qpytorch 0.1__py3-none-any.whl → 0.1.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of qpytorch might be problematic. Click here for more details.

qpytorch/version.py CHANGED
@@ -1,4 +1,4 @@
1
1
  # file generated by setuptools_scm
2
2
  # don't change, don't track in version control
3
- __version__ = version = '0.1'
4
- __version_tuple__ = version_tuple = (0, 1)
3
+ __version__ = version = '0.1.1'
4
+ __version_tuple__ = version_tuple = (0, 1, 1)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: qpytorch
3
- Version: 0.1
3
+ Version: 0.1.1
4
4
  Summary: An implementation of Q-Exponential Processes in Pytorch based on GPyTorch
5
5
  Home-page: https://lanzithinking.github.io/qepytorch/
6
6
  Author: Shiwei Lan
@@ -19,6 +19,7 @@ Requires-Dist: scikit-learn
19
19
  Requires-Dist: scipy>=1.6.0
20
20
  Requires-Dist: linear-operator>=0.6
21
21
  Requires-Dist: gpytorch>=1.13
22
+ Requires-Dist: numpy<2
22
23
  Provides-Extra: dev
23
24
  Requires-Dist: pre-commit; extra == "dev"
24
25
  Requires-Dist: setuptools-scm; extra == "dev"
@@ -63,60 +64,61 @@ Requires-Dist: nbval; extra == "test"
63
64
  [![License](https://img.shields.io/badge/license-MIT-green.svg)](LICENSE)
64
65
 
65
66
  [![Python Version](https://img.shields.io/badge/python-3.10+-blue.svg)](https://www.python.org/downloads/)
66
- [![Conda](https://img.shields.io/conda/v/conda-forge/qpytorch.svg)](https://anaconda.org/conda-forge/qpytorch)
67
+ [![Conda](https://img.shields.io/conda/v/qpytorch.svg)](https://anaconda.org/qpytorch)
67
68
  [![PyPI](https://img.shields.io/pypi/v/qpytorch.svg)](https://pypi.org/project/qpytorch)
68
69
 
69
- Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch is a Q-exponential process library implemented using PyTorch built on [GPyTorch](https://gpytorch.ai). Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch is designed for creating scalable, flexible, and modular Q-exponential process models with ease.
70
+ Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch is a Python package for Q-exponential process ([QEP](https://papers.nips.cc/paper_files/paper/2023/file/e6bfdd58f1326ff821a1b92743963bdf-Paper-Conference.pdf)) implemented using PyTorch and built up on [GPyTorch](https://gpytorch.ai). Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch is designed to facilitate creating scalable, flexible, and modular QPE models.
70
71
 
71
- Internally, Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch differs from many existing approaches to QEP inference by performing most inference operations using numerical linear algebra techniques like preconditioned conjugate gradients.
72
- Implementing a scalable QEP method is as simple as providing a matrix multiplication routine with the kernel matrix and its derivative via our [LinearOperator](https://github.com/cornellius-gp/linear_operator) interface,
73
- or by composing many of our already existing `LinearOperators`.
74
- This allows not only for easy implementation of popular scalable QEP techniques,
75
- but often also for significantly improved utilization of GPU computing compared to solvers based on the Cholesky decomposition.
72
+ Different from GPyTorch for Gaussian process (GP) models, Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch focuses on QEP, which generalizes GP by allowing flexible regularization on function spaces through a parameter $q>0$ and embraces GP as a special case with $q=2$. QEP is proven to be superior than GP in modeling inhomogeneous objects with abrupt changes or sharp contrast for $q<2$ [[Li et al (2023)]](https://papers.nips.cc/paper_files/paper/2023/hash/e6bfdd58f1326ff821a1b92743963bdf-Abstract-Conference.html).
73
+ Inherited from GPyTorch, Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch has an efficient and scalable implementation by taking advantage of numerical linear algebra library [LinearOperator](https://github.com/cornellius-gp/linear_operator) and improved GPU utilization.
76
74
 
