
+
mRstd: cute.Tensor,
|
|
346
|
+
mDx: cute.Tensor,
|
|
347
|
+
mDw: cute.Tensor,
|
|
348
|
+
sm_count: cutlass.Constexpr,
|
|
349
|
+
stream: cuda.CUstream,
|
|
350
|
+
):
|
|
351
|
+
self._set_cluster_n()
|
|
352
|
+
tiler_mn, tv_layout = self._get_tv_layout()
|
|
353
|
+
num_threads = cute.size(tv_layout, mode=[0])
|
|
354
|
+
num_warps = num_threads // cute.arch.WARP_SIZE
|
|
355
|
+
|
|
356
|
+
mW_expanded_layout = cute.prepend(mW.layout, cute.make_layout((tiler_mn[0],), stride=(0,)))
|
|
357
|
+
mW = cute.make_tensor(mW.iterator, mW_expanded_layout)
|
|
358
|
+
|
|
359
|
+
mRstd_expanded_layout = cute.append(mRstd.layout, cute.make_layout((self.N,), stride=(0,)))
|
|
360
|
+
mRstd = cute.make_tensor(mRstd.iterator, mRstd_expanded_layout)
|
|
361
|
+
|
|
362
|
+
num_blocks = (
|
|
363
|
+
sm_count if tiler_mn[0] == 1 else min(sm_count, cute.ceil_div(1024, tiler_mn[0]))
|
|
364
|
+
)
|
|
365
|
+
|
|
366
|
+
self.kernel(mX, mW, mDout, mRstd, mDx, mDw, sm_count, tv_layout, tiler_mn).launch(
|
|
367
|
+
grid=[num_blocks, self.cluster_n, 1],
|
|
368
|
+
block=[num_threads, 1, 1],
|
|
369
|
+
cluster=[1, self.cluster_n, 1] if self.cluster_n > 1 else None,
|
|
370
|
+
smem=self._smem_size_in_bytes(tiler_mn, num_warps),
|
|
371
|
+
stream=stream,
|
|
372
|
+
)
|
|
373
|
+
|
|
374
|
+
@cute.kernel
|
|
375
|
+
def kernel(
|
|
376
|
+
self,
|
|
377
|
+
mX: cute.Tensor,
|
|
378
|
+
mW: cute.Tensor,
|
|
379
|
+
mDout: cute.Tensor,
|
|
380
|
+
mRstd: cute.Tensor,
|
|
381
|
+
mDx: cute.Tensor,
|
|
382
|
+
mDw: cute.Tensor,
|
|
383
|
+
sm_count: cutlass.Constexpr,
|
|
384
|
+
tv_layout: cute.Layout,
|
|
385
|
+
tiler_mn: cute.Shape,
|
|
386
|
+
):
|
|
387
|
+
tidx, _, _ = cute.arch.thread_idx()
|
|
388
|
+
bidx, cluster_y, _ = cute.arch.block_idx()
|
|
389
|
+
gdim, _, _ = cute.arch.grid_dim()
|
|
390
|
+
|
|
391
|
+
shape = mX.shape
|
|
392
|
+
M, N = shape[0], shape[1]
|
|
393
|
+
|
|
394
|
+
idX = cute.make_identity_tensor(shape)
|
|
395
|
+
|
|
396
|
+
smem = cutlass.utils.SmemAllocator()
|
|
397
|
+
reduction_buffer, mbar_ptr = self._allocate_reduction_buffer_and_mbar(smem, tv_layout)
|
|
398
|
+
|
|
399
|
+
copy_atom_load_X = cute.make_copy_atom(
|
|
400
|
+
cute.nvgpu.CopyUniversalOp(), mX.element_type, num_bits_per_copy=128
|
|
401
|
+
)
|
|
402
|
+
|
|
403
|
+
copy_atom_load_W = cute.make_copy_atom(
|
|
404
|
+
cute.nvgpu.CopyUniversalOp(), mW.element_type, num_bits_per_copy=128
|
|
405
|
+
)
|
|
406
|
+
|
|
407
|
+
copy_atom_store_dX = cute.make_copy_atom(
|
