qrotor 4.0.0a1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of qrotor might be problematic. Click here for more details.
- qrotor/__init__.py +14 -0
- qrotor/_version.py +14 -0
- qrotor/constants.py +72 -0
- qrotor/plot.py +337 -0
- qrotor/potential.py +473 -0
- qrotor/rotate.py +202 -0
- qrotor/solve.py +271 -0
- qrotor/system.py +275 -0
- qrotor/systems.py +245 -0
- qrotor-4.0.0a1.dist-info/METADATA +167 -0
- qrotor-4.0.0a1.dist-info/RECORD +16 -0
- qrotor-4.0.0a1.dist-info/WHEEL +5 -0
- qrotor-4.0.0a1.dist-info/licenses/LICENSE +661 -0
- qrotor-4.0.0a1.dist-info/top_level.txt +2 -0
- tests/__init__.py +0 -0
- tests/test_qrotor.py +101 -0
qrotor/systems.py
ADDED
|
@@ -0,0 +1,245 @@
|
|
|
1
|
+
"""
|
|
2
|
+
# Description
|
|
3
|
+
|
|
4
|
+
This module contains utility functions to handle multiple `qrotor.system` calculations.
|
|
5
|
+
These are commonly used as a list of `System` objects.
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
# Index
|
|
9
|
+
|
|
10
|
+
| | |
|
|
11
|
+
| --- | --- |
|
|
12
|
+
| `as_list()` | Ensures that a list only contains System objects |
|
|
13
|
+
| `save_energies()` | Save the energy eigenvalues for all systems to a CSV |
|
|
14
|
+
| `save_splittings()` | Save the tunnel splitting energies for all systems to a CSV |
|
|
15
|
+
| `get_energies()` | Get the eigenvalues from all systems |
|
|
16
|
+
| `get_gridsizes()` | Get all gridsizes |
|
|
17
|
+
| `get_runtimes()` | Get all runtimes |
|
|
18
|
+
| `get_groups()` | Get the chemical groups in use |
|
|
19
|
+
| `get_ideal_E()` | Calculate the ideal energy for a specified level |
|
|
20
|
+
| `sort_by_gridsize()` | Sort systems by gridsize |
|
|
21
|
+
| `reduce_size()` | Discard data that takes too much space |
|
|
22
|
+
| `summary()` | Print a summary of a System or list of Systems |
|
|
23
|
+
|
|
24
|
+
---
|
|
25
|
+
"""
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
from .system import System
|
|
29
|
+
from aton import txt
|
|
30
|
+
import pandas as pd
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
def as_list(systems) -> None:
|
|
34
|
+
"""Ensures that `systems` is a list of System objects.
|
|
35
|
+
|
|
36
|
+
If it is a System, returns a list with that System as the only element.
|
|
37
|
+
If it is neither a list nor a System,
|
|
38
|
+
or if the list does not contain only System objects,
|
|
39
|
+
it raises an error.
|
|
40
|
+
"""
|
|
41
|
+
if isinstance(systems, System):
|
|
42
|
+
systems = [systems]
|
|
43
|
+
if not isinstance(systems, list):
|
|
44
|
+
raise TypeError(f"Must be a System object or a list of systems, found instead: {type(systems)}")
|
|
45
|
+
for i in systems:
|
|
46
|
+
if not isinstance(i, System):
|
|
47
|
+
raise TypeError(f"All items in the list must be System objects, found instead: {type(i)}")
|
|
48
|
+
return systems
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
def save_energies(
|
|
52
|
+
systems:list,
|
|
53
|
+
comment:str='',
|
|
54
|
+
filepath:str='eigenvalues.csv',
|
|
55
|
+
) -> pd.DataFrame:
|
|
56
|
+
"""Save the energy eigenvalues for all `systems` to a eigenvalues.csv file.
|
|
57
|
+
|
|
58
|
+
Returns a Pandas Dataset with `System.comment` columns and `System.eigenvalues` values.
|
|
59
|
+
|
|
60
|
+
The output file can be changed with `filepath`,
|
|
61
|
+
or set to null to avoid saving the dataset.
|
|
62
|
+
A `comment` can be included at the top of the file.
|
|
63
|
+
Note that `System.comment` must not include commas (`,`).