77
- Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch provides (1) significant GPU acceleration (through MVM based inference);
78
- (2) state-of-the-art implementations of the latest algorithmic advances for scalability and flexibility ([SKI/KISS-GP](http://proceedings.mlr.press/v37/wilson15.pdf), [stochastic Lanczos expansions](https://arxiv.org/abs/1711.03481), [LOVE](https://arxiv.org/pdf/1803.06058.pdf), [SKIP](https://arxiv.org/pdf/1802.08903.pdf), [stochastic variational](https://arxiv.org/pdf/1611.00336.pdf) [deep kernel learning](http://proceedings.mlr.press/v51/wilson16.pdf), ...);
79
- (3) easy integration with deep learning frameworks.
80
75
 
76
+ <!--
77
+ Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch features ...
78
+ -->
81
79
 
82
- ## Examples, Tutorials, and Documentation
83
80
 
84
- See our [**documentation, examples, tutorials**](https://qepytorch.readthedocs.io/en/stable/) on how to construct all sorts of models in Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch.
81
+ ## Tutorials, Examples, and Documentation
82
+
83
+ See [**documentation**](https://qepytorch.readthedocs.io/en/stable/) on how to construct various QEP models in Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch.
85
84
 
86
85
  ## Installation
87
86
 
88
87
  **Requirements**:
89
88
  - Python >= 3.10
90
- - PyTorch >= 2.2
89
+ - PyTorch >= 2.0
91
90
  - GPyTorch >= 1.13
92
91
 
92
+ #### Stable Version
93
+
93
94
  Install Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch using pip or conda:
94
95
 
95
96
  ```bash
96
97
  pip install qpytorch
97
- conda install qpytorch -c qpytorch
98
+ conda install qpytorch
98
99
  ```
99
100
 
100
101
  (To use packages globally but install Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch as a user-only package, use `pip install --user` above.)
101
102
 
102
- #### Latest (Unstable) Version
103
+ #### Latest Version
103
104
 
104
- To upgrade to the latest (unstable) version, run
105
+ To upgrade to the latest version, run
105
106
 
106
107
  ```bash
107
- pip install --upgrade git+https://github.com/cornellius-gp/linear_operator.git
108
- pip install --upgrade git+https://github.com/cornellius-gp/gpytorch.git
109
108
  pip install --upgrade git+https://github.com/lanzithinking/qepytorch.git
110
109
  ```
111
110
 
112
- #### Development version
111
+ #### from source (for development)
113
112
 
114
113
  If you are contributing a pull request, it is best to perform a manual installation:
115
114
 
116
115
  ```sh
117
- git clone https://github.com/lanzithinking/qepytorch.git qpytorch
118
- cd qpytorch
116
+ git clone https://github.com/lanzithinking/qepytorch.git
117
+ cd qepytorch
118
+ # either
119
119
  pip install -e .[dev,docs,examples,keops,pyro,test] # keops and pyro are optional
120
+ # or
121
+ conda env create -f env_install.yaml # installed in the environment qpytorch
120
122
  ```
121
123
 
122
124
  <!--
@@ -137,7 +139,7 @@ To discuss any issues related to this AUR package refer to the comments section
137
139
 