|
408
|
+
cute.nvgpu.CopyUniversalOp(), mDx.element_type, num_bits_per_copy=128
|
|
409
|
+
)
|
|
410
|
+
|
|
411
|
+
copy_atom_dw = cute.make_copy_atom(
|
|
412
|
+
cute.nvgpu.CopyUniversalOp(), mDw.element_type, num_bits_per_copy=128
|
|
413
|
+
)
|
|
414
|
+
|
|
415
|
+
thr_copy_X = cute.make_tiled_copy(copy_atom_load_X, tv_layout, tiler_mn).get_slice(tidx)
|
|
416
|
+
thr_copy_W = cute.make_tiled_copy(copy_atom_load_W, tv_layout, tiler_mn).get_slice(tidx)
|
|
417
|
+
thr_copy_dw = cute.make_tiled_copy(copy_atom_dw, tv_layout, tiler_mn).get_slice(tidx)
|
|
418
|
+
thr_store_dx = cute.make_tiled_copy(copy_atom_store_dX, tv_layout, tiler_mn).get_slice(tidx)
|
|
419
|
+
|
|
420
|
+
gW = cute.local_tile(mW, tiler_mn, (bidx, 0 if self.cluster_n == 1 else cluster_y))
|
|
421
|
+
tWgW = thr_copy_W.partition_S(gW)
|
|
422
|
+
tWrW = cute.make_fragment_like(tWgW)
|
|
423
|
+
tXrW = thr_copy_X.retile(tWrW)
|
|
424
|
+
|
|
425
|
+
gW_coord = cute.local_tile(idX, tiler_mn, (0, 0 if self.cluster_n == 1 else cluster_y))
|
|
426
|
+
|
|
427
|
+
tWpW = utils.predicate_k(thr_copy_W.partition_S(gW_coord), limit=shape[1])
|
|
428
|
+
cute.copy(copy_atom_load_W, tWgW, tWrW, pred=tWpW)
|
|
429
|
+
weight = tXrW.load().to(cute.Float32)
|
|
430
|
+
|
|
431
|
+
num_warps = cute.size(tv_layout, mode=[0]) // cute.arch.WARP_SIZE
|
|
432
|
+
|
|
433
|
+
self._initialize_cluster(tidx, mbar_ptr, num_warps)
|
|
434
|
+
|
|
435
|
+
dw_coord = cute.local_tile(idX, tiler_mn, (0, 0 if self.cluster_n == 1 else cluster_y))
|
|
436
|
+
tDwpDw = utils.predicate_k(thr_copy_dw.partition_S(dw_coord), limit=shape[1])
|
|
437
|
+
|
|
438
|
+
gDw = cute.local_tile(mDw, tiler_mn, (bidx, 0 if self.cluster_n == 1 else cluster_y))
|
|
439
|
+
tDwgDw = thr_copy_dw.partition_D(gDw)
|
|
440
|
+
tDwrDw = cute.make_fragment_like(tDwgDw)
|
|
441
|
+
dw_accumulator = thr_copy_X.retile(tDwrDw)
|
|
442
|
+
dw_accumulator.fill(0.0)
|
|
443
|
+
|
|
444
|
+
M_pad = ((M + sm_count - 1) // sm_count) * sm_count
|
|
445
|
+
|
|
446
|
+
jump = sm_count if tiler_mn[0] == 1 else min(sm_count, cute.ceil_div(1024, tiler_mn[0]))
|
|
447
|
+
|
|
448
|
+
if cutlass.const_expr(self.cluster_n > 1):
|
|
449
|
+
cute.arch.cluster_arrive()
|
|
450
|
+
cute.arch.cluster_wait()
|
|
451
|
+
|
|
452
|
+
## need to update range_dynamic since it will be deprecated soon
|
|
453
|
+
for row_offset in cutlass.range_dynamic(bidx, M_pad, jump):
|
|
454
|
+
gX = cute.local_tile(
|
|
455
|
+
mX, tiler_mn, (row_offset, 0 if self.cluster_n == 1 else cluster_y)