|
|
64
|
+
"""
|
|
65
|
+
as_list(systems)
|
|
66
|
+
version = systems[0].version
|
|
67
|
+
E = {}
|
|
68
|
+
# Find max length of eigenvalues
|
|
69
|
+
max_len = max((len(s.eigenvalues) if s.eigenvalues is not None else 0) for s in systems)
|
|
70
|
+
for s in systems:
|
|
71
|
+
if s.eigenvalues is not None:
|
|
72
|
+
# Filter out None values and replace with NaN
|
|
73
|
+
valid_eigenvalues = [float('nan') if e is None else e for e in s.eigenvalues]
|
|
74
|
+
padded_eigenvalues = valid_eigenvalues + [float('nan')] * (max_len - len(s.eigenvalues))
|
|
75
|
+
else:
|
|
76
|
+
padded_eigenvalues = [float('nan')] * max_len
|
|
77
|
+
E[s.comment] = padded_eigenvalues
|
|
78
|
+
df = pd.DataFrame(E)
|
|
79
|
+
if not filepath:
|
|
80
|
+
return df
|
|
81
|
+
# Else save to file
|
|
82
|
+
df.to_csv(filepath, sep=',', index=False)
|
|
83
|
+
# Include a comment at the top of the file
|
|
84
|
+
file_comment = f'# {comment}\n' if comment else f''
|
|
85
|
+
file_comment += f'# Energy eigenvalues\n'
|
|
86
|
+
file_comment += f'# Calculated with QRotor {version}\n'
|
|
87
|
+
file_comment += f'# https://pablogila.github.io/qrotor\n#'
|
|
88
|
+
txt.edit.insert_at(filepath, file_comment, 0)
|
|
89
|
+
print(f'Energy eigenvalues saved to {filepath}')
|
|
90
|
+
return df
|
|
91
|
+
|
|
92
|
+
|
|
93
|
+
def save_splittings(
|
|
94
|
+
systems:list,
|
|
95
|
+
comment:str='',
|
|
96
|
+
filepath:str='splittings.csv',
|
|
97
|
+
) -> pd.DataFrame:
|
|
98
|
+
"""Save the tunnel splitting energies for all `systems` to a splittings.csv file.
|
|
99
|
+
|
|
100
|
+
Returns a Pandas Dataset with `System.comment` columns and `System.splittings` values.
|
|
101
|
+
|
|
102
|
+
The output file can be changed with `filepath`,
|
|
103
|
+
or set to null to avoid saving the dataset.
|
|
104
|
+
A `comment` can be included at the top of the file.
|
|
105
|
+
Note that `System.comment` must not include commas (`,`).
|
|
106
|
+
Different splitting lengths across systems are allowed - missing values will be NaN.
|
|
107
|
+
"""
|
|
108
|
+
as_list(systems)
|
|
109
|
+
version = systems[0].version
|
|
110
|
+
tunnelling_E = {}
|
|
111
|
+
# Find max length of splittings
|
|
112
|
+
max_len = max(len(s.splittings) for s in systems)
|
|
113
|
+
for s in systems: # Pad shorter splittings with NaN
|
|
114
|
+
padded_splittings = s.splittings + [float('nan')] * (max_len - len(s.splittings))
|
|
115
|
+
tunnelling_E[s.comment] = padded_splittings
|
|
116
|
+
df = pd.DataFrame(tunnelling_E)
|
|
117
|
+
if not filepath:
|
|
118
|
+
return df
|
|
119
|
+
# Else save to file
|
|
120
|
+
df.to_csv(filepath, sep=',', index=False)
|
|
121
|
+
# Include a comment at the top of the file
|
|
122
|
+
file_comment = f'# {comment}\n' if comment else f''
|
|
123
|
+
file_comment += f'# Tunnel splitting energies\n'
|
|
124
|
+
file_comment += f'# Calculated with QRotor {version}\n'
|
|
125
|
+
file_comment += f'# https://pablogila.github.io/qrotor\n#'
|
|
126
|
+
txt.edit.insert_at(filepath, file_comment, 0)
|
|
127
|
+
print(f'Tunnel splitting energies saved to {filepath}')
|
|
128
|
+
return df
|
|
129
|
+
|
|
130
|
+
|
|
131
|
+
def get_energies(systems:list) -> list:
|
|
132
|
+
"""Get a list with all lists of eigenvalues from all systems.
|
|
133
|
+
|
|
134
|
+
If no eigenvalues are present for a particular system, appends None.
|
|
135
|
+
"""
|
|
136
|
+
as_list(systems)
|
|
137
|
+
energies = []
|
|
138
|
+
for i in systems:
|
|
139
|
+
if all(i.eigenvalues):
|
|
140
|
+
energies.append(i.eigenvalues)
|
|
141
|
+
else:
|
|
142
|
+
energies.append(None)
|
|
143
|
+
return energies
|
|
144
|
+
|
|
145
|
+
|
|
146
|
+
def get_gridsizes(systems:list) -> list:
|
|
147
|
+
"""Get a list with all gridsize values.
