qpytorch 0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of qpytorch might be problematic. Click here for more details.
- qpytorch/__init__.py +327 -0
- qpytorch/constraints/__init__.py +3 -0
- qpytorch/distributions/__init__.py +21 -0
- qpytorch/distributions/delta.py +86 -0
- qpytorch/distributions/multitask_multivariate_qexponential.py +435 -0
- qpytorch/distributions/multivariate_qexponential.py +581 -0
- qpytorch/distributions/power.py +113 -0
- qpytorch/distributions/qexponential.py +153 -0
- qpytorch/functions/__init__.py +58 -0
- qpytorch/kernels/__init__.py +80 -0
- qpytorch/kernels/grid_interpolation_kernel.py +213 -0
- qpytorch/kernels/inducing_point_kernel.py +151 -0
- qpytorch/kernels/kernel.py +695 -0
- qpytorch/kernels/matern32_kernel_grad.py +155 -0
- qpytorch/kernels/matern52_kernel_grad.py +194 -0
- qpytorch/kernels/matern52_kernel_gradgrad.py +248 -0
- qpytorch/kernels/polynomial_kernel_grad.py +88 -0
- qpytorch/kernels/qexponential_symmetrized_kl_kernel.py +61 -0
- qpytorch/kernels/rbf_kernel_grad.py +125 -0
- qpytorch/kernels/rbf_kernel_gradgrad.py +186 -0
- qpytorch/kernels/rff_kernel.py +153 -0
- qpytorch/lazy/__init__.py +9 -0
- qpytorch/likelihoods/__init__.py +66 -0
- qpytorch/likelihoods/bernoulli_likelihood.py +75 -0
- qpytorch/likelihoods/beta_likelihood.py +76 -0
- qpytorch/likelihoods/gaussian_likelihood.py +472 -0
- qpytorch/likelihoods/laplace_likelihood.py +59 -0
- qpytorch/likelihoods/likelihood.py +437 -0
- qpytorch/likelihoods/likelihood_list.py +60 -0
- qpytorch/likelihoods/multitask_gaussian_likelihood.py +542 -0
- qpytorch/likelihoods/multitask_qexponential_likelihood.py +545 -0
- qpytorch/likelihoods/noise_models.py +184 -0
- qpytorch/likelihoods/qexponential_likelihood.py +494 -0
- qpytorch/likelihoods/softmax_likelihood.py +97 -0
- qpytorch/likelihoods/student_t_likelihood.py +90 -0
- qpytorch/means/__init__.py +23 -0
- qpytorch/metrics/__init__.py +17 -0
- qpytorch/mlls/__init__.py +53 -0
- qpytorch/mlls/_approximate_mll.py +79 -0
- qpytorch/mlls/deep_approximate_mll.py +30 -0
- qpytorch/mlls/deep_predictive_log_likelihood.py +32 -0
- qpytorch/mlls/exact_marginal_log_likelihood.py +96 -0
- qpytorch/mlls/gamma_robust_variational_elbo.py +106 -0
- qpytorch/mlls/inducing_point_kernel_added_loss_term.py +69 -0
- qpytorch/mlls/kl_qexponential_added_loss_term.py +41 -0
- qpytorch/mlls/leave_one_out_pseudo_likelihood.py +73 -0
- qpytorch/mlls/marginal_log_likelihood.py +48 -0
- qpytorch/mlls/predictive_log_likelihood.py +76 -0
- qpytorch/mlls/sum_marginal_log_likelihood.py +40 -0
- qpytorch/mlls/variational_elbo.py +77 -0
- qpytorch/models/__init__.py +72 -0
- qpytorch/models/approximate_qep.py +115 -0
- qpytorch/models/deep_qeps/__init__.py +22 -0
- qpytorch/models/deep_qeps/deep_qep.py +155 -0
- qpytorch/models/deep_qeps/dspp.py +114 -0
- qpytorch/models/exact_prediction_strategies.py +880 -0
- qpytorch/models/exact_qep.py +349 -0
- qpytorch/models/model_list.py +100 -0
- qpytorch/models/pyro/__init__.py +28 -0
- qpytorch/models/pyro/_pyro_mixin.py +57 -0
- qpytorch/models/pyro/distributions/__init__.py +5 -0
- qpytorch/models/pyro/pyro_qep.py +105 -0
- qpytorch/models/qep.py +7 -0
- qpytorch/models/qeplvm/__init__.py +6 -0
- qpytorch/models/qeplvm/bayesian_qeplvm.py +40 -0
- qpytorch/models/qeplvm/latent_variable.py +102 -0
- qpytorch/module.py +30 -0
- qpytorch/optim/__init__.py +5 -0
- qpytorch/priors/__init__.py +42 -0
- qpytorch/priors/qep_priors.py +81 -0
- qpytorch/test/__init__.py +22 -0
- qpytorch/test/base_likelihood_test_case.py +106 -0
- qpytorch/test/model_test_case.py +150 -0
- qpytorch/test/variational_test_case.py +400 -0
- qpytorch/utils/__init__.py +38 -0
- qpytorch/utils/warnings.py +37 -0
- qpytorch/variational/__init__.py +47 -0
- qpytorch/variational/_variational_distribution.py +61 -0
- qpytorch/variational/_variational_strategy.py +391 -0
- qpytorch/variational/additive_grid_interpolation_variational_strategy.py +90 -0
- qpytorch/variational/batch_decoupled_variational_strategy.py +256 -0
- qpytorch/variational/cholesky_variational_distribution.py +65 -0
- qpytorch/variational/ciq_variational_strategy.py +352 -0
- qpytorch/variational/delta_variational_distribution.py +41 -0
- qpytorch/variational/grid_interpolation_variational_strategy.py +113 -0
- qpytorch/variational/independent_multitask_variational_strategy.py +114 -0
- qpytorch/variational/lmc_variational_strategy.py +248 -0
- qpytorch/variational/mean_field_variational_distribution.py +58 -0
- qpytorch/variational/multitask_variational_strategy.py +317 -0
- qpytorch/variational/natural_variational_distribution.py +152 -0
- qpytorch/variational/nearest_neighbor_variational_strategy.py +487 -0
- qpytorch/variational/orthogonally_decoupled_variational_strategy.py +128 -0
- qpytorch/variational/tril_natural_variational_distribution.py +130 -0
- qpytorch/variational/uncorrelated_multitask_variational_strategy.py +114 -0
- qpytorch/variational/unwhitened_variational_strategy.py +225 -0
- qpytorch/variational/variational_strategy.py +280 -0
- qpytorch/version.py +4 -0
- qpytorch-0.1.dist-info/LICENSE +21 -0
- qpytorch-0.1.dist-info/METADATA +177 -0
- qpytorch-0.1.dist-info/RECORD +102 -0
- qpytorch-0.1.dist-info/WHEEL +5 -0
- qpytorch-0.1.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,280 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
|
|
3
|
+
import warnings
|
|
4
|
+
from typing import Any, Dict, Iterable, Optional, Tuple, Union
|
|
5
|
+
|
|
6
|
+
import torch
|
|
7
|
+
from linear_operator import to_dense
|
|
8
|
+
from linear_operator.operators import (
|
|
9
|
+
CholLinearOperator,
|
|
10
|
+
DiagLinearOperator,
|
|
11
|
+
LinearOperator,
|
|
12
|
+
MatmulLinearOperator,
|
|
13
|
+
RootLinearOperator,
|
|
14
|
+
