qoro-divi 0.2.0b1__py3-none-any.whl → 0.6.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (92) hide show
  1. divi/__init__.py +1 -2
  2. divi/backends/__init__.py +10 -0
  3. divi/backends/_backend_properties_conversion.py +227 -0
  4. divi/backends/_circuit_runner.py +70 -0
  5. divi/backends/_execution_result.py +70 -0
  6. divi/backends/_parallel_simulator.py +486 -0
  7. divi/backends/_qoro_service.py +663 -0
  8. divi/backends/_qpu_system.py +101 -0
  9. divi/backends/_results_processing.py +133 -0
  10. divi/circuits/__init__.py +13 -0
  11. divi/{exp/cirq → circuits/_cirq}/__init__.py +1 -2
  12. divi/circuits/_cirq/_parser.py +110 -0
  13. divi/circuits/_cirq/_qasm_export.py +78 -0
  14. divi/circuits/_core.py +391 -0
  15. divi/{qasm.py → circuits/_qasm_conversion.py} +73 -14
  16. divi/circuits/_qasm_validation.py +694 -0
  17. divi/qprog/__init__.py +27 -8
  18. divi/qprog/_expectation.py +181 -0
  19. divi/qprog/_hamiltonians.py +281 -0
  20. divi/qprog/algorithms/__init__.py +16 -0
  21. divi/qprog/algorithms/_ansatze.py +368 -0
  22. divi/qprog/algorithms/_custom_vqa.py +263 -0
  23. divi/qprog/algorithms/_pce.py +262 -0
  24. divi/qprog/algorithms/_qaoa.py +579 -0
  25. divi/qprog/algorithms/_vqe.py +262 -0
  26. divi/qprog/batch.py +387 -74
  27. divi/qprog/checkpointing.py +556 -0
  28. divi/qprog/exceptions.py +9 -0
  29. divi/qprog/optimizers.py +1014 -43
  30. divi/qprog/quantum_program.py +243 -412
  31. divi/qprog/typing.py +62 -0
  32. divi/qprog/variational_quantum_algorithm.py +1208 -0
  33. divi/qprog/workflows/__init__.py +10 -0
  34. divi/qprog/{_graph_partitioning.py → workflows/_graph_partitioning.py} +139 -95
  35. divi/qprog/workflows/_qubo_partitioning.py +221 -0
  36. divi/qprog/workflows/_vqe_sweep.py +560 -0
  37. divi/reporting/__init__.py +7 -0
  38. divi/reporting/_pbar.py +127 -0
  39. divi/reporting/_qlogger.py +68 -0
  40. divi/reporting/_reporter.py +155 -0
  41. {qoro_divi-0.2.0b1.dist-info → qoro_divi-0.6.0.dist-info}/METADATA +43 -15
  42. qoro_divi-0.6.0.dist-info/RECORD +47 -0
  43. {qoro_divi-0.2.0b1.dist-info → qoro_divi-0.6.0.dist-info}/WHEEL +1 -1
  44. qoro_divi-0.6.0.dist-info/licenses/LICENSES/.license-header +3 -0
  45. divi/_pbar.py +0 -73
  46. divi/circuits.py +0 -139
  47. divi/exp/cirq/_lexer.py +0 -126
  48. divi/exp/cirq/_parser.py +0 -889
  49. divi/exp/cirq/_qasm_export.py +0 -37
  50. divi/exp/cirq/_qasm_import.py +0 -35
  51. divi/exp/cirq/exception.py +0 -21
  52. divi/exp/scipy/_cobyla.py +0 -342
  53. divi/exp/scipy/pyprima/LICENCE.txt +0 -28
  54. divi/exp/scipy/pyprima/__init__.py +0 -263
  55. divi/exp/scipy/pyprima/cobyla/__init__.py +0 -0
  56. divi/exp/scipy/pyprima/cobyla/cobyla.py +0 -599
  57. divi/exp/scipy/pyprima/cobyla/cobylb.py +0 -849
  58. divi/exp/scipy/pyprima/cobyla/geometry.py +0 -240
  59. divi/exp/scipy/pyprima/cobyla/initialize.py +0 -269
  60. divi/exp/scipy/pyprima/cobyla/trustregion.py +0 -540
  61. divi/exp/scipy/pyprima/cobyla/update.py +0 -331
  62. divi/exp/scipy/pyprima/common/__init__.py +0 -0
  63. divi/exp/scipy/pyprima/common/_bounds.py +0 -41
  64. divi/exp/scipy/pyprima/common/_linear_constraints.py +0 -46
  65. divi/exp/scipy/pyprima/common/_nonlinear_constraints.py +0 -64
  66. divi/exp/scipy/pyprima/common/_project.py +0 -224
  67. divi/exp/scipy/pyprima/common/checkbreak.py +0 -107
  68. divi/exp/scipy/pyprima/common/consts.py +0 -48
  69. divi/exp/scipy/pyprima/common/evaluate.py +0 -101
  70. divi/exp/scipy/pyprima/common/history.py +0 -39
  71. divi/exp/scipy/pyprima/common/infos.py +0 -30
  72. divi/exp/scipy/pyprima/common/linalg.py +0 -452
  73. divi/exp/scipy/pyprima/common/message.py +0 -336
  74. divi/exp/scipy/pyprima/common/powalg.py +0 -131
  75. divi/exp/scipy/pyprima/common/preproc.py +0 -393
  76. divi/exp/scipy/pyprima/common/present.py +0 -5
  77. divi/exp/scipy/pyprima/common/ratio.py +0 -56
  78. divi/exp/scipy/pyprima/common/redrho.py +0 -49
  79. divi/exp/scipy/pyprima/common/selectx.py +0 -346
  80. divi/interfaces.py +0 -25
  81. divi/parallel_simulator.py +0 -258
  82. divi/qlogger.py +0 -119
  83. divi/qoro_service.py +0 -343
  84. divi/qprog/_mlae.py +0 -182
  85. divi/qprog/_qaoa.py +0 -440
  86. divi/qprog/_vqe.py +0 -275
  87. divi/qprog/_vqe_sweep.py +0 -144
  88. divi/utils.py +0 -116
  89. qoro_divi-0.2.0b1.dist-info/RECORD +0 -58
  90. /divi/{qem.py → circuits/qem.py} +0 -0
  91. {qoro_divi-0.2.0b1.dist-info → qoro_divi-0.6.0.dist-info/licenses}/LICENSE +0 -0
  92. {qoro_divi-0.2.0b1.dist-info → qoro_divi-0.6.0.dist-info/licenses}/LICENSES/Apache-2.0.txt +0 -0
@@ -0,0 +1,1208 @@
1
+ # SPDX-FileCopyrightText: 2025-2026 Qoro Quantum Ltd <divi@qoroquantum.de>
2
+ #
3
+ # SPDX-License-Identifier: Apache-2.0
4
+
5
+ import logging
6
+ import pickle
7
+ from abc import abstractmethod
8
+ from datetime import datetime
9
+ from functools import partial
10
+ from pathlib import Path
11
+ from queue import Queue
12
+ from typing import Any, NamedTuple
13
+ from warnings import warn
14
+
15
+ import numpy as np
16
+ import numpy.typing as npt
17
+ import pennylane as qml
18
+ from pydantic import BaseModel, ConfigDict, Field, field_serializer, field_validator