|
|
148
|
+
|
|
149
|
+
If no gridsize value is present for a particular system, appends None.
|
|
150
|
+
"""
|
|
151
|
+
as_list(systems)
|
|
152
|
+
gridsizes = []
|
|
153
|
+
for i in systems:
|
|
154
|
+
if i.gridsize:
|
|
155
|
+
gridsizes.append(i.gridsize)
|
|
156
|
+
elif any(i.potential_values):
|
|
157
|
+
gridsizes.append(len(i.potential_values))
|
|
158
|
+
else:
|
|
159
|
+
gridsizes.append(None)
|
|
160
|
+
return gridsizes
|
|
161
|
+
|
|
162
|
+
|
|
163
|
+
def get_runtimes(systems:list) -> list:
|
|
164
|
+
"""Returns a list with all runtime values.
|
|
165
|
+
|
|
166
|
+
If no runtime value is present for a particular system, appends None.
|
|
167
|
+
"""
|
|
168
|
+
as_list(systems)
|
|
169
|
+
runtimes = []
|
|
170
|
+
for i in systems:
|
|
171
|
+
if i.runtime:
|
|
172
|
+
runtimes.append(i.runtime)
|
|
173
|
+
else:
|
|
174
|
+
runtimes.append(None)
|
|
175
|
+
return runtimes
|
|
176
|
+
|
|
177
|
+
|
|
178
|
+
def get_groups(systems:list) -> list:
|
|
179
|
+
"""Returns a list with all `System.group` values."""
|
|
180
|
+
as_list(systems)
|
|
181
|
+
groups = []
|
|
182
|
+
for i in systems:
|
|
183
|
+
if i.group not in groups:
|
|
184
|
+
groups.append(i.group)
|
|
185
|
+
return groups
|
|
186
|
+
|
|
187
|
+
|
|
188
|
+
def get_ideal_E(E_level:int) -> int:
|
|
189
|
+
"""Calculates the ideal energy for a specified `E_level`.
|
|
190
|
+
|
|
191
|
+
To be used in convergence tests with `potential_name = 'zero'`.
|
|
192
|
+
"""
|
|
193
|
+
real_E_level = None
|
|
194
|
+
if E_level % 2 == 0:
|
|
195
|
+
real_E_level = E_level / 2
|
|
196
|
+
else:
|
|
197
|
+
real_E_level = (E_level + 1) / 2
|
|
198
|
+
ideal_E = int(real_E_level ** 2)
|
|
199
|
+
return ideal_E
|
|
200
|
+
|
|
201
|
+
|
|
202
|
+
def sort_by_gridsize(systems:list) -> list:
|
|
203
|
+
"""Sorts a list of System objects by `System.gridsize`."""
|
|
204
|
+
as_list(systems)
|
|
205
|
+
systems = sorted(systems, key=lambda sys: sys.gridsize)
|
|
206
|
+
return systems
|
|
207
|
+
|
|
208
|
+
|
|
209
|
+
def reduce_size(systems:list) -> list:
|
|
210
|
+
"""Discard data that takes too much space.
|
|
211
|
+
|
|
212
|
+
Removes eigenvectors, potential values and grids,
|
|
213
|
+
for all System values inside the `systems` list.
|
|
214
|
+
"""
|
|
215
|
+
as_list(systems)
|
|
216
|
+
for dataset in systems:
|
|
217
|
+
dataset = dataset.reduce_size()
|
|
218
|
+
return systems
|
|
219
|
+
|
|
220
|
+
|
|
221
|
+
def summary(systems, verbose:bool=False) -> None:
|
|
222
|
+
"""Print a summary of a System or list of Systems.
|
|
223
|
+
|
|
224
|
+
Print extra info with `verbose=True`
|
|
225
|
+
"""
|
|
226
|
+
print('--------------------')
|
|
227
|
+
systems = as_list(systems)
|
|
228
|
+
for system in systems:
|
|
229
|
+
dictionary = system.summary()
|
|
230
|
+
if verbose:
|
|
231
|
+
for key, value in dictionary.items():
|
|
232
|
+
print(f'{key:<24}', value)
|
|
233
|
+
else:
|
|
234
|
+
eigenvalues = system.eigenvalues if any(system.eigenvalues) else []
|
|
235
|
+
extra = ''
|
|
236
|
+
if len(system.eigenvalues) > 6:
|
|
237
|
+
eigenvalues = eigenvalues[:6]
|
|
238
|
+
extra = '...'