SumLinearOperator,
|
|
15
|
+
TriangularLinearOperator,
|
|
16
|
+
)
|
|
17
|
+
from linear_operator.utils.cholesky import psd_safe_cholesky
|
|
18
|
+
from linear_operator.utils.errors import NotPSDError
|
|
19
|
+
from torch import Tensor
|
|
20
|
+
|
|
21
|
+
from ._variational_strategy import _VariationalStrategy
|
|
22
|
+
from .cholesky_variational_distribution import CholeskyVariationalDistribution
|
|
23
|
+
|
|
24
|
+
from ..distributions import MultivariateNormal, MultivariateQExponential
|
|
25
|
+
from ..models import ApproximateGP, ApproximateQEP
|
|
26
|
+
from gpytorch.settings import _linalg_dtype_cholesky, trace_mode
|
|
27
|
+
from gpytorch.utils.errors import CachingError
|
|
28
|
+
from gpytorch.utils.memoize import cached, clear_cache_hook, pop_from_cache_ignore_args
|
|
29
|
+
from ..utils.warnings import OldVersionWarning
|
|
30
|
+
from . import _VariationalDistribution
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
def _ensure_updated_strategy_flag_set(
|
|
34
|
+
state_dict: Dict[str, Tensor],
|
|
35
|
+
prefix: str,
|
|
36
|
+
local_metadata: Dict[str, Any],
|
|
37
|
+
strict: bool,
|
|
38
|
+
missing_keys: Iterable[str],
|
|
39
|
+
unexpected_keys: Iterable[str],
|
|
40
|
+
error_msgs: Iterable[str],
|
|
41
|
+
):
|
|
42
|
+
device = state_dict[list(state_dict.keys())[0]].device
|
|
43
|
+
if prefix + "updated_strategy" not in state_dict:
|
|
44
|
+
state_dict[prefix + "updated_strategy"] = torch.tensor(False, device=device)
|
|
45
|
+
warnings.warn(
|
|
46
|
+
"You have loaded a variational GP (QEP) model (using `VariationalStrategy`) from a previous version of "
|
|
47
|
+
"GPyTorch. We have updated the parameters of your model to work with the new version of "
|
|
48
|
+
"`VariationalStrategy` that uses whitened parameters.\nYour model will work as expected, but we "
|
|
49
|
+
"recommend that you re-save your model.",
|
|
50
|
+
OldVersionWarning,
|
|
51
|
+
)
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
class VariationalStrategy(_VariationalStrategy):
|
|
55
|
+
r"""
|
|
56
|
+
The standard variational strategy, as defined by `Hensman et al. (2015)`_.
|
|
57
|
+
This strategy takes a set of :math:`m \ll n` inducing points :math:`\mathbf Z`
|
|
58
|
+
and applies an approximate distribution :math:`q( \mathbf u)` over their function values.
|
|
59
|
+
(Here, we use the common notation :math:`\mathbf u = f(\mathbf Z)`.
|
|
60
|
+
The approximate function distribution for any abitrary input :math:`\mathbf X` is given by:
|
|
61
|
+
|
|
62
|
+
.. math::
|
|
63
|
+
|
|
64
|
+
q( f(\mathbf X) ) = \int p( f(\mathbf X) \mid \mathbf u) q(\mathbf u) \: d\mathbf u
|
|
65
|
+
|
|
66
|
+
This variational strategy uses "whitening" to accelerate the optimization of the variational
|
|
67
|
+
parameters. See `Matthews (2017)`_ for more info.
|
|
68
|
+
|
|
69
|
+
:param model: Model this strategy is applied to.
|
|
70
|
+
Typically passed in when the VariationalStrategy is created in the
|
|
71
|
+
__init__ method of the user defined model.
|
|
72
|
+
It should contain power if Q-Exponential distribution is involved in.
|
|
73
|
+
:param inducing_points: Tensor containing a set of inducing
|
|
74
|
+
points to use for variational inference.
|
|
75
|
+
:param variational_distribution: A
|
|
76
|
+
VariationalDistribution object that represents the form of the variational distribution :math:`q(\mathbf u)`
|
|
77
|
+
:param learn_inducing_locations: (Default True): Whether or not
|
|
78
|
+
the inducing point locations :math:`\mathbf Z` should be learned (i.e. are they
|
|
79
|
+
parameters of the model).
|
|
80
|
+
:param jitter_val: Amount of diagonal jitter to add for Cholesky factorization numerical stability
|
|
81
|
+
|
|
82
|
+
.. _Hensman et al. (2015):
|
|
83
|
+
http://proceedings.mlr.press/v38/hensman15.pdf
|
|
84
|
+
.. _Matthews (2017):
|
|
85
|
+
https://www.repository.cam.ac.uk/handle/1810/278022
|
|
86
|
+
"""
|
|
87
|
+
|
|
88
|
+
def __init__(
|
|
89
|
+
self,
|
|
90
|
+
model: Union[ApproximateGP, ApproximateQEP],
|
|
91
|
+
inducing_points: Tensor,
|
|
92
|
+
variational_distribution: _VariationalDistribution,
|
|
93
|
+
learn_inducing_locations: bool = True,
|
|
94
|
+
jitter_val: Optional[float] = None,
|
|
95
|
+
):
|
|
96
|
+
super().__init__(
|
|
97
|
+
model, inducing_points, variational_distribution, learn_inducing_locations, jitter_val=jitter_val
|
|
98
|
+
)
|
|
99
|
+
self.register_buffer("updated_strategy", torch.tensor(True))
|
|
100
|
+
self._register_load_state_dict_pre_hook(_ensure_updated_strategy_flag_set)
|
|
101
|
+
self.has_fantasy_strategy = True
|
|
102
|
+
|
|
103
|
+
@cached(name="cholesky_factor", ignore_args=True)
|
|
104
|
+
def _cholesky_factor(self, induc_induc_covar: LinearOperator) -> TriangularLinearOperator:
|
|
105
|
+
L = psd_safe_cholesky(to_dense(induc_induc_covar).type(_linalg_dtype_cholesky.value()))
|
|
106
|
+
return TriangularLinearOperator(L)
|
|
107
|
+
|
|
108
|
+
@property
|
|
109
|
+
@cached(name="prior_distribution_memo")
|
|
110
|
+
def prior_distribution(self) -> Union[MultivariateNormal, MultivariateQExponential]:
|
|
111
|
+
zeros = torch.zeros(
|
|
112
|
+
self._variational_distribution.shape(),
|
|
113
|
+
dtype=self._variational_distribution.dtype,
|
|
114
|
+
device=self._variational_distribution.device,
|
|
115
|
+
)
|
|
116
|
+
ones = torch.ones_like(zeros)
|
|
117
|
+
if hasattr(self.model, 'power'):
|
|
118
|
+
res = MultivariateQExponential(zeros, DiagLinearOperator(ones), power=self.model.power)
|
|
119
|
+
else:
|
|
120
|
+
res = MultivariateNormal(zeros, DiagLinearOperator(ones))
|
|
121
|
+
return res
|
|
122
|
+
|
|
123
|
+
@property
|
|
124
|
+
@cached(name="pseudo_points_memo")
|
|
125
|
+
def pseudo_points(self) -> Tuple[Tensor, Tensor]:
|
|
126
|
+
# TODO: have var_mean, var_cov come from a method of _variational_distribution
|
|
127
|
+
# while having Kmm_root be a root decomposition to enable CIQVariationalDistribution support.
|
|
128
|
+
|
|
129
|
+
# retrieve the variational mean, m and covariance matrix, S.
|
|
130
|
+
if not isinstance(self._variational_distribution, CholeskyVariationalDistribution):
|
|
131
|
+
raise NotImplementedError(
|
|
132
|
+
"Only CholeskyVariationalDistribution has pseudo-point support currently, ",
|
|
133
|
+
"but your _variational_distribution is a ",
|
|
134
|
+
self._variational_distribution.__name__,
|
|
135
|
+
)
|
|
136
|
+
|
|
137
|
+
var_cov_root = TriangularLinearOperator(self._variational_distribution.chol_variational_covar)
|
|
138
|
+
var_cov = CholLinearOperator(var_cov_root)
|
|
139
|
+
var_mean = self.variational_distribution.mean
|
|
140
|
+
if var_mean.shape[-1] != 1:
|
|
141
|
+
var_mean = var_mean.unsqueeze(-1)
|
|
142
|
+
|
|
143
|
+
# compute R = I - S
|
|
144
|
+
cov_diff = var_cov.add_jitter(-1.0)
|
|
145
|
+
cov_diff = -1.0 * cov_diff
|
|
146
|
+
|
|
147
|
+
# K^{1/2}
|
|
148
|
+
Kmm = self.model.covar_module(self.inducing_points)
|
|
149
|
+
Kmm_root = Kmm.cholesky()
|
|
150
|
+
|
|
151
|
+
# D_a = (S^{-1} - K^{-1})^{-1} = S + S R^{-1} S
|
|
152
|
+
# note that in the whitened case R = I - S, unwhitened R = K - S
|
|
153
|
+
# we compute (R R^{T})^{-1} R^T S for stability reasons as R is probably not PSD.
|
|
154
|
+
eval_var_cov = var_cov.to_dense()
|
|
155
|
+
eval_rhs = cov_diff.transpose(-1, -2).matmul(eval_var_cov)
|
|
156
|
+
inner_term = cov_diff.matmul(cov_diff.transpose(-1, -2))
|
|
157
|
+
# TODO: flag the jitter here
|
|
158
|
+
inner_solve = inner_term.add_jitter(self.jitter_val).solve(eval_rhs, eval_var_cov.transpose(-1, -2))
|
|
159
|
+
inducing_covar = var_cov + inner_solve
|
|
160
|
+
|
|
161
|
+
inducing_covar = Kmm_root.matmul(inducing_covar).matmul(Kmm_root.transpose(-1, -2))
|
|
162
|
+
|
|
163
|
+
# mean term: D_a S^{-1} m
|
|
164
|
+
# unwhitened: (S - S R^{-1} S) S^{-1} m = (I - S R^{-1}) m
|
|
165
|
+
rhs = cov_diff.transpose(-1, -2).matmul(var_mean)
|
|
166
|
+
# TODO: this jitter too
|
|
167
|
+
inner_rhs_mean_solve = inner_term.add_jitter(self.jitter_val).solve(rhs)
|
|
168
|
+
pseudo_target_mean = Kmm_root.matmul(inner_rhs_mean_solve)
|
|
169
|
+
|
|
170
|
+
# ensure inducing covar is psd
|
|
171
|
+
# TODO: make this be an explicit root decomposition
|
|
172
|
+
try:
|
|
173
|
+
pseudo_target_covar = CholLinearOperator(inducing_covar.add_jitter(self.jitter_val).cholesky()).to_dense()
|
|
174
|
+
except NotPSDError:
|
|
175
|
+
from linear_operator.operators import DiagLinearOperator
|
|
176
|
+
|
|
177
|
+
evals, evecs = torch.linalg.eigh(inducing_covar)
|
|
178
|
+
pseudo_target_covar = (
|
|
179
|
+
evecs.matmul(DiagLinearOperator(evals + self.jitter_val)).matmul(evecs.transpose(-1, -2)).to_dense()
|
|
180
|
+
)
|
|
181
|
+
|
|
182
|
+
return pseudo_target_covar, pseudo_target_mean
|
|
183
|
+
|
|
184
|
+
def forward(
|
|
185
|
+
self,
|
|
186
|
+
x: Tensor,
|
|
187
|
+
inducing_points: Tensor,
|
|
188
|
+
inducing_values: Tensor,
|
|
189
|
+
variational_inducing_covar: Optional[LinearOperator] = None,
|
|
190
|
+
**kwargs,
|
|
191
|
+
) -> Union[MultivariateNormal, MultivariateQExponential]:
|
|
192
|
+
# Compute full prior distribution
|
|
193
|
+
full_inputs = torch.cat([inducing_points, x], dim=-2)
|
|
194
|
+
full_output = self.model.forward(full_inputs, **kwargs)
|
|
195
|
+
full_covar = full_output.lazy_covariance_matrix
|
|
196
|
+
|
|
197
|
+
# Covariance terms
|
|
198
|
+
num_induc = inducing_points.size(-2)
|
|
199
|
+
test_mean = full_output.mean[..., num_induc:]
|
|
200
|
+
induc_induc_covar = full_covar[..., :num_induc, :num_induc].add_jitter(self.jitter_val)
|
|
201
|
+
induc_data_covar = full_covar[..., :num_induc, num_induc:].to_dense()
|
|
202
|
+
data_data_covar = full_covar[..., num_induc:, num_induc:]
|
|
203
|
+
|
|
204
|
+
# Compute interpolation terms
|
|
205
|
+
# K_ZZ^{-1/2} K_ZX
|
|
206
|
+
# K_ZZ^{-1/2} \mu_Z
|
|
207
|
+
L = self._cholesky_factor(induc_induc_covar)
|
|
208
|
+
if L.shape != induc_induc_covar.shape:
|
|
209
|
+
# Aggressive caching can cause nasty shape incompatibilies when evaluating with different batch shapes
|
|
210
|
+
# TODO: Use a hook fo this
|
|
211
|
+
try:
|
|
212
|
+
pop_from_cache_ignore_args(self, "cholesky_factor")
|
|
213
|
+
except CachingError:
|
|
214
|
+
pass
|
|
215
|
+
L = self._cholesky_factor(induc_induc_covar)
|
|
216
|
+
interp_term = L.solve(induc_data_covar.type(_linalg_dtype_cholesky.value())).to(full_inputs.dtype)
|
|
217
|
+
|
|
218
|
+
# Compute the mean of q(f)
|
|
219
|
+
# k_XZ K_ZZ^{-1/2} (m - K_ZZ^{-1/2} \mu_Z) + \mu_X
|
|
220
|
+
predictive_mean = (interp_term.transpose(-1, -2) @ inducing_values.unsqueeze(-1)).squeeze(-1) + test_mean
|
|
221
|
+
|
|
222
|
+
# Compute the covariance of q(f)
|
|
223
|
+
# K_XX + k_XZ K_ZZ^{-1/2} (S - I) K_ZZ^{-1/2} k_ZX
|
|
224
|
+
middle_term = self.prior_distribution.lazy_covariance_matrix.mul(-1)
|
|
225
|
+
if variational_inducing_covar is not None:
|
|
226
|
+
middle_term = SumLinearOperator(variational_inducing_covar, middle_term)
|
|
227
|
+
|
|
228
|
+
if trace_mode.on():
|
|
229
|
+
predictive_covar = (
|
|
230
|
+
data_data_covar.add_jitter(self.jitter_val).to_dense()
|
|
231
|
+
+ interp_term.transpose(-1, -2) @ middle_term.to_dense() @ interp_term
|
|
232
|
+
)
|
|
233
|
+
else:
|
|
234
|
+
predictive_covar = SumLinearOperator(
|
|
235
|
+
data_data_covar.add_jitter(self.jitter_val),
|
|
236
|
+
MatmulLinearOperator(interp_term.transpose(-1, -2), middle_term @ interp_term),
|
|
237
|
+
)
|
|
238
|
+
|
|
239
|
+
# Return the distribution
|
|
240
|
+
if hasattr(self.model, 'power'):
|
|
241
|
+
return MultivariateQExponential(predictive_mean, predictive_covar, power=self.model.power)
|
|
242
|
+
else:
|
|
243
|
+
return MultivariateNormal(predictive_mean, predictive_covar)
|
|
244
|
+
|
|
245
|