|
|
456
|
+
)
|
|
457
|
+
gDout = cute.local_tile(
|
|
458
|
+
mDout, tiler_mn, (row_offset, 0 if self.cluster_n == 1 else cluster_y)
|
|
459
|
+
)
|
|
460
|
+
gRstd = cute.local_tile(
|
|
461
|
+
mRstd, tiler_mn, (row_offset, 0 if self.cluster_n == 1 else cluster_y)
|
|
462
|
+
)
|
|
463
|
+
gDx = cute.local_tile(
|
|
464
|
+
mDx, tiler_mn, (row_offset, 0 if self.cluster_n == 1 else cluster_y)
|
|
465
|
+
)
|
|
466
|
+
cX = cute.local_tile(
|
|
467
|
+
idX, tiler_mn, (row_offset, 0 if self.cluster_n == 1 else cluster_y)
|
|
468
|
+
)
|
|
469
|
+
|
|
470
|
+
tXgX = thr_copy_X.partition_S(gX)
|
|
471
|
+
thrDout = thr_copy_X.partition_S(gDout)
|
|
472
|
+
tXrRstd = thr_copy_W.partition_S(gRstd)
|
|
473
|
+
thrDx = thr_store_dx.partition_D(gDx)
|
|
474
|
+
tXcX = thr_copy_X.partition_S(cX)[(0, None), None, None]
|
|
475
|
+
|
|
476
|
+
tXrX, frgDout, frgDx = [cute.make_fragment_like(thr) for thr in (tXgX, thrDout, thrDx)]
|
|
477
|
+
|
|
478
|
+
tXpX = utils.predicate_k(thr_copy_X.partition_S(cX), limit=shape[1])
|
|
479
|
+
|
|
480
|
+
if tXcX[0][0] < shape[0]:
|
|
481
|
+
cute.copy(copy_atom_load_X, tXgX, tXrX, pred=tXpX)
|
|
482
|
+
cute.copy(copy_atom_load_X, thrDout, frgDout, pred=tXpX)
|
|
483
|
+
|
|
484
|
+
x = tXrX.load().to(cute.Float32)
|
|
485
|
+
dout = frgDout.load().to(cute.Float32)
|
|
486
|
+
|
|
487
|
+
rstd = tXrRstd[0]
|
|
488
|
+
x_hat = x * rstd
|
|
489
|
+
wdy = dout * weight
|
|
490
|
+
|
|
491
|
+
threads_per_row = tv_layout.shape[0][0]
|
|
492
|
+
|
|
493
|
+
row = tXcX[0][0]
|
|
494
|
+
if cutlass.const_expr(self.cluster_n > 1):
|
|
495
|
+
cute.arch.cluster_arrive()
|
|
496
|
+
cute.arch.cluster_wait()
|
|
497
|
+
else:
|
|
498
|
+
cute.arch.barrier()
|
|
499
|
+
|
|
500
|
+
mean_xhat_wdy = (
|
|
501
|
+
utils.row_reduce(
|
|
502
|
+
x_hat * wdy,
|
|
503
|
+
cute.ReductionOp.ADD,
|
|
504
|
+
threads_per_row,
|
|
505
|
+
reduction_buffer[None, None, 0],
|
|
506
|
+
mbar_ptr + 0 if cutlass.const_expr(self.cluster_n > 1) else None,
|
|
507
|
+
init_val=0.0,
|
|
508
|
+
hook_fn=cute.arch.cluster_wait
|
|
509
|
+
if cutlass.const_expr(self.cluster_n > 1)
|
|
510
|
+
else None,
|
|
511
|
+
)
|
|
512
|
+
/ shape[1]
|
|
513
|
+
)
|
|
514
|
+
|
|
515
|
+
dx = (wdy - x_hat * mean_xhat_wdy) * rstd
|
|
516
|
+
frgDx.store(dx.to(frgDout.element_type))
|
|
517
|
+
|
|
518
|
+
if row < M:
|
|
519
|
+
cute.copy(copy_atom_store_dX, frgDx, thrDx, pred=tXpX)
|
|
520
|
+
|
|
521
|
+
if cutlass.const_expr(self.cluster_n > 1):
|
|
522
|
+