|
|
239
|
+
print('comment ' + str(system.comment))
|
|
240
|
+
print('B ' + str(system.B))
|
|
241
|
+
print('eigenvalues ' + str([float(round(e, 4)) for e in eigenvalues]) + extra)
|
|
242
|
+
print('version ' + str(system.version))
|
|
243
|
+
print('--------------------')
|
|
244
|
+
return None
|
|
245
|
+
|
|
@@ -0,0 +1,167 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: qrotor
|
|
3
|
+
Version: 4.0.0a1
|
|
4
|
+
Summary: QRotor
|
|
5
|
+
Author: Pablo Gila-Herranz
|
|
6
|
+
Author-email: pgila001@ikasle.ehu.eus
|
|
7
|
+
License: AGPL-3.0
|
|
8
|
+
Keywords: QRotor,Molecular rotations,Quantum rotations,Quantum,Molecular,Rotations,Neutrons,Research,Ab-initio,DFT,Density Functional Theory,Quantum ESPRESSO,Phonons,Electronic structure
|
|
9
|
+
Classifier: Development Status :: 5 - Production/Stable
|
|
10
|
+
Classifier: Natural Language :: English
|
|
11
|
+
Classifier: Intended Audience :: Science/Research
|
|
12
|
+
Classifier: Programming Language :: Python :: 3
|
|
13
|
+
Classifier: Operating System :: POSIX :: Linux
|
|
14
|
+
Classifier: Operating System :: Microsoft :: Windows
|
|
15
|
+
Classifier: Operating System :: Other OS
|
|
16
|
+
Requires-Python: >=3
|
|
17
|
+
Description-Content-Type: text/markdown
|
|
18
|
+
License-File: LICENSE
|
|
19
|
+
Requires-Dist: scipy
|
|
20
|
+
Requires-Dist: pandas
|
|
21
|
+
Requires-Dist: numpy
|
|
22
|
+
Requires-Dist: matplotlib
|
|
23
|
+
Requires-Dist: aton
|
|
24
|
+
Dynamic: author
|
|
25
|
+
Dynamic: author-email
|
|
26
|
+
Dynamic: classifier
|
|
27
|
+
Dynamic: description
|
|
28
|
+
Dynamic: description-content-type
|
|
29
|
+
Dynamic: keywords
|
|
30
|
+
Dynamic: license
|
|
31
|
+
Dynamic: license-file
|
|
32
|
+
Dynamic: requires-dist
|
|
33
|
+
Dynamic: requires-python
|
|
34
|
+
Dynamic: summary
|
|
35
|
+
|
|
36
|
+
# QRotor
|
|
37
|
+
|
|
38
|
+
QRotor is a Python package used to study molecular rotations,
|
|
39
|
+
such as those of methyl and amine groups.
|
|
40
|
+
It can calculate their quantum energy levels and wavefunctions,
|
|
41
|
+
along with excitations and tunnel splittings.
|
|
42
|
+
These quantum systems are represented by the `qrotor.System()` object.
|
|
43
|
+
|
|
44
|
+
QRotor can obtain custom potentials from DFT,
|
|
45
|
+
which are used to solve the quantum system.
|
|
46
|
+
|
|
47
|
+
Check the [full documentation online](https://pablogila.github.io/qrotor/).
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
# Index
|
|
51
|
+
|
|
52
|
+
| | |
|
|
53
|
+
| --- | --- |
|
|
54
|
+
| [qrotor.system](https://pablogila.github.io/qrotor/qrotor/system.html) | Definition of the quantum `System` object |
|
|
55
|
+
| [qrotor.systems](https://pablogila.github.io/qrotor/qrotor/systems.html) | Functions to manage several System objects, such as a list of systems |
|
|
56
|
+
| [qrotor.rotate](https://pablogila.github.io/qrotor/qrotor/rotate.html) | Rotate specific atoms from structural files |
|
|
57
|
+
| [qrotor.constants](https://pablogila.github.io/qrotor/qrotor/constants.html) | Common bond lengths and inertias |
|
|
58
|
+
| [qrotor.potential](https://pablogila.github.io/qrotor/qrotor/potential.html) | Potential definitions and loading functions |
|
|
59
|
+
| [qrotor.solve](https://pablogila.github.io/qrotor/qrotor/solve.html) | Solve rotation eigenvalues and eigenvectors |
|
|
60
|
+
| [qrotor.plot](https://pablogila.github.io/qrotor/qrotor/plot.html) | Plotting functions |
|
|
61
|
+
|
|
62
|
+
|
|
63
|
+
# Usage
|
|
64
|
+
|
|
65
|
+
## Solving quantum rotational systems
|
|
66
|
+
|
|
67
|
+
A basic calculation of the eigenvalues for a zero potential goes as follows.