+
def __call__(self, x: Tensor, prior: bool = False, **kwargs) -> Union[MultivariateNormal, MultivariateQExponential]:
|
|
246
|
+
if not self.updated_strategy.item() and not prior:
|
|
247
|
+
with torch.no_grad():
|
|
248
|
+
# Get unwhitened p(u)
|
|
249
|
+
prior_function_dist = self(self.inducing_points, prior=True)
|
|
250
|
+
prior_mean = prior_function_dist.loc
|
|
251
|
+
L = self._cholesky_factor(prior_function_dist.lazy_covariance_matrix.add_jitter(self.jitter_val))
|
|
252
|
+
|
|
253
|
+
# Temporarily turn off noise that's added to the mean
|
|
254
|
+
orig_mean_init_std = self._variational_distribution.mean_init_std
|
|
255
|
+
self._variational_distribution.mean_init_std = 0.0
|
|
256
|
+
|
|
257
|
+
# Change the variational parameters to be whitened
|
|
258
|
+
variational_dist = self.variational_distribution
|
|
259
|
+
if isinstance(variational_dist, (MultivariateNormal, MultivariateQExponential)):
|
|
260
|
+
mean_diff = (variational_dist.loc - prior_mean).unsqueeze(-1).type(_linalg_dtype_cholesky.value())
|
|
261
|
+
whitened_mean = L.solve(mean_diff).squeeze(-1).to(variational_dist.loc.dtype)
|
|
262
|
+
covar_root = variational_dist.lazy_covariance_matrix.root_decomposition().root.to_dense()
|
|
263
|
+
covar_root = covar_root.type(_linalg_dtype_cholesky.value())
|
|
264
|
+
whitened_covar = RootLinearOperator(L.solve(covar_root).to(variational_dist.loc.dtype))
|
|
265
|
+
whitened_variational_distribution = variational_dist.__class__(whitened_mean, whitened_covar)
|
|
266
|
+
if isinstance(variational_dist, MultivariateQExponential): whitened_variational_distribution.power = variational_dist.power
|
|
267
|
+
self._variational_distribution.initialize_variational_distribution(
|
|
268
|
+
whitened_variational_distribution
|
|
269
|
+
)
|
|
270
|
+
|
|
271
|
+
# Reset the random noise parameter of the model
|
|
272
|
+
self._variational_distribution.mean_init_std = orig_mean_init_std
|
|
273
|
+
|
|
274
|
+
# Reset the cache
|
|
275
|
+
clear_cache_hook(self)
|
|
276
|
+
|
|
277
|
+
# Mark that we have updated the variational strategy
|
|
278
|
+
self.updated_strategy.fill_(True)
|
|
279
|
+
|
|
280
|
+
return super().__call__(x, prior=prior, **kwargs)
|
qpytorch/version.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2025 Shiwei Lan
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
|
@@ -0,0 +1,177 @@
|
|
|
1
|
+
Metadata-Version: 2.1
|
|
2
|
+
Name: qpytorch
|
|
3
|
+
Version: 0.1
|
|
4
|
+
Summary: An implementation of Q-Exponential Processes in Pytorch based on GPyTorch
|
|
5
|
+
Home-page: https://lanzithinking.github.io/qepytorch/
|
|
6
|
+
Author: Shiwei Lan
|
|
7
|
+
Author-email: lanzithinking@gmail.com
|
|
8
|
+
License: MIT
|
|
9
|
+
Project-URL: Documentation, https://qepytorch.readthedocs.io
|
|
10
|
+
Project-URL: Source, https://github.com/lanzithinking/qepytorch/
|
|
11
|
+
Classifier: Development Status :: 5 - Production/Stable
|
|
12
|
+
Classifier: Programming Language :: Python :: 3
|
|
13
|
+
Requires-Python: >=3.10
|
|
14
|
+
Description-Content-Type: text/markdown
|
|
15
|
+
License-File: LICENSE
|
|
16
|
+
Requires-Dist: jaxtyping
|
|
17
|
+
Requires-Dist: mpmath<=1.3,>=0.19
|
|
18
|
+
Requires-Dist: scikit-learn
|
|
19
|
+
Requires-Dist: scipy>=1.6.0
|
|
20
|
+
Requires-Dist: linear-operator>=0.6
|
|
21
|
+
Requires-Dist: gpytorch>=1.13
|
|
22
|
+
Provides-Extra: dev
|
|
23
|
+
Requires-Dist: pre-commit; extra == "dev"
|
|
24
|
+
Requires-Dist: setuptools-scm; extra == "dev"
|
|
25
|
+
Requires-Dist: twine; extra == "dev"
|
|
26
|
+
Requires-Dist: ufmt; extra == "dev"
|
|
27
|
+
Provides-Extra: docs
|
|
28
|
+
Requires-Dist: ipykernel<=6.17.1; extra == "docs"
|
|
29
|
+
Requires-Dist: ipython<=8.6.0; extra == "docs"
|
|
30
|
+
Requires-Dist: m2r2<=0.3.3.post2; extra == "docs"
|
|
31
|
+
Requires-Dist: nbclient<=0.7.3; extra == "docs"
|
|
32
|
+
Requires-Dist: nbformat<=5.8.0; extra == "docs"
|
|
33
|
+
Requires-Dist: nbsphinx<=0.9.1; extra == "docs"
|
|
34
|
+
Requires-Dist: lxml-html-clean; extra == "docs"
|
|
35
|
+
Requires-Dist: pandoc<=3.0.0; extra == "docs"
|
|
36
|
+
Requires-Dist: platformdirs<=3.2.0; extra == "docs"
|
|
37
|
+
Requires-Dist: setuptools-scm<=7.1.0; extra == "docs"
|
|
38
|
+
Requires-Dist: sphinx<=6.2.1; extra == "docs"
|
|
39
|
+
Requires-Dist: sphinx-autodoc-typehints<=1.23.0; extra == "docs"
|
|
40
|
+
Requires-Dist: sphinx-rtd-theme<0.5; extra == "docs"
|
|
41
|
+
Provides-Extra: examples
|
|
42
|
+
Requires-Dist: ipython; extra == "examples"
|
|
43
|
+
Requires-Dist: jupyter; extra == "examples"
|
|
44
|
+
Requires-Dist: matplotlib; extra == "examples"
|
|
45
|
+
Requires-Dist: scipy; extra == "examples"
|
|
46
|
+
Requires-Dist: torchvision; extra == "examples"
|
|
47
|
+
Requires-Dist: tqdm; extra == "examples"
|
|
48
|
+
Provides-Extra: keops
|
|
49
|
+
Requires-Dist: pykeops>=1.1.1; extra == "keops"
|
|
50
|
+
Provides-Extra: pyro
|
|
51
|
+
Requires-Dist: pyro-ppl>=1.8; extra == "pyro"
|
|
52
|
+
Provides-Extra: test
|
|
53
|
+
Requires-Dist: flake8==4.0.1; extra == "test"
|
|
54
|
+
Requires-Dist: flake8-print==4.0.0; extra == "test"
|
|
55
|
+
Requires-Dist: pytest; extra == "test"
|
|
56
|
+
Requires-Dist: nbval; extra == "test"
|
|
57
|
+
|
|
58
|
+
# Q<sup style="font-size: 0.5em;">ⓔ</sup>PyTorch
|
|
59
|
+
|
|
60
|
+
---
|
|
61
|
+
[](https://github.com/lanzithinking/qepytorch/actions/workflows/run_test_suite.yml)
|
|
62
|
+
[](https://qepytorch.readthedocs.io/en/latest/?badge=latest)
|
|
63
|
+
[](LICENSE)
|
|
64
|
+
|
|
65
|
+
[](https://www.python.org/downloads/)
|
|
66
|
+
[](https://anaconda.org/conda-forge/qpytorch)
|
|
67
|
+
[](https://pypi.org/project/qpytorch)
|
|
68
|
+
|
|
69
|
+
Q<sup style="font-size: 0.5em;">ⓔ</sup>PyTorch is a Q-exponential process library implemented using PyTorch built on [GPyTorch](https://gpytorch.ai). Q<sup style="font-size: 0.5em;">ⓔ</sup>PyTorch is designed for creating scalable, flexible, and modular Q-exponential process models with ease.