19
+ from scipy.optimize import OptimizeResult
20
+
21
+ from divi.backends import (
22
+ CircuitRunner,
23
+ convert_counts_to_probs,
24
+ reverse_dict_endianness,
25
+ )
26
+ from divi.circuits import CircuitBundle, CircuitTag, MetaCircuit, format_circuit_tag
27
+ from divi.circuits.qem import _NoMitigation
28
+ from divi.qprog._expectation import _batched_expectation
29
+ from divi.qprog._hamiltonians import convert_hamiltonian_to_pauli_string
30
+ from divi.qprog.checkpointing import (
31
+ PROGRAM_STATE_FILE,
32
+ CheckpointConfig,
33
+ _atomic_write,
34
+ _ensure_checkpoint_dir,
35
+ _get_checkpoint_subdir_path,
36
+ _load_and_validate_pydantic_model,
37
+ resolve_checkpoint_path,
38
+ )
39
+ from divi.qprog.exceptions import _CancelledError
40
+ from divi.qprog.optimizers import (
41
+ MonteCarloOptimizer,
42
+ Optimizer,
43
+ PymooOptimizer,
44
+ ScipyMethod,
45
+ ScipyOptimizer,
46
+ )
47
+ from divi.qprog.quantum_program import QuantumProgram
48
+
49
+ logger = logging.getLogger(__name__)
50
+
51
+
52
+ class SolutionEntry(NamedTuple):
53
+ """A solution entry with bitstring, probability, and optional decoded value.
54
+
55
+ Args:
56
+ bitstring: Binary string representing a computational basis state.
57
+ prob: Measured probability in range [0.0, 1.0].
58
+ decoded: Optional problem-specific decoded representation. Defaults to None.
59
+ """
60
+
61
+ bitstring: str
62
+ prob: float
63
+ decoded: Any | None = None
64
+
65
+
66
+ class SubclassState(BaseModel):
67
+ """Container for subclass-specific state."""
68
+
69
+ data: dict[str, Any] = Field(default_factory=dict)
70
+
71
+
72
+ class OptimizerConfig(BaseModel):
73
+ """Configuration for reconstructing an optimizer."""
74
+
75
+ type: str
76
+ config: dict[str, Any] = Field(default_factory=dict)
77
+
78
+
79
+ class ProgramState(BaseModel):
80
+ """Pydantic model for VariationalQuantumAlgorithm state."""
81
+
82
+ model_config = ConfigDict(from_attributes=True, populate_by_name=True)
83
+
84
+ # Metadata
85
+ program_type: str = Field(validation_alias="_serialized_program_type")
86
+ version: str = "1.0"
87
+ timestamp: str = Field(default_factory=lambda: datetime.now().isoformat())
88
+
89
+ # Core Algorithm State (mapped to private attributes)
90
+ current_iteration: int
91
+ max_iterations: int
92
+ losses_history: list[dict[str, float]] = Field(validation_alias="_losses_history")
93
+ best_loss: float = Field(validation_alias="_best_loss")
94
+ best_probs: dict[str, float] = Field(validation_alias="_best_probs")
95
+ total_circuit_count: int = Field(validation_alias="_total_circuit_count")
96
+ total_run_time: float = Field(validation_alias="_total_run_time")
97
+ seed: int | None = Field(validation_alias="_seed")
98
+ grouping_strategy: str = Field(validation_alias="_grouping_strategy")
99
+
100
+ # Arrays
101
+ curr_params: list[list[float]] | None = Field(
102
+ default=None, validation_alias="_curr_params"
103
+ )
104
+ best_params: list[float] | None = Field(
105
+ default=None, validation_alias="_best_params"
106
+ )
107
+ final_params: list[float] | None = Field(
108
+ default=None, validation_alias="_final_params"
109
+ )
110
+
111
+ # Complex State (mapped to new adapter properties)
112
+ rng_state_bytes: bytes | None = Field(
113
+ default=None, validation_alias="_serialized_rng_state"
114
+ )
115
+ optimizer_config: OptimizerConfig = Field(
116
+ validation_alias="_serialized_optimizer_config"
117
+ )
118
+ subclass_state: SubclassState = Field(validation_alias="_serialized_subclass_state")
119
+
120
+ @field_serializer("rng_state_bytes")
121
+ def serialize_bytes(self, v: bytes | None, _info):
122
+ return v.hex() if v is not None else None
123
+
124
+ @field_validator("rng_state_bytes", mode="before")
125
+ @classmethod
126
+ def validate_bytes(cls, v):
127
+ return bytes.fromhex(v) if isinstance(v, str) else v
128
+
129
+ @field_serializer("curr_params", "best_params", "final_params")
130
+ def serialize_arrays(self, v: npt.NDArray | list | None, _info):
131
+ if isinstance(v, np.ndarray):
132
+ return v.tolist()
133
+ return v
134
+
135
+ def restore(self, program: "VariationalQuantumAlgorithm") -> None:
136
+ """Apply this state object back to a program instance."""
137
+ # 1. Bulk restore standard attributes
138
+ for name, field in self.model_fields.items():
139
+ target_attr = field.validation_alias or name
140
+
141
+ # Skip adapter properties (they are read-only / calculated)
142
+ if target_attr.startswith("_serialized_"):
143
+ continue
144
+
145
+ val = getattr(self, name)
146
+
147
+ # Handle numpy conversion
148
+ if "params" in target_attr and val is not None:
149
+ val = np.array(val)
150
+
151
+ if hasattr(program, target_attr):
152
+ setattr(program, target_attr, val)
153
+
154
+ # 2. Restore complex state
155
+ if self.rng_state_bytes:
156
+ program._rng.bit_generator.state = pickle.loads(self.rng_state_bytes)
157
+
158
+ program._load_subclass_state(self.subclass_state.data)
159
+
160
+
161
+ def _compute_parameter_shift_mask(n_params: int) -> npt.NDArray[np.float64]:
162
+ """
163
+ Generate a binary matrix mask for the parameter shift rule.