|
|
68
|
+
Note that the default energy unit is meV unless stated otherwise.
|
|
69
|
+
|
|
70
|
+
```python
|
|
71
|
+
import qrotor as qr
|
|
72
|
+
system = qr.System()
|
|
73
|
+
system.gridsize = 200000 # Size of the potential grid
|
|
74
|
+
system.B = 1 # Rotational inertia
|
|
75
|
+
system.potential_name = 'zero'
|
|
76
|
+
system.solve()
|
|
77
|
+
system.eigenvalues
|
|
78
|
+
# [0.0, 1.0, 1.0, 4.0, 4.0, 9.0, 9.0, ...] # approx values
|
|
79
|
+
```
|
|
80
|
+
|
|
81
|
+
The accuracy of the calculation increases with bigger gridsizes,
|
|
82
|
+
but note that the runtime increases exponentially.
|
|
83
|
+
|
|
84
|
+
The same calculation can be performed for a methyl group,
|
|
85
|
+
in a cosine potential of amplitude 30 meV:
|
|
86
|
+
|
|
87
|
+
```python
|
|
88
|
+
import qrotor as qr
|
|
89
|
+
system = qr.System()
|
|
90
|
+
system.gridsize = 200000 # Size of the potential grid
|
|
91
|
+
system.B = qr.B_CH3 # Rotational inertia of a methyl group
|
|
92
|
+
system.potential_name = 'cosine'
|
|
93
|
+
system.potential_constants = [0, 30, 3, 0] # Offset, max, freq, phase (for cos pot.)
|
|
94
|
+
system.solve()
|
|
95
|
+
# Plot potential and eigenvalues
|
|
96
|
+
qr.plot.energies(system)
|
|
97
|
+
# Plot the first wavefunctions
|
|
98
|
+
qr.plot.wavefunction(system, levels=[0,1,2], square=True)
|
|
99
|
+
```
|
|
100
|
+
|
|
101
|
+
|
|
102
|
+
## Custom potentials from DFT
|
|
103
|
+
|
|
104
|
+
QRotor can be used to obtain custom rotational potentials from DFT calculations.
|
|
105
|
+
Using Quantum ESPRESSO, running an SCF calculation for a methyl rotation every 10 degrees:
|
|
106
|
+
|
|
107
|
+
```python
|
|
108
|
+
import qrotor as qr
|
|
109
|
+
from aton import api
|
|
110
|
+
# Approx crystal positions of the atoms to rotate
|
|
111
|
+
atoms = [
|
|
112
|
+
'1.101 1.204 1.307'
|
|
113
|
+
'2.102 2.205 2.308'
|
|
114
|
+
'3.103 3.206 3.309'
|
|
115
|
+
]
|
|
116
|
+
# Create the input SCF files, saving the filenames to a list
|
|
117
|
+
scf_files = qr.rotate.structure_qe('molecule.in', positions=atoms, angle=10, repeat=True)
|
|
118
|
+
# Run the Quantum ESPRESSO calculations
|
|
119
|
+
api.slurm.sbatch(files=scf_files)
|
|
120
|
+
```
|
|
121
|
+
|
|
122
|
+
To load the calculated potential to a QRotor System,
|
|
123
|
+
```python
|
|
124
|
+
# Compile a 'potential.csv' file with the calculated potential as a function of the angle
|
|
125
|
+
qr.potential.from_qe()
|
|
126
|
+
# Load to the system
|
|
127
|
+
system = qr.potential.load()
|
|
128
|
+
# Solve the system, interpolating to a bigger gridsize
|
|
129
|
+
system.B = qr.B_CH3
|
|
130
|
+
system.solve(200000)
|
|
131
|
+
qr.plot.energies(system)
|
|
132
|
+
```
|
|
133
|
+
|
|
134
|
+
|
|
135
|
+
## Tunnel splittings and excitations
|
|
136
|
+
|
|
137
|
+
Tunnel splittings, excitations and energy level degeneracy
|
|
138
|
+
below the potential maximum are also calculated upon solving the system:
|
|
139
|
+
|
|
140
|
+
```python
|
|
141
|
+
system.solve()
|
|
142
|
+
system.splittings
|
|
143
|
+
system.excitations
|
|
144
|
+
system.deg
|
|
145
|
+
```
|
|
146
|
+
|
|
147
|
+
An integer `System.deg` degeneracy (e.g. 3 for methyls)
|
|
148
|
+
indicates that the energy levels have been properly estimated.