|
|
70
|
+
|
|
71
|
+
Internally, Q<sup style="font-size: 0.5em;">ⓔ</sup>PyTorch differs from many existing approaches to QEP inference by performing most inference operations using numerical linear algebra techniques like preconditioned conjugate gradients.
|
|
72
|
+
Implementing a scalable QEP method is as simple as providing a matrix multiplication routine with the kernel matrix and its derivative via our [LinearOperator](https://github.com/cornellius-gp/linear_operator) interface,
|
|
73
|
+
or by composing many of our already existing `LinearOperators`.
|
|
74
|
+
This allows not only for easy implementation of popular scalable QEP techniques,
|
|
75
|
+
but often also for significantly improved utilization of GPU computing compared to solvers based on the Cholesky decomposition.
|
|
76
|
+
|
|
77
|
+
Q<sup style="font-size: 0.5em;">ⓔ</sup>PyTorch provides (1) significant GPU acceleration (through MVM based inference);
|
|
78
|
+
(2) state-of-the-art implementations of the latest algorithmic advances for scalability and flexibility ([SKI/KISS-GP](http://proceedings.mlr.press/v37/wilson15.pdf), [stochastic Lanczos expansions](https://arxiv.org/abs/1711.03481), [LOVE](https://arxiv.org/pdf/1803.06058.pdf), [SKIP](https://arxiv.org/pdf/1802.08903.pdf), [stochastic variational](https://arxiv.org/pdf/1611.00336.pdf) [deep kernel learning](http://proceedings.mlr.press/v51/wilson16.pdf), ...);
|
|
79
|
+
(3) easy integration with deep learning frameworks.
|
|
80
|
+
|
|
81
|
+
|
|
82
|
+
## Examples, Tutorials, and Documentation
|
|
83
|
+
|
|
84
|
+
See our [**documentation, examples, tutorials**](https://qepytorch.readthedocs.io/en/stable/) on how to construct all sorts of models in Q<sup style="font-size: 0.5em;">ⓔ</sup>PyTorch.
|
|
85
|
+
|
|
86
|
+
## Installation
|
|
87
|
+
|
|
88
|
+
**Requirements**:
|
|
89
|
+
- Python >= 3.10
|
|
90
|
+
- PyTorch >= 2.2
|
|
91
|
+
- GPyTorch >= 1.13
|
|
92
|
+
|
|
93
|
+
Install Q<sup style="font-size: 0.5em;">ⓔ</sup>PyTorch using pip or conda:
|
|
94
|
+
|
|
95
|
+
```bash
|
|
96
|
+
pip install qpytorch
|
|
97
|
+
conda install qpytorch -c qpytorch
|
|
98
|
+
```
|
|
99
|
+
|
|
100
|
+
(To use packages globally but install Q<sup style="font-size: 0.5em;">ⓔ</sup>PyTorch as a user-only package, use `pip install --user` above.)
|
|
101
|
+
|
|
102
|
+
#### Latest (Unstable) Version
|
|
103
|
+
|
|
104
|
+
To upgrade to the latest (unstable) version, run
|
|
105
|
+
|
|
106
|
+
```bash
|
|
107
|
+
pip install --upgrade git+https://github.com/cornellius-gp/linear_operator.git
|
|
108
|
+
pip install --upgrade git+https://github.com/cornellius-gp/gpytorch.git
|
|
109
|
+
pip install --upgrade git+https://github.com/lanzithinking/qepytorch.git
|
|
110
|
+
```
|
|
111
|
+
|
|
112
|
+
#### Development version
|
|
113
|
+
|
|
114
|
+
If you are contributing a pull request, it is best to perform a manual installation:
|
|
115
|
+
|
|
116
|
+
```sh
|
|
117
|
+
git clone https://github.com/lanzithinking/qepytorch.git qpytorch
|
|
118
|
+
cd qpytorch
|
|
119
|
+
pip install -e .[dev,docs,examples,keops,pyro,test] # keops and pyro are optional
|
|
120
|
+
```
|
|
121
|
+
|
|
122
|
+
<!--
|
|
123
|
+
#### ArchLinux Package
|
|
124
|
+
**Note**: Experimental AUR package. For most users, we recommend installation by conda or pip.
|
|
125
|
+
-->
|
|
126
|
+
<!--
|
|
127
|
+
Q<sup style="font-size: 0.5em;">ⓔ</sup>PyTorch is also available on the [ArchLinux User Repository](https://wiki.archlinux.org/index.php/Arch_User_Repository) (AUR).
|
|
128
|
+
You can install it with an [AUR helper](https://wiki.archlinux.org/index.php/AUR_helpers), like [`yay`](https://aur.archlinux.org/packages/yay/), as follows:
|
|
129
|
+
-->
|
|
130
|
+
<!--
|
|
131
|
+
```bash
|
|
132
|
+
yay -S python-qpytorch
|
|
133
|
+
```
|
|
134
|
+
To discuss any issues related to this AUR package refer to the comments section of
|
|
135
|
+
[`python-qpytorch`](https://aur.archlinux.org/packages/python-qpytorch/).