164
+ This mask is used to determine the shifts to apply to each parameter
165
+ when computing gradients via the parameter shift rule in quantum algorithms.
166
+
167
+ Args:
168
+ n_params (int): The number of parameters in the quantum circuit.
169
+
170
+ Returns:
171
+ npt.NDArray[np.float64]: A (2 * n_params, n_params) matrix where each row encodes
172
+ the shift to apply to each parameter for a single evaluation.
173
+ The values are multiples of 0.5 * pi, with alternating signs.
174
+ """
175
+ mask_arr = np.arange(0, 2 * n_params, 2)
176
+ mask_arr[0] = 1
177
+
178
+ binary_matrix = ((mask_arr[:, np.newaxis] & (1 << np.arange(n_params))) > 0).astype(
179
+ np.float64
180
+ )
181
+
182
+ binary_matrix = binary_matrix.repeat(2, axis=0)
183
+ binary_matrix[1::2] *= -1
184
+ binary_matrix *= 0.5 * np.pi
185
+
186
+ return binary_matrix
187
+
188
+
189
+ class VariationalQuantumAlgorithm(QuantumProgram):
190
+ """Base class for variational quantum algorithms.
191
+
192
+ This class provides the foundation for implementing variational quantum
193
+ algorithms in Divi. It handles circuit execution, parameter optimization,
194
+ and result management for algorithms that optimize parameterized quantum
195
+ circuits to minimize cost functions.
196
+
197
+ Variational algorithms work by:
198
+ 1. Generating parameterized quantum circuits
199
+ 2. Executing circuits on quantum hardware/simulators
200
+ 3. Computing expectation values of cost Hamiltonians
201
+ 4. Using classical optimizers to update parameters
202
+ 5. Iterating until convergence
203
+
204
+ Attributes:
205
+ _losses_history (list[dict]): History of loss values during optimization.
206
+ _final_params (npt.NDArray[np.float64]): Final optimized parameters.
207
+ _best_params (npt.NDArray[np.float64]): Parameters that achieved the best loss.
208
+ _best_loss (float): Best loss achieved during optimization.
209
+ _circuits (list[Circuit]): Generated quantum circuits.
210
+ _total_circuit_count (int): Total number of circuits executed.
211
+ _total_run_time (float): Total execution time in seconds.
212
+ _curr_params (npt.NDArray[np.float64]): Current parameter values.
213
+ _seed (int | None): Random seed for parameter initialization.
214
+ _rng (np.random.Generator): Random number generator.
215
+ _grad_mode (bool): Whether currently computing gradients.
216
+ _grouping_strategy (str): Strategy for grouping quantum operations.
217
+ _qem_protocol (QEMProtocol): Quantum error mitigation protocol.
218
+ _cancellation_event (Event | None): Event for graceful termination.
219
+ _meta_circuit_factory (callable): Factory for creating MetaCircuit instances.
220
+ """
221
+
222
+ def __init__(
223
+ self,
224
+ backend: CircuitRunner,
225
+ optimizer: Optimizer | None = None,
226
+ seed: int | None = None,
227
+ progress_queue: Queue | None = None,
228
+ **kwargs,
229
+ ):
230
+ """Initialize the VariationalQuantumAlgorithm.
231
+
232
+ This constructor is specifically designed for hybrid quantum-classical
233
+ variational algorithms. The instance variables `n_layers` and `n_params`
234
+ must be set by subclasses, where:
235
+ - `n_layers` is the number of layers in the quantum circuit.
236
+ - `n_params` is the number of parameters per layer.
237
+
238
+ For exotic variational algorithms where these variables may not be applicable,
239
+ the `_initialize_params` method should be overridden to set the parameters.
240
+
241
+ Args:
242
+ backend (CircuitRunner): Quantum circuit execution backend.
243
+ optimizer (Optimizer | None): The optimizer to use for parameter optimization.
244
+ Defaults to MonteCarloOptimizer().
245
+ seed (int | None): Random seed for parameter initialization. Defaults to None.
246
+ progress_queue (Queue | None): Queue for progress reporting. Defaults to None.
247
+
248
+ Keyword Args:
249
+ initial_params (npt.NDArray[np.float64] | None): Initial parameters with shape
250
+ (n_param_sets, n_layers * n_params). If provided, these will be set as
251
+ the current parameters via the `curr_params` setter (which includes validation).
252
+ Defaults to None.
253
+ grouping_strategy (str): Strategy for grouping operations in Pennylane transforms.
254
+ Options: "default", "wires", "qwc". Defaults to "qwc".
255
+ qem_protocol (QEMProtocol | None): Quantum error mitigation protocol to apply. Defaults to None.
256
+ precision (int): Number of decimal places for parameter values in QASM conversion.
257
+ Defaults to 8.
258
+
259
+ Note: Higher precision values result in longer QASM strings, which increases
260
+ the amount of data sent to cloud backends. For most use cases, the default
261
+ precision of 8 decimal places provides sufficient accuracy while keeping
262
+ QASM sizes manageable. Consider reducing precision if you need to minimize
263
+ data transfer overhead, or increase it only if you require higher numerical
264
+ precision in your circuit parameters.
265
+ decode_solution_fn (callable[[str], Any] | None): Function to decode bitstrings
266
+ into problem-specific solution representations. Called during final computation
267
+ and when `get_top_solutions(include_decoded=True)` is used. The function should
268
+ take a binary string (e.g., "0101") and return a decoded representation
269
+ (e.g., a list of indices, numpy array, or custom object). Defaults to
270
+ `lambda bitstring: bitstring` (identity function).