cute.arch.cluster_arrive()
|
|
523
|
+
cute.arch.cluster_wait()
|
|
524
|
+
else:
|
|
525
|
+
cute.arch.barrier()
|
|
526
|
+
|
|
527
|
+
if row < M:
|
|
528
|
+
dw_row = dout * x_hat
|
|
529
|
+
current_dw = dw_accumulator.load().to(cute.Float32)
|
|
530
|
+
updated_dw = current_dw + dw_row
|
|
531
|
+
dw_accumulator.store(updated_dw.to(dw_accumulator.element_type))
|
|
532
|
+
|
|
533
|
+
"""
|
|
534
|
+
if cutlass.const_expr(self.cluster_n > 1):
|
|
535
|
+
cute.arch.cluster_arrive()
|
|
536
|
+
cute.arch.cluster_wait()
|
|
537
|
+
else:
|
|
538
|
+
cute.arch.barrier()
|
|
539
|
+
"""
|
|
540
|
+
"""
|
|
541
|
+
if cutlass.const_expr(self.cluster_n > 1):
|
|
542
|
+
cute.arch.cluster_arrive()
|
|
543
|
+
cute.arch.cluster_wait()
|
|
544
|
+
else:
|
|
545
|
+
cute.arch.barrier()
|
|
546
|
+
"""
|
|
547
|
+
|
|
548
|
+
cute.autovec_copy(dw_accumulator, tDwrDw)
|
|
549
|
+
cute.copy(copy_atom_dw, tDwrDw, tDwgDw, pred=tDwpDw)
|
|
550
|
+
|
|
551
|
+
|
|
552
|
+
def _rmsnorm_backward(
|
|
553
|
+
x: torch.Tensor,
|
|
554
|
+
weight: torch.Tensor,
|
|
555
|
+
dout: torch.Tensor,
|
|
556
|
+
rstd: torch.Tensor,
|
|
557
|
+
) -> (torch.Tensor, torch.Tensor):
|
|
558
|
+
"""RMSNorm backward pass.
|
|
559
|
+
Args:
|
|
560
|
+
x: Input tensor of shape (M, N)
|
|
561
|
+
weight: Weight tensor of shape (N,)
|
|
562
|
+
dout: Upstream gradients tensor of shape (M, N)
|
|
563
|
+
rstd: Reciprocal standard deviation tensor of shape (M,)
|
|
564
|
+
Returns:
|
|
565
|
+
Tuple of (dx, dw) where:
|
|
566
|
+
- dx: Input gradients tensor of same shape as x
|
|
567
|
+
- dw: Weight gradients tensor of same shape as weight
|
|
568
|
+
"""
|
|
569
|
+
assert x.dim() == 2, "Input must be 2D"
|
|
570
|
+
assert weight.dim() == 1, "Weight must be 1D"
|
|
571
|
+
assert x.shape[-1] == weight.shape[0], "Last dimension of input must match weight dimension"
|
|
572
|
+
assert x.is_cuda and weight.is_cuda, "Tensors must be on CUDA device"
|
|
573
|
+
assert x.dtype in [torch.float16, torch.bfloat16, torch.float32], "Unsupported dtype"
|
|
574
|
+
assert weight.dtype == torch.float32, "Weight must be float32"
|
|
575
|
+
|
|
576
|
+
M, N = x.shape
|
|
577
|
+
dx = torch.empty_like(x)
|
|
578
|
+
|
|
579
|
+
device = x.device
|
|
580
|
+
|
|
581
|
+
sm_count = torch.cuda.get_device_properties(device).multi_processor_count * 8
|
|
582
|
+
dw_partial = torch.zeros((sm_count, N), device=device, dtype=weight.dtype)
|
|
583
|
+
|
|
584
|
+
dtype = torch2cute_dtype_map[x.dtype]
|
|
585
|
+
|
|
586