|
|
136
|
+
-->
|
|
137
|
+
|
|
138
|
+
## Citing Us
|
|
139
|
+
|
|
140
|
+
If you use Q<sup style="font-size: 0.5em;">ⓔ</sup>PyTorch, please cite the following papers:
|
|
141
|
+
> [Li, Shuyi, Michael O'Connor, and Shiwei Lan. "Bayesian Learning via Q-Exponential Process." In Advances in Neural Information Processing Systems (2023).](https://papers.nips.cc/paper_files/paper/2023/hash/e6bfdd58f1326ff821a1b92743963bdf-Abstract-Conference.html)
|
|
142
|
+
```
|
|
143
|
+
@inproceedings{li2023QEP,
|
|
144
|
+
title={Bayesian Learning via Q-Exponential Process},
|
|
145
|
+
author={Li, Shuyi, Michael O'Connor, and Shiwei Lan},
|
|
146
|
+
booktitle={Advances in Neural Information Processing Systems},
|
|
147
|
+
year={2023}
|
|
148
|
+
}
|
|
149
|
+
```
|
|
150
|
+
|
|
151
|
+
## Contributing
|
|
152
|
+
|
|
153
|
+
See the contributing guidelines [CONTRIBUTING.md](https://github.com/lanzithinking/qepytorch/blob/main/CONTRIBUTING.md)
|
|
154
|
+
for information on submitting issues and pull requests.
|
|
155
|
+
|
|
156
|
+
|
|
157
|
+
## The Team
|
|
158
|
+
|
|
159
|
+
Q<sup style="font-size: 0.5em;">ⓔ</sup>PyTorch is primarily maintained by:
|
|
160
|
+
- [Shiwei Lan](https://math.la.asu.edu/~slan) (Arizona State University)
|
|
161
|
+
|
|
162
|
+
We would like to thank our other contributors including (but not limited to)
|
|
163
|
+
Shuyi Li,
|
|
164
|
+
Guangting Yu,
|
|
165
|
+
Zhi Chang,
|
|
166
|
+
Chukwudi Paul Obite,
|
|
167
|
+
Keyan Wu,
|
|
168
|
+
and many more!
|
|
169
|
+
|
|
170
|
+
|
|
171
|
+
## Acknowledgements
|
|
172
|
+
Development of Q<sup style="font-size: 0.5em;">ⓔ</sup>PyTorch is supported by.
|
|
173
|
+
|
|
174
|
+
|
|
175
|
+
## License
|
|
176
|
+
|
|
177
|
+
Q<sup style="font-size: 0.5em;">ⓔ</sup>PyTorch is [MIT licensed](https://github.com/lanzithinking/qepytorch/blob/main/LICENSE).
|
|
@@ -0,0 +1,102 @@
|
|
|
1
|
+
qpytorch/__init__.py,sha256=0sD7DfLvEXx3PvqrTyl5bOYprus1Wjzxs1hOzTbQx6s,12392
|
|
2
|
+
qpytorch/module.py,sha256=xjw6X-v3_iVt4cOUEQdQp-cbTKkLCqwaeJoUardRQSQ,1259
|
|
3
|
+
qpytorch/version.py,sha256=Ljuux5HvS-yDzAhpzt_WxHJ6Ct4dLQiCUJg2yT5NuzE,155
|
|
4
|
+
qpytorch/constraints/__init__.py,sha256=JS4bzSGrgAiDtOM_Y4rerzkoMAUt671E2U1SVakhfX4,138
|
|
5
|
+
qpytorch/distributions/__init__.py,sha256=OSVX5Lfb72NKVFWVku0t-D2RyZuVcJAIICndOX9f5EA,973
|
|
6
|
+
qpytorch/distributions/delta.py,sha256=AC-N5fhBQad872jl8q9PMLq46E5qwcQOXkRf1PSW-Cg,3507
|
|
7
|
+
qpytorch/distributions/multitask_multivariate_qexponential.py,sha256=mttRjFp_hx-Sjxi-061sRuGeFmpA_hQFLx6cYgnUBqc,21584
|
|
8
|
+
qpytorch/distributions/multivariate_qexponential.py,sha256=BUBPyEqoXR7E1VY3uW-DbWSr-h-94WXGxLzkKXluR3Q,28885
|
|
9
|
+
qpytorch/distributions/power.py,sha256=a1_MMLJk-P1UcLNRtoquoBcbl1Rpwq_6UvlJR-8RPY0,3777
|
|
10
|
+
qpytorch/distributions/qexponential.py,sha256=9O_uquDARLSamDnEsbaJJ3GZbtY3Mv2PqEiwVMwLU2M,5969
|
|
11
|
+
qpytorch/functions/__init__.py,sha256=rLKoyZQNW0DttCQGAxu5SgKOeZZXsp1wJnABi5WL5kY,1655
|
|
12
|
+
qpytorch/kernels/__init__.py,sha256=2TlJ4Vq8mGg4KE19K8OfQwZf3A5hRiUm53KdX7ZUkCc,3229
|
|
13
|
+
qpytorch/kernels/grid_interpolation_kernel.py,sha256=l0t0pJ0EWHaCaP_rkJo1BL63gEoKAIX3kYc8rQFWjN8,9108
|
|
14
|
+
qpytorch/kernels/inducing_point_kernel.py,sha256=yRp2_w0q8HkOCb4sbuVEebdlGnRhR9cQtYir5cr-6lo,5451
|
|
15
|
+
qpytorch/kernels/kernel.py,sha256=UBBTelSm2nFS1JU2kfaXMzlWCKEdbrhMh6aKqh3_1_w,29415
|
|
16
|
+
qpytorch/kernels/matern32_kernel_grad.py,sha256=W5P5XSWTdeHdw9zrbpInOyIUhCFW_Z86CJ9D1biK6MY,7050
|
|
17
|
+
qpytorch/kernels/matern52_kernel_grad.py,sha256=mBkwuGBiVFudJ9zNfcoMn7_j9mbBgm37w853njZK48o,8638
|
|
18
|
+
qpytorch/kernels/matern52_kernel_gradgrad.py,sha256=1jc012aYCWAT2qNBhW60fM0IKberW5qLkvptAhXq9ys,12846
|
|
19
|
+
qpytorch/kernels/polynomial_kernel_grad.py,sha256=vM8y00lEGz4Z-ceZ3wJ33pL5rD16gehUpYjJ-PVnPbE,3708
|
|
20
|
+
qpytorch/kernels/qexponential_symmetrized_kl_kernel.py,sha256=pMZpjU3phGEBQ_O7K9sRFQgwfX5rMtaowsVteJ9hdr4,2932
|
|
21
|
+
qpytorch/kernels/rbf_kernel_grad.py,sha256=bVUfbkn1k01X4cix2XTTWJZXtezIX4JBtvKpHkB_C5s,5917
|
|
22
|
+
qpytorch/kernels/rbf_kernel_gradgrad.py,sha256=0v17TMsxURKPigOvYLGy7OwHeOleTBXhk5UaE2WUpv8,9392
|
|
23
|
+
qpytorch/kernels/rff_kernel.py,sha256=kmP4U2mJX_OtjhAdlevxQfbBpIfOCNKSPAGcrQJiTSo,5967
|
|
24
|
+