271
+ """
272
+
273
+ super().__init__(
274
+ backend=backend, seed=seed, progress_queue=progress_queue, **kwargs
275
+ )
276
+
277
+ # --- Optimization Results & History ---
278
+ self._losses_history = []
279
+ self._best_params = []
280
+ self._final_params = []
281
+ self._best_loss = float("inf")
282
+ self._best_probs = {}
283
+ self._curr_params = kwargs.pop("initial_params", None)
284
+
285
+ # --- Random Number Generation ---
286
+ self._seed = seed
287
+ self._rng = np.random.default_rng(self._seed)
288
+
289
+ # --- Computation Mode Flags ---
290
+ # Lets child classes adapt their optimization step for grad calculation routine
291
+ self._grad_mode = False
292
+ self._is_compute_probabilities = False
293
+
294
+ # --- Optimizer Configuration ---
295
+ self.optimizer = optimizer if optimizer is not None else MonteCarloOptimizer()
296
+
297
+ # --- Backend & Circuit Configuration ---
298
+ if backend and backend.supports_expval:
299
+ grouping_strategy = kwargs.pop("grouping_strategy", None)
300
+ if grouping_strategy is not None and grouping_strategy != "_backend_expval":
301
+ warn(
302
+ "Backend supports direct expectation value calculation, but a grouping_strategy was provided. "
303
+ "The grouping strategy will be ignored.",
304
+ UserWarning,
305
+ )
306
+ self._grouping_strategy = "_backend_expval"
307
+ else:
308
+ self._grouping_strategy = kwargs.pop("grouping_strategy", "qwc")
309
+
310
+ self._qem_protocol = kwargs.pop("qem_protocol", None) or _NoMitigation()
311
+ self._precision = kwargs.pop("precision", 8)
312
+
313
+ # --- Solution Decoding ---
314
+ self._decode_solution_fn = kwargs.pop(
315
+ "decode_solution_fn", lambda bitstring: bitstring
316
+ )
317
+
318
+ # --- Circuit Factory & Templates ---
319
+ self._meta_circuits = None
320
+ self._meta_circuit_factory = partial(
321
+ MetaCircuit,
322
+ # No grouping strategy for expectation value measurements
323
+ grouping_strategy=self._grouping_strategy,
324
+ qem_protocol=self._qem_protocol,
325
+ precision=self._precision,
326
+ )
327
+
328
+ # --- Control Flow ---
329
+ self._cancellation_event = None
330
+
331
+ @property
332
+ @abstractmethod
333
+ def cost_hamiltonian(self) -> qml.operation.Operator:
334
+ """The cost Hamiltonian for the variational problem."""
335
+ pass
336
+
337
+ @property
338
+ def total_circuit_count(self) -> int:
339
+ """Get the total number of circuits executed.
340
+
341
+ Returns:
342
+ int: Cumulative count of circuits submitted for execution.
343
+ """
344
+ return self._total_circuit_count
345
+
346
+ @property
347
+ def total_run_time(self) -> float:
348
+ """Get the total runtime across all circuit executions.
349
+
350
+ Returns:
351
+ float: Cumulative execution time in seconds.
352
+ """
353
+ return self._total_run_time
354
+
355
+ @property
356
+ def meta_circuits(self) -> dict[str, MetaCircuit]:
357
+ """Get the meta-circuit templates used by this program.
358
+
359
+ Returns:
360
+ dict[str, MetaCircuit]: Dictionary mapping circuit names to their
361
+ MetaCircuit templates.
362
+ """
363
+ return self._meta_circuits
364
+
365
+ @property
366
+ def n_params(self):
367
+ """Get the total number of parameters in the quantum circuit.
368
+
369
+ Returns:
370
+ int: Total number of trainable parameters (n_layers * n_params_per_layer).
371
+ """
372
+ return self._n_params
373
+
374
+ def _has_run_optimization(self) -> bool:
375
+ """Check if optimization has been run at least once.
376
+
377
+ Returns:
378
+ bool: True if optimization has been run, False otherwise.
379
+ """
380
+ return len(self._losses_history) > 0
381
+
382
+ @property
383
+ def losses_history(self) -> list[dict]:
384
+ """Get a copy of the optimization loss history.
385
+
386
+ Each entry is a dictionary mapping parameter indices to loss values.
387
+
388
+ Returns:
389
+ list[dict]: Copy of the loss history. Modifications to this list
390
+ will not affect the internal state.
391
+ """
392
+ if not self._has_run_optimization():
393
+ warn(
394
+ "losses_history is empty. Optimization has not been run yet. "
395
+ "Call run() to execute the optimization.",
396
+ UserWarning,
397
+ stacklevel=2,
398
+ )
399
+ return self._losses_history.copy()
400
+
401
+ @property
402
+ def min_losses_per_iteration(self) -> list[float]:
403
+ """Get the minimum loss value for each iteration.
404
+
405
+ Returns a list where each element is the minimum (best) loss value
406
+ across all parameter sets for that iteration.
407
+
408
+ Returns:
409
+ list[float]: List of minimum loss values, one per iteration.
410
+ """
411
+ if not self._has_run_optimization():
412
+ warn(
413
+ "min_losses_per_iteration is empty. Optimization has not been run yet. "
414
+ "Call run() to execute the optimization.",
415
+ UserWarning,
416
+ stacklevel=2,
417
+ )
418
+ return [min(loss_dict.values()) for loss_dict in self._losses_history]
419
+
420
+ @property
421
+ def final_params(self) -> npt.NDArray[np.float64]:
422
+ """Get a copy of the final optimized parameters.
423
+
424
+ Returns:
425
+ npt.NDArray[np.float64]: Copy of the final parameters. Modifications to this array
426
+ will not affect the internal state.
427
+ """
428
+ if len(self._final_params) == 0 or not self._has_run_optimization():
429
+ warn(
430
+ "final_params is not available. Optimization has not been run yet. "
431
+ "Call run() to execute the optimization.",
432
+ UserWarning,
433
+ stacklevel=2,
434
+ )
435
+ return self._final_params.copy()
436
+
437
+ @property
438
+ def best_params(self) -> npt.NDArray[np.float64]:
439
+ """Get a copy of the parameters that achieved the best (lowest) loss.
440
+
441
+ Returns:
442
+ npt.NDArray[np.float64]: Copy of the best parameters. Modifications to this array
443
+ will not affect the internal state.
444
+ """
445
+ if len(self._best_params) == 0 or not self._has_run_optimization():
446
+ warn(
447
+ "best_params is not available. Optimization has not been run yet. "
448
+ "Call run() to execute the optimization.",
449
+ UserWarning,
450
+ stacklevel=2,
451
+ )
452
+ return self._best_params.copy()
453
+
454
+ @property
455
+ def best_loss(self) -> float:
456
+ """Get the best loss achieved so far.
457
+
458
+ Returns:
459
+ float: The best loss achieved so far.