|
+
convert_from_dlpack = lambda tensor: (
|
|
587
|
+
from_dlpack(tensor.detach(), assumed_align=16).mark_compact_shape_dynamic(
|
|
588
|
+
mode=0, stride_order=(0, 1)
|
|
589
|
+
)
|
|
590
|
+
)
|
|
591
|
+
|
|
592
|
+
x_tensor, dout_tensor, dx_tensor = [convert_from_dlpack(tensor) for tensor in (x, dout, dx)]
|
|
593
|
+
|
|
594
|
+
weight_tensor = utils.convert_from_dlpack(
|
|
595
|
+
weight.detach(), leading_dim=0, divisibility=128 // cutlass.Float32.width
|
|
596
|
+
)
|
|
597
|
+
|
|
598
|
+
dw_partial_tensor = convert_from_dlpack(dw_partial)
|
|
599
|
+
rstd_tensor = from_dlpack(rstd.detach(), assumed_align=4).mark_layout_dynamic(leading_dim=0)
|
|
600
|
+
|
|
601
|
+
current_stream = cuda.CUstream(torch.cuda.current_stream().cuda_stream)
|
|
602
|
+
|
|
603
|
+
compile_key = (dtype, N)
|
|
604
|
+
if compile_key not in _rmsnorm_backward.compile_cache:
|
|
605
|
+
rmsnorm_backward_op = RMSNormBackward(dtype, N)
|
|
606
|
+
_rmsnorm_backward.compile_cache[compile_key] = cute.compile(
|
|
607
|
+
rmsnorm_backward_op,
|
|
608
|
+
x_tensor,
|
|
609
|
+
weight_tensor,
|
|
610
|
+
dout_tensor,
|
|
611
|
+
rstd_tensor,
|
|
612
|
+
dx_tensor,
|
|
613
|
+
dw_partial_tensor,
|
|
614
|
+
sm_count,
|
|
615
|
+
current_stream,
|
|
616
|
+
)
|
|
617
|
+
|
|
618
|
+
_rmsnorm_backward.compile_cache[compile_key](
|
|
619
|
+
x_tensor,
|
|
620
|
+
weight_tensor,
|
|
621
|
+
dout_tensor,
|
|
622
|
+
rstd_tensor,
|
|
623
|
+
dx_tensor,
|
|
624
|
+
dw_partial_tensor,
|
|
625
|
+
current_stream,
|
|
626
|
+
)
|
|
627
|
+
|
|
628
|
+
dw = dw_partial.sum(dim=0).to(weight.dtype)
|
|
629
|
+
return dx, dw
|
|
630
|
+
|
|
631
|
+
|
|
632
|
+
_rmsnorm_backward.compile_cache = {}
|
|
633
|
+
|
|
634
|
+
|
|
635
|
+
class RMSNormFunction(torch.autograd.Function):
|
|
636
|
+
@staticmethod
|
|
637
|
+
def forward(ctx, x, weight, eps):
|
|
638
|
+
out, rstd = _rmsnorm_fwd(x, weight, eps, return_rstd=True)
|
|
639
|
+
ctx.save_for_backward(x, weight, rstd)
|
|
640
|
+
ctx.eps = eps
|
|
641
|
+
return out
|
|
642
|
+
|
|
643
|
+
@staticmethod
|
|
644
|
+
def backward(ctx, dout):
|
|
645
|
+
x, weight, rstd = ctx.saved_tensors
|
|
646
|
+
dx, dw = _rmsnorm_backward(x, weight, dout, rstd)
|
|
647
|
+
# dw is returned for weight gradient, None for eps gradient
|
|
648
|
+
return dx, dw, None
|
|
649
|
+
|
|
650
|
+
|
|
651
|
+
def rmsnorm(x: torch.Tensor, weight: torch.Tensor, eps: float = 1e-6) -> torch.Tensor:
|
|
652
|
+
"""RMSNorm forward pass with automatic differentiation support.