qpytorch/lazy/__init__.py,sha256=9O54rlcJMXrzGs5BWcLCAAuNluQVS2FxiTgKkBRQwCQ,189
|
|
25
|
+
qpytorch/likelihoods/__init__.py,sha256=knFtCZOf5hLgX3XWEBnkf-RfY0NFJ9gs7aEiG0ex3es,2291
|
|
26
|
+
qpytorch/likelihoods/bernoulli_likelihood.py,sha256=TuARyzTBS9CXJ_gTPHbshozH1rUFFSaqD0WD9Vf8J6c,2938
|
|
27
|
+
qpytorch/likelihoods/beta_likelihood.py,sha256=uPixvFYX_ILVm44rl1uNSPoaRf5v83QMN8ta35YY_rA,2688
|
|
28
|
+
qpytorch/likelihoods/gaussian_likelihood.py,sha256=OI4vi-Bo_ta08jJ_fsnJuc2oNP4YsVFYs8RfafsCbaI,19525
|
|
29
|
+
qpytorch/likelihoods/laplace_likelihood.py,sha256=WAWnM-JBn-jKoLS-_294CWe0o4y70E5IxWhP-C2vXCg,2002
|
|
30
|
+
qpytorch/likelihoods/likelihood.py,sha256=4b5CvQrH0JWOXPQnP-qVw9iZnVj-G0WE4bjUVkVOGiI,22659
|
|
31
|
+
qpytorch/likelihoods/likelihood_list.py,sha256=eHmI0Vub8A88OvRCOU2yD__AVFcMWXOuS5HvqT164eE,2119
|
|
32
|
+
qpytorch/likelihoods/multitask_gaussian_likelihood.py,sha256=rkEAW1eRn3IjdL7rFS8gsupzJG7MGXM1LhkaNZ7D-Ho,24779
|
|
33
|
+
qpytorch/likelihoods/multitask_qexponential_likelihood.py,sha256=0u5HNN-oM-nJ-B6k6j5snGNJ-3SQyHSxuXFJC_g8tZg,25238
|
|
34
|
+
qpytorch/likelihoods/noise_models.py,sha256=0ebjtb7A3P1WbXMsXe2XMcSNxyKMpSh85_3DNjMeYdQ,8166
|
|
35
|
+
qpytorch/likelihoods/qexponential_likelihood.py,sha256=mrFWQ84s3fWXziyjtIkS52ndCcc0Xe6q_MW7irXCHrQ,21357
|
|
36
|
+
qpytorch/likelihoods/softmax_likelihood.py,sha256=_Q6K3unAgoOSWkZSGeK84-RqoaIz4k6ihf2DGAWqO1k,4558
|
|
37
|
+
qpytorch/likelihoods/student_t_likelihood.py,sha256=Iv7IGu0K_xkjgC0N6SGaII-Vov8QtQzjtQPmD5WN6vE,3364
|
|
38
|
+
qpytorch/means/__init__.py,sha256=7Gj9e8VijlDYJEWXYU2AKWOgkw-SwzM_qgnODNWifhk,729
|
|
39
|
+
qpytorch/metrics/__init__.py,sha256=BLnN_PXczngBRxvsQEZ6Mw_cf345wzSnlUA5m1y-rV8,428
|
|
40
|
+
qpytorch/mlls/__init__.py,sha256=HnB2efNG-hWbECBprxoqoWvvZPnI2fajNEfHbzV-pNI,2066
|
|
41
|
+
qpytorch/mlls/_approximate_mll.py,sha256=RaEaQAhf5Bkca0t6E3ix7ctz84AmgK3PXx500QxrLUM,3592
|
|
42
|
+
qpytorch/mlls/deep_approximate_mll.py,sha256=TZxH3M-whckfZbL3s9XBsMvpGHeHfGNwT0xTv0MO93I,1236
|
|
43
|
+
qpytorch/mlls/deep_predictive_log_likelihood.py,sha256=3sxp9-fSIWt8V_dQG_ayrnvLgN-Ve9A-4c7JEY8j6A0,1377
|
|
44
|
+
qpytorch/mlls/exact_marginal_log_likelihood.py,sha256=dd7yD6wskbbqrNTlSxoR_mEQ8WmJH6ILAWHeZ1omCcg,4799
|
|
45
|
+
qpytorch/mlls/gamma_robust_variational_elbo.py,sha256=6NB6FtkEy5YL6r75kMqMptkROpGWh0QeV540rlNE2vI,4816
|
|
46
|
+
qpytorch/mlls/inducing_point_kernel_added_loss_term.py,sha256=ZQvNip6k95iV-Bdy6RdhsCHWS3KVdB5jXeg5Zi1IcU4,3824
|
|
47
|
+
qpytorch/mlls/kl_qexponential_added_loss_term.py,sha256=9tT2CWck5uzwmHuFjkm1eHuovLBvlQXGbBctu-GuOik,1541
|
|
48
|
+
qpytorch/mlls/leave_one_out_pseudo_likelihood.py,sha256=ZXQ6Rj-zHiD2Mjqm_rk_mcVTgA5otpiMSVNJtFYq1bI,3989
|
|
49
|
+
qpytorch/mlls/marginal_log_likelihood.py,sha256=BjuM9apQ7b79x6jdjliK_h24O8Yy9zMMIwLlveFdJhs,2187
|
|
50
|
+
qpytorch/mlls/predictive_log_likelihood.py,sha256=tGGkzu29Cs91BeDxCRC_s-l3idhbHuus3XTPni0SlL0,4015
|
|
51
|
+
qpytorch/mlls/sum_marginal_log_likelihood.py,sha256=la3teD1VC_Xh4FUCyIGphWkRkdTzuMtgcj2R1NA2fc4,1641
|
|
52
|
+
qpytorch/mlls/variational_elbo.py,sha256=M9H-nKRsQsfpHewmUihePzcGlKe_fPqnLQWoPl2nrqI,4082
|
|
53
|
+
qpytorch/models/__init__.py,sha256=IybxlfX2XGo8bOoQE7BPlv9G-fqP6EnkVZHnS01nbJ8,2103
|
|
54
|
+
qpytorch/models/approximate_qep.py,sha256=UxLcwzP1ykDKuLKFIZxljanQ3Mw7Gk_K67W341nOJd8,5577
|
|
55
|
+
qpytorch/models/exact_prediction_strategies.py,sha256=gzTjc8rjiHTaXk0STKl-HocrOxzyWGfXV9Iq0DwYJUU,43305
|
|
56
|
+
qpytorch/models/exact_qep.py,sha256=qPSxipLTa0KRJUcBpf85XXOVP2QItYQKnbxw4n9zcnc,16910
|
|
57
|
+
qpytorch/models/model_list.py,sha256=oAol6X6S4-Pd6NHt-El9R3dAL09m4fITHWJFw9Y7qnY,3342
|
|
58
|
+
qpytorch/models/qep.py,sha256=RLoLOs7XwLCRT2zDbief8le2vVExTnOWUIqqIhyB0Po,82
|
|
59
|
+
qpytorch/models/deep_qeps/__init__.py,sha256=GblwsDly1YxZMZVMz91aIxDWJdRL4ndr-PMYNldtDKo,694
|
|
60
|
+
qpytorch/models/deep_qeps/deep_qep.py,sha256=IyW4udmQZtrp8TVf79vU5p6pQxfaJiW7GW4dxSPFVyg,6651
|
|
61
|
+
qpytorch/models/deep_qeps/dspp.py,sha256=xOb63PWU5eYlV6Im36meWXl3S9bSSOHZGMdPW5wvc1E,5155
|
|
62
|
+
qpytorch/models/pyro/__init__.py,sha256=48AjdCGvlLHRjHggbSH6zZtMXBnbRjYjWxn5KyEmWHk,1024
|
|
63
|
+
qpytorch/models/pyro/_pyro_mixin.py,sha256=Lj9wdVDEVp1eAhYqNbykT7Cy3j6tobRkn9CNOFAMMy4,2790
|
|
64
|
+
qpytorch/models/pyro/pyro_qep.py,sha256=RSnuPxVzHhQWnfz61Tno_xsKhVp8otJ143mO4evun18,4655