460
+ """
461
+ if not self._has_run_optimization():
462
+ warn(
463
+ "best_loss has not been computed yet. Optimization has not been run. "
464
+ "Call run() to execute the optimization.",
465
+ UserWarning,
466
+ stacklevel=2,
467
+ )
468
+ elif self._best_loss == float("inf"):
469
+ # Defensive check: if optimization ran but best_loss is still inf, something is wrong
470
+ raise RuntimeError(
471
+ "best_loss is still infinite after optimization. This indicates a problem "
472
+ "with the optimization process. The optimization callback may not have executed "
473
+ "correctly, or all computed losses were infinite."
474
+ )
475
+ return self._best_loss
476
+
477
+ @property
478
+ def best_probs(self) -> dict[CircuitTag, dict[str, float]]:
479
+ """Get normalized probabilities for the best parameters.
480
+
481
+ This property provides access to the probability distribution computed
482
+ by running measurement circuits with the best parameters found during
483
+ optimization. The distribution maps bitstrings (computational basis states)
484
+ to their measured probabilities.
485
+
486
+ The probabilities are normalized and have deterministic ordering when
487
+ iterated (dictionary insertion order is preserved in Python 3.7+).
488
+
489
+ Returns:
490
+ dict[CircuitTag, dict[str, float]]: Dictionary mapping CircuitTag keys to
491
+ bitstring probability dictionaries. Bitstrings are binary strings
492
+ (e.g., "0101"), values are probabilities in range [0.0, 1.0].
493
+ Returns an empty dict if final computation has not been performed.
494
+
495
+ Raises:
496
+ RuntimeError: If attempting to access probabilities before running
497
+ the algorithm with final computation enabled.
498
+
499
+ Note:
500
+ To populate this distribution, you must run the algorithm with
501
+ `perform_final_computation=True` (the default):
502
+
503
+ >>> program.run(perform_final_computation=True)
504
+ >>> probs = program.best_probs
505
+
506
+ Example:
507
+ >>> program.run()
508
+ >>> probs = program.best_probs
509
+ >>> for bitstring, prob in probs.items():
510
+ ... print(f"{bitstring}: {prob:.2%}")
511
+ 0101: 42.50%
512
+ 1010: 31.20%
513
+ ...
514
+ """
515
+ if not self._best_probs:
516
+ warn(
517
+ "best_probs is empty. Either optimization has not been run yet, "
518
+ "or final computation was not performed. Call run() to execute the optimization.",
519
+ UserWarning,
520
+ stacklevel=2,
521
+ )
522
+ return self._best_probs.copy()
523
+
524
+ def get_top_solutions(
525
+ self, n: int = 10, *, min_prob: float = 0.0, include_decoded: bool = False
526
+ ) -> list[SolutionEntry]:
527
+ """Get the top-N solutions sorted by probability.
528
+
529
+ This method extracts the most probable solutions from the measured
530
+ probability distribution. Solutions are sorted by probability (descending)
531
+ with deterministic tie-breaking using lexicographic ordering of bitstrings.
532
+
533
+ Args:
534
+ n (int): Maximum number of solutions to return. Must be non-negative.
535
+ If n is 0 or negative, returns an empty list. If n exceeds the
536
+ number of available solutions (after filtering), returns all
537
+ available solutions. Defaults to 10.
538
+ min_prob (float): Minimum probability threshold for including solutions.
539
+ Only solutions with probability >= min_prob will be included.
540
+ Must be in range [0.0, 1.0]. Defaults to 0.0 (no filtering).
541
+ include_decoded (bool): Whether to populate the `decoded` field of
542
+ each SolutionEntry by calling the `decode_solution_fn` provided
543
+ in the constructor. If False, the decoded field will be None.
544
+ Defaults to False.
545
+
546
+ Returns:
547
+ list[SolutionEntry]: List of solution entries sorted by probability
548
+ (descending), then by bitstring (lexicographically ascending)
549
+ for deterministic tie-breaking. Returns an empty list if no
550
+ probability distribution is available or n <= 0.
551
+
552
+ Raises:
553
+ RuntimeError: If probability distribution is not available because
554
+ optimization has not been run or final computation was not performed.
555
+ ValueError: If min_prob is not in range [0.0, 1.0] or n is negative.
556
+
557
+ Note:
558
+ The probability distribution must be computed by running the algorithm
559
+ with `perform_final_computation=True` (the default):
560
+
561
+ >>> program.run(perform_final_computation=True)
562
+ >>> top_10 = program.get_top_solutions(n=10)
563
+
564
+ Example:
565
+ >>> # Get top 5 solutions with probability >= 5%
566
+ >>> program.run()
567
+ >>> solutions = program.get_top_solutions(n=5, min_prob=0.05)
568
+ >>> for sol in solutions:
569
+ ... print(f"{sol.bitstring}: {sol.prob:.2%}")
570
+ 1010: 42.50%
571
+ 0101: 31.20%
572
+ 1100: 15.30%
573
+ 0011: 8.50%
574
+ 1111: 2.50%
575
+
576
+ >>> # Get solutions with decoding
577
+ >>> solutions = program.get_top_solutions(n=3, include_decoded=True)
578
+ >>> for sol in solutions:
579
+ ... print(f"{sol.bitstring} -> {sol.decoded}")
580
+ 1010 -> [0, 2]
581
+ 0101 -> [1, 3]
582
+ ...
583
+ """
584
+ # Validate inputs
585
+ if n < 0:
586
+ raise ValueError(f"n must be non-negative, got {n}")
587
+ if not (0.0 <= min_prob <= 1.0):
588
+ raise ValueError(f"min_prob must be in range [0.0, 1.0], got {min_prob}")
589
+
590
+ # Handle edge case: n == 0
591
+ if n == 0:
592
+ return []
593
+
594
+ # Require probability distribution to exist
595
+ if not self._best_probs:
596
+ raise RuntimeError(
597
+ "No probability distribution available. The final computation step "
598
+ "must be performed to compute the probability distribution. "
599
+ "Call run(perform_final_computation=True) to execute optimization "
600
+ "and compute the distribution."