138
140
  ## Citing Us
139
141
 
140
- If you use Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch, please cite the following papers:
142
+ If you use Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch, please cite the following paper:
141
143
  > [Li, Shuyi, Michael O'Connor, and Shiwei Lan. "Bayesian Learning via Q-Exponential Process." In Advances in Neural Information Processing Systems (2023).](https://papers.nips.cc/paper_files/paper/2023/hash/e6bfdd58f1326ff821a1b92743963bdf-Abstract-Conference.html)
142
144
  ```
143
145
  @inproceedings{li2023QEP,
@@ -159,18 +161,18 @@ for information on submitting issues and pull requests.
159
161
  Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch is primarily maintained by:
160
162
  - [Shiwei Lan](https://math.la.asu.edu/~slan) (Arizona State University)
161
163
 
162
- We would like to thank our other contributors including (but not limited to)
163
- Shuyi Li,
164
+ Thanks to the following contributors including (but not limited to)
165
+ - Shuyi Li,
164
166
  Guangting Yu,
165
167
  Zhi Chang,
166
168
  Chukwudi Paul Obite,
167
169
  Keyan Wu,
168
170
  and many more!
169
171
 
170
-
172
+ <!--
171
173
  ## Acknowledgements
172
174
  Development of Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch is supported by.
173
-
175
+ -->
174
176
 
175
177
  ## License
176
178
 
@@ -1,6 +1,6 @@
1
1
  qpytorch/__init__.py,sha256=0sD7DfLvEXx3PvqrTyl5bOYprus1Wjzxs1hOzTbQx6s,12392
2
2
  qpytorch/module.py,sha256=xjw6X-v3_iVt4cOUEQdQp-cbTKkLCqwaeJoUardRQSQ,1259
3
- qpytorch/version.py,sha256=Ljuux5HvS-yDzAhpzt_WxHJ6Ct4dLQiCUJg2yT5NuzE,155
3
+ qpytorch/version.py,sha256=aDfNBQh0vsVL7CSgYEMdMUbrxVw92raLxMivH20w2A4,160
4
4
  qpytorch/constraints/__init__.py,sha256=JS4bzSGrgAiDtOM_Y4rerzkoMAUt671E2U1SVakhfX4,138
5
5
  qpytorch/distributions/__init__.py,sha256=OSVX5Lfb72NKVFWVku0t-D2RyZuVcJAIICndOX9f5EA,973
6
6
  qpytorch/distributions/delta.py,sha256=AC-N5fhBQad872jl8q9PMLq46E5qwcQOXkRf1PSW-Cg,3507
@@ -95,8 +95,8 @@ qpytorch/variational/tril_natural_variational_distribution.py,sha256=3wPggMUY293
95
95
  qpytorch/variational/uncorrelated_multitask_variational_strategy.py,sha256=LdiVacUdQZ-BJDGcdHwlZ_uIVPfRl1WAgEtfs3ahxdg,5176
96
96
  qpytorch/variational/unwhitened_variational_strategy.py,sha256=068ScAOHk0VHLfkwakR41vrpASqIDjvvnhOFYIEE9uU,10713
97
97
  qpytorch/variational/variational_strategy.py,sha256=TD_rPpQL2n7bK869tICT6cA0cc0YFgqi0AsHfyVo2Zc,13155
98
- qpytorch-0.1.dist-info/LICENSE,sha256=QcK8fAvGl70vlwIHUqKdi4oV_SvhC6lBGYXTR1znTsY,1067
99
- qpytorch-0.1.dist-info/METADATA,sha256=pOhOSsJjOL6qc4tSYFILwL-ZUN9dKgS4OhbqfjWfDHs,7986
100
- qpytorch-0.1.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
101
- qpytorch-0.1.dist-info/top_level.txt,sha256=WZP9m4PVYtj2RhzbzmW4UqUGOy-sOfumPrjnvNFrv4Q,9
102
- qpytorch-0.1.dist-info/RECORD,,
98
+ qpytorch-0.1.1.dist-info/LICENSE,sha256=QcK8fAvGl70vlwIHUqKdi4oV_SvhC6lBGYXTR1znTsY,1067
99
+ qpytorch-0.1.1.dist-info/METADATA,sha256=9DnPKInL5BeVBkG7vk7XFkUwT_vRSNxyvur0mOIVL54,7499
100
+ qpytorch-0.1.1.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
101
+ qpytorch-0.1.1.dist-info/top_level.txt,sha256=WZP9m4PVYtj2RhzbzmW4UqUGOy-sOfumPrjnvNFrv4Q,9
102
+ qpytorch-0.1.1.dist-info/RECORD,,