|
|
65
|
+
qpytorch/models/pyro/distributions/__init__.py,sha256=RiVEFSDwU_4auqTBy6WJlEpB_0nN35OH1p1ps9ng6j8,108
|
|
66
|
+
qpytorch/models/qeplvm/__init__.py,sha256=GtRJb6AknTNT0epZacscrcu9itNW24GXFh0gwFw_QMM,266
|
|
67
|
+
qpytorch/models/qeplvm/bayesian_qeplvm.py,sha256=Czs6yfBxNiD3a4AwAErw6gXA0b16eUIOOS1Kn7pbvxA,1625
|
|
68
|
+
qpytorch/models/qeplvm/latent_variable.py,sha256=Oz0MZNg0_GPsMr0h0K8rrFPjUr76GgfJamuUQAUCFWc,3659
|
|
69
|
+
qpytorch/optim/__init__.py,sha256=CcL6qsxuzrGMYWb4Tj2bhu6oNCMMZoBxfXkl162nskw,78
|
|
70
|
+
qpytorch/priors/__init__.py,sha256=FQlqEd7C9Uib44inp4HUq-2o8wcLcdLUAgrY1GxUSmU,1031
|
|
71
|
+
qpytorch/priors/qep_priors.py,sha256=9KFm62XuceheMAdHtSqOdq3O2xqtzdStaoCYp6giSMk,2840
|
|
72
|
+
qpytorch/test/__init__.py,sha256=HNZWJRqUxAFxegg4etHcYSw4Zu9XBbe1dxIzNbhWkNY,730
|
|
73
|
+
qpytorch/test/base_likelihood_test_case.py,sha256=_XtpflusvDOuhzEB0hElgQdB5QkIMcCaq3SdjXVmg6k,4634
|
|
74
|
+
qpytorch/test/model_test_case.py,sha256=V0H50k6NAl7ikn5M6orFW3ORukIKpLO-2ECn352hqHA,6405
|
|
75
|
+
qpytorch/test/variational_test_case.py,sha256=8WA2Kr5krlWgAsACHwsnOpgfRrUyPPGn-iXrEkNQnTc,17085
|
|
76
|
+
qpytorch/utils/__init__.py,sha256=DlpoQfY0COkeWmW8f0KMZyNsNiJMBEs5Z-nlbs8pdxo,1001
|
|
77
|
+
qpytorch/utils/warnings.py,sha256=HMrlnT1cK6twx4m1dTHnqx2PTBvuzmqxk567YxYk8co,826
|
|
78
|
+
qpytorch/variational/__init__.py,sha256=b8T3yzFTPMhssoPmgygacD-Zh55b7SFqLLUtTB-BIpU,2367
|
|
79
|
+
qpytorch/variational/_variational_distribution.py,sha256=ZFKFbvV0-USC8NAWAdXN-_0HpGdwM9K66sBm7eTXnh0,2014
|
|
80
|
+
qpytorch/variational/_variational_strategy.py,sha256=fCFUSuTOjRrB-tHztC93_4sczQvILTN4WS68Ot1iJUA,18736
|
|
81
|
+
qpytorch/variational/additive_grid_interpolation_variational_strategy.py,sha256=i9qRRCLlv341wGHdcqX8oesBtT10qmMZvn-U_YuhpyI,3984
|
|
82
|
+
qpytorch/variational/batch_decoupled_variational_strategy.py,sha256=kc2Z3NVbEuaWZ_hHxfSX2jKyuYsPzI6QPrVIzHRUxrg,12998
|
|
83
|
+
qpytorch/variational/cholesky_variational_distribution.py,sha256=7RDdUqu3iwr0EQySJ-OHQOQq4_LlU8rC2LioW_dTRD0,3347
|
|
84
|
+
qpytorch/variational/ciq_variational_strategy.py,sha256=UR2_SILO7MunHQX30O_mUiEylZxBhHiWBAE-k7Ps6Pc,15481
|
|
85
|
+
qpytorch/variational/delta_variational_distribution.py,sha256=OBhbMthojkxFKbdArRkrqeHrGrZbfd_8h9PMgwWlJsg,1924
|
|
86
|
+
qpytorch/variational/grid_interpolation_variational_strategy.py,sha256=a_Ow8XVup5FwHXaq2pOC9svKNVwqRMvRRGwRf6fP754,5435
|
|
87
|
+
qpytorch/variational/independent_multitask_variational_strategy.py,sha256=nm7T_FykWdRp0BS2sumy48WRW05YCRmbSECw-4k2hU8,5091
|
|
88
|
+
qpytorch/variational/lmc_variational_strategy.py,sha256=qx_jvmWP0p2Fkf7SP7I5f-_LIs3ti-pOlwu2x74vhcI,12646
|
|
89
|
+
qpytorch/variational/mean_field_variational_distribution.py,sha256=DtH7thw7llrnjpuoOukb4bGTZTpuOyaDik8nPJZzyss,3241
|
|
90
|
+
qpytorch/variational/multitask_variational_strategy.py,sha256=DTMIqlu7WfxOejK4YL5T3OwYddmihorFMwQlOyQl1m8,16165
|
|
91
|
+
qpytorch/variational/natural_variational_distribution.py,sha256=RT1NqZbTjGAbRfiOKp7rgQ2ACwMz3WG1xOX2yR1bzKE,6557
|
|
92
|
+
qpytorch/variational/nearest_neighbor_variational_strategy.py,sha256=RAtEVpZSOeuQk8v-r8GZKl_at-piNScBdhCGjX1gDQY,26072
|
|
93
|
+
qpytorch/variational/orthogonally_decoupled_variational_strategy.py,sha256=I2YL4M5BIzaVdZfGKFYSyhBGPv_9POQkYmvqdbrI7UQ,6024
|
|
94
|
+
qpytorch/variational/tril_natural_variational_distribution.py,sha256=3wPggMUY2935HTO1mW2GH7ceDKOHQsSDaIbt05W72ec,6020
|
|
95
|
+
qpytorch/variational/uncorrelated_multitask_variational_strategy.py,sha256=LdiVacUdQZ-BJDGcdHwlZ_uIVPfRl1WAgEtfs3ahxdg,5176
|
|
96
|
+
qpytorch/variational/unwhitened_variational_strategy.py,sha256=068ScAOHk0VHLfkwakR41vrpASqIDjvvnhOFYIEE9uU,10713
|
|
97
|
+
qpytorch/variational/variational_strategy.py,sha256=TD_rPpQL2n7bK869tICT6cA0cc0YFgqi0AsHfyVo2Zc,13155
|
|
98
|
+
qpytorch-0.1.dist-info/LICENSE,sha256=QcK8fAvGl70vlwIHUqKdi4oV_SvhC6lBGYXTR1znTsY,1067
|
|
99
|
+
qpytorch-0.1.dist-info/METADATA,sha256=pOhOSsJjOL6qc4tSYFILwL-ZUN9dKgS4OhbqfjWfDHs,7986
|
|
100
|
+
qpytorch-0.1.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
|
|
101
|
+
qpytorch-0.1.dist-info/top_level.txt,sha256=WZP9m4PVYtj2RhzbzmW4UqUGOy-sOfumPrjnvNFrv4Q,9
|
|
102
|
+
qpytorch-0.1.dist-info/RECORD,,
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
qpytorch
|