601
+ )
602
+ # Extract the probability distribution (nested by parameter set)
603
+ # _best_probs structure: {tag: {bitstring: prob}}
604
+ probs_dict = next(iter(self._best_probs.values()))
605
+
606
+ # Filter by minimum probability and get top n sorted by probability (descending),
607
+ # then bitstring (ascending) for deterministic tie-breaking
608
+ top_items = sorted(
609
+ filter(
610
+ lambda bitstring_prob: bitstring_prob[1] >= min_prob, probs_dict.items()
611
+ ),
612
+ key=lambda bitstring_prob: (-bitstring_prob[1], bitstring_prob[0]),
613
+ )[:n]
614
+
615
+ # Build result list (decode on demand)
616
+ return [
617
+ SolutionEntry(
618
+ bitstring=bitstring,
619
+ prob=prob,
620
+ decoded=(
621
+ self._decode_solution_fn(bitstring) if include_decoded else None
622
+ ),
623
+ )
624
+ for bitstring, prob in top_items
625
+ ]
626
+
627
+ @property
628
+ def curr_params(self) -> npt.NDArray[np.float64]:
629
+ """Get the current parameters.
630
+
631
+ These are the parameters used for optimization. They can be accessed
632
+ and modified at any time, including during optimization.
633
+
634
+ Returns:
635
+ npt.NDArray[np.float64]: Current parameters. If not yet initialized,
636
+ they will be generated automatically.
637
+ """
638
+ if self._curr_params is None:
639
+ self._initialize_params()
640
+ return self._curr_params.copy()
641
+
642
+ @curr_params.setter
643
+ def curr_params(self, value: npt.NDArray[np.float64] | None):
644
+ """
645
+ Set the current parameters.
646
+
647
+ Args:
648
+ value (npt.NDArray[np.float64] | None): Parameters with shape
649
+ (n_param_sets, n_layers * n_params), or None to reset
650
+ to uninitialized state.
651
+
652
+ Raises:
653
+ ValueError: If parameters have incorrect shape.
654
+ """
655
+ if value is not None:
656
+ self._validate_initial_params(value)
657
+ self._curr_params = value.copy()
658
+ else:
659
+ # Reset to uninitialized state
660
+ self._curr_params = None
661
+
662
+ # --- Serialization Adapters (For Pydantic) ---
663
+ @property
664
+ def _serialized_program_type(self) -> str:
665
+ return type(self).__name__
666
+
667
+ @property
668
+ def _serialized_rng_state(self) -> bytes:
669
+ return pickle.dumps(self._rng.bit_generator.state)
670
+
671
+ @property
672
+ def _serialized_optimizer_config(self) -> OptimizerConfig:
673
+ config_dict = self.optimizer.get_config()
674
+ return OptimizerConfig(type=config_dict.pop("type"), config=config_dict)
675
+
676
+ @property
677
+ def _serialized_subclass_state(self) -> SubclassState:
678
+ return SubclassState(data=self._save_subclass_state())
679
+
680
+ @property
681
+ def meta_circuits(self) -> dict[str, MetaCircuit]:
682
+ """Get the meta-circuit templates used by this program.
683
+
684
+ Returns:
685
+ dict[str, MetaCircuit]: Dictionary mapping circuit names to their
686
+ MetaCircuit templates.
687
+ """
688
+ # Lazy initialization: each instance has its own _meta_circuits.
689
+ # Note: When used with ProgramBatch, meta_circuits is initialized sequentially
690
+ # in the main thread before parallel execution to avoid thread-safety issues.
691
+ if self._meta_circuits is None:
692
+ self._meta_circuits = self._create_meta_circuits_dict()
693
+ return self._meta_circuits
694
+
695
+ @abstractmethod
696
+ def _create_meta_circuits_dict(self) -> dict[str, MetaCircuit]:
697
+ pass
698
+
699
+ @abstractmethod
700
+ def _generate_circuits(self, **kwargs) -> list[CircuitBundle]:
701
+ """Generate quantum circuits for execution.
702
+
703
+ This method should generate and return a list of Circuit objects based on
704
+ the current algorithm state and parameters. The circuits will be executed
705
+ by the backend.
706
+
707
+ Args:
708
+ **kwargs: Additional keyword arguments for circuit generation.
709
+
710
+ Returns:
711
+ list[CircuitBundle]: List of Circuit objects to be executed.
712
+ """
713
+ pass
714
+
715
+ @abstractmethod
716
+ def _save_subclass_state(self) -> dict[str, Any]:
717
+ """Hook method for subclasses to save additional state.
718
+
719
+ Subclasses must override this method to return a dictionary of
720
+ state variables that should be included in the checkpoint.
721
+
722
+ Returns:
723
+ dict[str, Any]: Dictionary of subclass-specific state.
724
+ """
725
+ pass
726
+
727
+ @abstractmethod
728
+ def _load_subclass_state(self, state: dict[str, Any]) -> None:
729
+ """Hook method for subclasses to load additional state.
730
+
731
+ Subclasses must override this method to restore state variables
732
+ from the checkpoint dictionary. This is called after instance creation.
733
+
734
+ Args:
735
+ state (dict[str, Any]): Dictionary of subclass-specific state.
736
+ """
737
+ pass
738
+
739
+ def _get_optimizer_config(self) -> OptimizerConfig:
740
+ """Extract optimizer configuration for checkpoint reconstruction.
741
+
742
+ Returns:
743
+ OptimizerConfig: Configuration object for the current optimizer.
744
+
745
+ Raises:
746
+ NotImplementedError: If the optimizer does not support state saving.
747
+ """
748
+ config_dict = self.optimizer.get_config()
749
+ return OptimizerConfig(
750
+ type=config_dict.pop("type"),
751
+ config=config_dict,
752
+ )
753
+
754
+ def save_state(self, checkpoint_config: CheckpointConfig) -> str:
755
+ """Save the program state to a checkpoint directory."""
756
+ if self.current_iteration == 0 and len(self._losses_history) == 0:
757
+ raise RuntimeError("Cannot save checkpoint: optimization has not been run.")
758
+
759
+ if checkpoint_config.checkpoint_dir is None:
760
+ raise ValueError(
761
+ "checkpoint_config.checkpoint_dir must be a non-None Path."
762
+ )
763
+
764
+ main_dir = _ensure_checkpoint_dir(checkpoint_config.checkpoint_dir)
765
+ checkpoint_path = _get_checkpoint_subdir_path(main_dir, self.current_iteration)
766
+ checkpoint_path.mkdir(parents=True, exist_ok=True)
767
+
768
+ # 1. Save optimizer
769
+ self.optimizer.save_state(checkpoint_path)
770
+
771
+ # 2. Save Program State (Pydantic pulls data via validation_aliases)
772
+ state = ProgramState.model_validate(self)
773
+
774
+ state_file = checkpoint_path / PROGRAM_STATE_FILE
775
+ _atomic_write(state_file, state.model_dump_json(indent=2))
776
+
777
+ return checkpoint_path
778
+
779
+ @classmethod
780
+ def load_state(
781
+ cls,
782
+ checkpoint_dir: Path | str,
783
+ backend: CircuitRunner,
784
+ subdirectory: str | None = None,
785
+ **kwargs,
786
+ ) -> "VariationalQuantumAlgorithm":
787
+ """Load program state from a checkpoint directory."""