|
|
653
|
+
|
|
654
|
+
Args:
|
|
655
|
+
x: Input tensor of shape (M, N)
|
|
656
|
+
weight: Weight tensor of shape (N,)
|
|
657
|
+
eps: Small value for numerical stability
|
|
658
|
+
|
|
659
|
+
Returns:
|
|
660
|
+
Normalized output tensor of same shape as x
|
|
661
|
+
"""
|
|
662
|
+
return RMSNormFunction.apply(x, weight, eps)
|
quack/utils.py
CHANGED
|
@@ -23,20 +23,6 @@ def convert_from_dlpack(x, leading_dim, alignment=16, divisibility=1) -> cute.Te
|
|
|
23
23
|
)
|
|
24
24
|
|
|
25
25
|
|
|
26
|
-
@cute.jit
|
|
27
|
-
def max_constexpr(
|
|
28
|
-
a: cutlass.Constexpr[cute.Numeric], b: cutlass.Constexpr[cute.Numeric]
|
|
29
|
-
) -> cutlass.Constexpr[cute.Numeric]:
|
|
30
|
-
return a if a > b else b
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
@cute.jit
|
|
34
|
-
def min_constexpr(
|
|
35
|
-
a: cutlass.Constexpr[cute.Numeric], b: cutlass.Constexpr[cute.Numeric]
|
|
36
|
-
) -> cutlass.Constexpr[cute.Numeric]:
|
|
37
|
-
return a if a < b else b
|
|
38
|
-
|
|
39
|
-
|
|
40
26
|
@cute.jit
|
|
41
27
|
def warp_reduce(
|
|
42
28
|
val: cute.TensorSSA | cute.Numeric,
|
|
@@ -196,7 +182,7 @@ def row_reduce(
|
|
|
196
182
|
val = warp_reduce(
|
|
197
183
|
val,
|
|
198
184
|
warp_op,
|
|
199
|
-
width=
|
|
185
|
+
width=min(threads_per_row, cute.arch.WARP_SIZE),
|
|
200
186
|
)
|
|
201
187
|
if cutlass.const_expr(hook_fn is not None):
|
|
202
188
|
hook_fn()
|
|
@@ -226,7 +212,7 @@ def online_softmax_reduce(
|
|
|
226
212
|
max_x = warp_reduce(
|
|
227
213
|
x.reduce(cute.ReductionOp.MAX, init_val=-Float32.inf, reduction_profile=0),
|
|
228
214
|
cute.arch.fmax,
|
|
229
|
-
width=
|
|
215
|
+
width=min(threads_per_row, cute.arch.WARP_SIZE),
|
|
230
216
|
)
|
|
231
217
|
log2_e = math.log2(math.e)
|
|
232
218
|
exp_x = exp2f(x * log2_e - (max_x * log2_e))
|
|
@@ -234,7 +220,7 @@ def online_softmax_reduce(
|
|
|
234
220
|
sum_exp_x = warp_reduce(
|
|
235
221
|
exp_x.reduce(cute.ReductionOp.ADD, init_val=0.0, reduction_profile=0),
|
|
236
222
|
operator.add,
|
|
237
|
-
width=
|
|
223
|
+
width=min(threads_per_row, cute.arch.WARP_SIZE),
|
|
238
224
|
)
|
|
239
225
|
if cutlass.const_expr(hook_fn is not None):
|
|
240
226
|
hook_fn()
|
|
@@ -303,7 +289,6 @@ def online_softmax_reduce(
|
|
|
303
289
|
@cute.jit
|
|
304
290
|
def exp2f(x: cute.TensorSSA | Float32) -> cute.TensorSSA | Float32:
|
|
305
291
|
"""exp2f calculation for both vector and scalar.