|
|
149
|
+
However, if the degeneracy is a float instead,
|
|
150
|
+
please check the splittings and excitations manually from the system eigenvalues.
|
|
151
|
+
|
|
152
|
+
To export the energies and the tunnel splittings of several calculations to a CSV file:
|
|
153
|
+
|
|
154
|
+
```python
|
|
155
|
+
calculations = [system1, system2, system3]
|
|
156
|
+
qr.systems.save_energies(calculations)
|
|
157
|
+
qr.systems.save_splittings(calculations)
|
|
158
|
+
```
|
|
159
|
+
|
|
160
|
+
Excitations are calculated using the mean for each energy level
|
|
161
|
+
with respect to the ground state.
|
|
162
|
+
Tunnel splittings for each level are calculated as the difference between A and E,
|
|
163
|
+
considering the mean of the eigenvalues for each sublevel.
|
|
164
|
+
See [R. M. Dimeo, American Journal of Physics 71, 885–893 (2003)](https://doi.org/10.1119/1.1538575)
|
|
165
|
+
and [A. J. Horsewill, Progress in Nuclear Magnetic Resonance Spectroscopy 35, 359–389 (1999)](https://doi.org/10.1016/S0079-6565(99)00016-3)
|
|
166
|
+
for further reference.
|
|
167
|
+
|
|
@@ -0,0 +1,16 @@
|
|
|
1
|
+
qrotor/__init__.py,sha256=rG2dH4QjsVUOMBhFnv5gXs3QnrUg7fywd5pIDmMBXcQ,246
|
|
2
|
+
qrotor/_version.py,sha256=rKPpeKIneHbTwnQYeOQrUmp3YuE0w_IV9QL3JTPKVh4,196
|
|
3
|
+
qrotor/constants.py,sha256=q62GbUKy2aojQ_8epIfaJMP1Y_HrT9mVw_9zWhvdCKo,2734
|
|
4
|
+
qrotor/plot.py,sha256=xJbreSDIuBNBl71e5XzzVW2PBijgkVZTFl3Fe74hecU,13315
|
|
5
|
+
qrotor/potential.py,sha256=VpO0U9UXAfqQE8sdQymSyMfiHEnWluAFksLNJJQ2iB0,17801
|
|
6
|
+
qrotor/rotate.py,sha256=Wje9Q9SFhDvizz58MzNGBwsmgV-3wN9z2SnUNTIXzeg,8107
|
|
7
|
+
qrotor/solve.py,sha256=kR7xwIBYGazNR0VkFYjsfERlZe6mtweQRVacupycOIs,10727
|
|
8
|
+
qrotor/system.py,sha256=onY3HfY2zpRLDJUjBJRX-nJu6YH_qhnPnCW6Uyam_Ws,11453
|
|
9
|
+
qrotor/systems.py,sha256=Hcx0QvMWpaPMfC6HWpkZPPWDyHk9rxWKdAxWNnD2NMg,8184
|
|
10
|
+
qrotor-4.0.0a1.dist-info/licenses/LICENSE,sha256=hIahDEOTzuHCU5J2nd07LWwkLW7Hko4UFO__ffsvB-8,34523
|
|
11
|
+
tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
12
|
+
tests/test_qrotor.py,sha256=44uvE1AXMAtbUILA1gLeMi2__8quqcSyv1m3R1f4AP0,3462
|
|
13
|
+
qrotor-4.0.0a1.dist-info/METADATA,sha256=qB-zxEAuhlp4ZFr19Ziy1ynjNH_VBxNE0OabImYi5ak,5830
|
|
14
|
+
qrotor-4.0.0a1.dist-info/WHEEL,sha256=Nw36Djuh_5VDukK0H78QzOX-_FQEo6V37m3nkm96gtU,91
|
|
15
|
+
qrotor-4.0.0a1.dist-info/top_level.txt,sha256=mLnYs07-amqX4TqbDV2_XvgdpHfgrYmzmYb7dwoh6EQ,13
|
|
16
|
+
qrotor-4.0.0a1.dist-info/RECORD,,
|