788
+ checkpoint_path = resolve_checkpoint_path(checkpoint_dir, subdirectory)
789
+ state_file = checkpoint_path / PROGRAM_STATE_FILE
790
+
791
+ # 1. Load Pydantic Model
792
+ state = _load_and_validate_pydantic_model(
793
+ state_file,
794
+ ProgramState,
795
+ required_fields=["program_type", "current_iteration"],
796
+ )
797
+
798
+ # 2. Reconstruct Optimizer
799
+ opt_config = state.optimizer_config
800
+ if opt_config.type == "MonteCarloOptimizer":
801
+ optimizer = MonteCarloOptimizer.load_state(checkpoint_path)
802
+ elif opt_config.type == "PymooOptimizer":
803
+ optimizer = PymooOptimizer.load_state(checkpoint_path)
804
+ else:
805
+ raise ValueError(f"Unsupported optimizer type: {opt_config.type}")
806
+
807
+ # 3. Create Instance
808
+ program = cls(backend=backend, optimizer=optimizer, seed=state.seed, **kwargs)
809
+
810
+ # 4. Restore State
811
+ state.restore(program)
812
+
813
+ return program
814
+
815
+ def get_expected_param_shape(self) -> tuple[int, int]:
816
+ """
817
+ Get the expected shape for initial parameters.
818
+
819
+ Returns:
820
+ tuple[int, int]: Shape (n_param_sets, n_layers * n_params) that
821
+ initial parameters should have for this quantum program.
822
+ """
823
+ return (self.optimizer.n_param_sets, self.n_layers * self.n_params)
824
+
825
+ def _validate_initial_params(self, params: npt.NDArray[np.float64]):
826
+ """
827
+ Validate user-provided initial parameters.
828
+
829
+ Args:
830
+ params (npt.NDArray[np.float64]): Parameters to validate.
831
+
832
+ Raises:
833
+ ValueError: If parameters have incorrect shape.
834
+ """
835
+ expected_shape = self.get_expected_param_shape()
836
+
837
+ if params.shape != expected_shape:
838
+ raise ValueError(
839
+ f"Initial parameters must have shape {expected_shape}, "
840
+ f"got {params.shape}"
841
+ )
842
+
843
+ def _initialize_params(self):
844
+ """
845
+ Initialize the circuit parameters randomly.
846
+
847
+ Generates random parameters with values uniformly distributed between
848
+ 0 and 2π. The number of parameter sets depends on the optimizer being used.
849
+ """
850
+ total_params = self.n_layers * self.n_params
851
+ self._curr_params = self._rng.uniform(
852
+ 0, 2 * np.pi, (self.optimizer.n_param_sets, total_params)
853
+ )
854
+
855
+ def _run_optimization_circuits(self, **kwargs) -> dict[int, float]:
856
+ self._curr_circuits = self._generate_circuits(**kwargs)
857
+
858
+ if self.backend.supports_expval:
859
+ kwargs["ham_ops"] = convert_hamiltonian_to_pauli_string(
860
+ self.cost_hamiltonian, self.n_qubits
861
+ )
862
+
863
+ losses = self._dispatch_circuits_and_process_results(**kwargs)
864
+
865
+ return losses
866
+
867
+ @staticmethod
868
+ def _parse_result_tag(tag: CircuitTag) -> tuple[int, int]:
869
+ """Extract (param_id, qem_id) from a result tag."""
870
+ if not isinstance(tag, CircuitTag):
871
+ raise TypeError("Result tags must be CircuitTag instances.")
872
+ return tag.param_id, tag.qem_id
873
+
874
+ def _group_results(
875
+ self, results: dict[str, dict[str, int]]
876
+ ) -> dict[int, dict[int, list[dict[str, int]]]]:
877
+ """
878
+ Group results by parameter id and QEM id.
879
+
880
+ Returns:
881
+ dict[int, dict[int, list[dict[str, int]]]]: {param_id: {qem_id: [shots...]}}
882
+ """
883
+ grouped: dict[int, dict[int, list[dict[str, int]]]] = {}
884
+ for tag, shots in results.items():
885
+ param_id, qem_id = self._parse_result_tag(tag)
886
+ grouped.setdefault(param_id, {}).setdefault(qem_id, []).append(shots)
887
+ return grouped
888
+
889
+ def _reset_tag_cache(self) -> None:
890
+ """Reset per-run tag cache for structured result tags."""
891
+ self._tag_map: dict[str, CircuitTag] = {}
892
+
893
+ def _encode_tag(self, tag: CircuitTag | str) -> str:
894
+ """Convert structured tags to backend-safe strings."""
895
+ if isinstance(tag, CircuitTag):
896
+ tag_str = format_circuit_tag(tag)
897
+ self._tag_map[tag_str] = tag
898
+ return tag_str
899
+ return str(tag)
900
+
901
+ def _decode_tags(
902
+ self, results: dict[str, dict[str, int]]
903
+ ) -> dict[CircuitTag | str, dict[str, int]]:
904
+ """Restore structured tags from backend result labels."""
905
+ if not self._tag_map:
906
+ return results
907
+ return {self._tag_map.get(tag, tag): shots for tag, shots in results.items()}
908
+
909
+ def _apply_qem_protocol(
910
+ self, exp_matrix: npt.NDArray[np.float64]
911
+ ) -> list[npt.NDArray[np.float64]]:
912
+ """Apply the configured QEM protocol to expectation value matrices."""
913
+ return [
914
+ self._qem_protocol.postprocess_results(exp_vals) for exp_vals in exp_matrix
915
+ ]
916
+
917
+ def _compute_marginal_results(
918
+ self,
919
+ qem_groups: dict[int, list[dict[str, int]]],
920
+ measurement_groups: list[list[qml.operation.Operator]],
921
+ ham_ops: str | None,
922
+ ) -> list[npt.NDArray[np.float64] | list[npt.NDArray[np.float64]]]:
923
+ """Compute marginal results, handling backend modes and QEM."""
924
+ if self.backend.supports_expval:
925
+ if ham_ops is None:
926
+ raise ValueError(
927
+ "Hamiltonian operators (ham_ops) are required when using a backend "
928
+ "that supports expectation values, but were not provided."