|
|
306
|
-
|
|
307
292
|
:param x: input value
|
|
308
293
|
:type x: cute.TensorSSA or Float32
|
|
309
294
|
:return: exp2 value
|
|
@@ -0,0 +1,11 @@
|
|
|
1
|
+
quack/__init__.py,sha256=GPoImcynY5-OkMep5RhQhXrnZyxgqZG3RoHhsYQFSL4,203
|
|
2
|
+
quack/cross_entropy.py,sha256=WkngPY8uk4RCjCFtHtB7h9GF_8xt4NnyvDzvw73gIL4,19320
|
|
3
|
+
quack/reduction_base.py,sha256=fFuGXPR3lDq2yw_m86ujmkni6R51jzNAzy_r9R6C8tA,3563
|
|
4
|
+
quack/rmsnorm.py,sha256=N9NavrR85ws4cZgkfpeRLjYkVSq2yfyzJQWvfKf98pY,23935
|
|
5
|
+
quack/softmax.py,sha256=VfhlC2huRuv7olFSVFgS8LF1yF8TFV64yjjjQxYX9yk,16364
|
|
6
|
+
quack/utils.py,sha256=6EyWgf0z3wcbhGUivHmWB8hVBnEzMyOhmAuZ2Te82k0,15226
|
|
7
|
+
quack_kernels-0.1.5.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
|
8
|
+
quack_kernels-0.1.5.dist-info/METADATA,sha256=WI-2CP1mRH05V9Fjdx7HsErNOkrc6fUhheoH4ynlo-U,289
|
|
9
|
+
quack_kernels-0.1.5.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
10
|
+
quack_kernels-0.1.5.dist-info/top_level.txt,sha256=6e4Jr_vNJbZTYwlO_Ahf_sDeHDE0zcqcf7Le11FKxxo,6
|
|
11
|
+
quack_kernels-0.1.5.dist-info/RECORD,,
|
|
@@ -1,11 +0,0 @@
|
|
|
1
|
-
quack/__init__.py,sha256=cFLxO6nA_faFqHf4N-Fy7G0j8ykuYPB1uOt9uoJ2dkQ,203
|
|
2
|
-
quack/cross_entropy.py,sha256=HnF2OErEzb10SWxY6HoYE42lnvlw2DsWCks7mylPwnI,9511
|
|
3
|
-
quack/reduction_base.py,sha256=Rsj9ZeSHcKAXGn1p7mY1vrrBqxevi4feLjY0JJhKnmY,3663
|
|
4
|
-
quack/rmsnorm.py,sha256=TkOZsXJwcsoZMLnmEWQ-pEF0r-iiZhGrCNLSFCXfv6s,10676
|
|
5
|
-
quack/softmax.py,sha256=VfhlC2huRuv7olFSVFgS8LF1yF8TFV64yjjjQxYX9yk,16364
|
|
6
|
-
quack/utils.py,sha256=zVc9U-5No19trE585KqDdXx9chAruXPRIPMZdO7mkRg,15603
|
|
7
|
-
quack_kernels-0.1.4.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
|
8
|
-
quack_kernels-0.1.4.dist-info/METADATA,sha256=xl62C5WFgiUbnOICAzjldsljJ9j1Fb_JxZVksHLCI8I,289
|
|
9
|
-
quack_kernels-0.1.4.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
10
|
-
quack_kernels-0.1.4.dist-info/top_level.txt,sha256=6e4Jr_vNJbZTYwlO_Ahf_sDeHDE0zcqcf7Le11FKxxo,6
|
|
11
|
-
quack_kernels-0.1.4.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|