929
+ )
930
+ ham_ops_list = ham_ops.split(";")
931
+ qem_group_values = [shots for _, shots in sorted(qem_groups.items())]
932
+ return [
933
+ self._apply_qem_protocol(
934
+ np.array(
935
+ [
936
+ [shot_dict[op] for op in ham_ops_list]
937
+ for shot_dict in shots_dicts
938
+ ]
939
+ ).T
940
+ )
941
+ for shots_dicts in qem_group_values
942
+ ] or []
943
+
944
+ shots_by_qem_idx = zip(*qem_groups.values())
945
+ marginal_results: list[
946
+ npt.NDArray[np.float64] | list[npt.NDArray[np.float64]]
947
+ ] = []
948
+ wire_order = tuple(reversed(self.cost_hamiltonian.wires))
949
+ for shots_dicts, curr_measurement_group in zip(
950
+ shots_by_qem_idx, measurement_groups
951
+ ):
952
+ exp_matrix = _batched_expectation(
953
+ shots_dicts, curr_measurement_group, wire_order
954
+ )
955
+ mitigated = self._apply_qem_protocol(exp_matrix)
956
+ marginal_results.append(mitigated if len(mitigated) > 1 else mitigated[0])
957
+
958
+ return marginal_results
959
+
960
+ @staticmethod
961
+ def _merge_param_group_counts(
962
+ param_group: list[tuple[str, dict[str, int]]],
963
+ ) -> dict[str, int]:
964
+ """Merge shot histograms for a single parameter group."""
965
+ shots_dict: dict[str, int] = {}
966
+ for _, d in param_group:
967
+ for s, c in d.items():
968
+ shots_dict[s] = shots_dict.get(s, 0) + c
969
+ return shots_dict
970
+
971
+ def _post_process_results(
972
+ self, results: dict[str, dict[str, int]], **kwargs
973
+ ) -> dict[int, float]:
974
+ """
975
+ Post-process the results of the quantum problem.
976
+
977
+ Args:
978
+ results (dict[CircuitTag, dict[str, int]]): The shot histograms of the quantum execution
979
+ step. Keys are CircuitTag instances containing param, QEM, and measurement ids.
980
+
981
+ Returns:
982
+ dict[int, float]: The energies for each parameter set grouping, where the dict keys
983
+ correspond to the parameter indices.
984
+ """
985
+ if self._is_compute_probabilities:
986
+ probs = convert_counts_to_probs(results, self.backend.shots)
987
+ return reverse_dict_endianness(probs)
988
+
989
+ if not (self._cancellation_event and self._cancellation_event.is_set()):
990
+ self.reporter.info(
991
+ message="Post-processing output", iteration=self.current_iteration
992
+ )
993
+
994
+ losses = {}
995
+ measurement_groups = self.meta_circuits["cost_circuit"].measurement_groups
996
+
997
+ for p, qem_groups in self._group_results(results).items():
998
+ marginal_results = self._compute_marginal_results(
999
+ qem_groups=qem_groups,
1000
+ measurement_groups=measurement_groups,
1001
+ ham_ops=kwargs.get("ham_ops"),
1002
+ )
1003
+
1004
+ pl_loss = (
1005
+ self.meta_circuits["cost_circuit"]
1006
+ .postprocessing_fn(marginal_results)
1007
+ .item()
1008
+ )
1009
+
1010
+ losses[p] = pl_loss + self.loss_constant
1011
+
1012
+ return losses
1013
+
1014
+ def _perform_final_computation(self, **kwargs) -> None:
1015
+ """
1016
+ Perform final computations after optimization is complete.
1017
+
1018
+ This is an optional hook method that subclasses can override to perform
1019
+ any post-optimization processing, such as extracting solutions, running
1020
+ final measurements, or computing additional metrics.
1021
+
1022
+ Args:
1023
+ **kwargs: Additional keyword arguments for subclasses.
1024
+
1025
+ Note:
1026
+ The default implementation does nothing. Subclasses should override
1027
+ this method if they need post-optimization processing.
1028
+ """
1029
+ pass
1030
+
1031
+ def run(
1032
+ self,
1033
+ perform_final_computation: bool = True,
1034
+ checkpoint_config: CheckpointConfig | None = None,
1035
+ **kwargs,
1036
+ ) -> tuple[int, float]:
1037
+ """Run the variational quantum algorithm.
1038
+
1039
+ The outputs are stored in the algorithm object.
1040
+
1041
+ Args:
1042
+ perform_final_computation (bool): Whether to perform final computation after optimization completes.
1043
+ Typically, this step involves sampling with the best found parameters to extract
1044
+ solution probability distributions. Set this to False in warm-starting or pre-training
1045
+ routines where the final sampling step is not needed. Defaults to True.
1046
+ checkpoint_config (CheckpointConfig | None): Checkpoint configuration.
1047
+ If None, no checkpointing is performed.
1048
+ **kwargs: Additional keyword arguments for subclasses.
1049
+
1050
+ Returns:
1051
+ tuple[int, float]: A tuple containing (total_circuit_count, total_run_time).
1052
+ """
1053
+ # Initialize checkpointing
1054
+ if checkpoint_config is None:
1055
+ checkpoint_config = CheckpointConfig()
1056
+
1057
+ if checkpoint_config.checkpoint_dir:
1058
+ logger.info(
1059
+ f"Using checkpoint directory: {checkpoint_config.checkpoint_dir}"
1060
+ )
1061
+
1062
+ # Extract max_iterations from kwargs if present (for compatibility with subclasses)
1063
+ max_iterations = kwargs.pop("max_iterations", self.max_iterations)
1064
+ if max_iterations != self.max_iterations:
1065
+ self.max_iterations = max_iterations
1066
+
1067
+ # Warn if max_iterations is less than current_iteration (regardless of how it was set)
1068
+ if self.max_iterations < self.current_iteration:
1069
+ warn(
1070
+ f"max_iterations ({self.max_iterations}) is less than current_iteration "
1071
+ f"({self.current_iteration}). The optimization will not run additional "
1072
+ f"iterations since the maximum has already been reached.",
1073
+ UserWarning,
1074
+ )
1075
+
1076
+ def cost_fn(params):
1077
+ self.reporter.info(
1078
+ message="💸 Computing Cost 💸", iteration=self.current_iteration
1079
+ )
1080
+
1081
+ self._curr_params = np.atleast_2d(params)
1082
+
1083
+ losses = self._run_optimization_circuits(**kwargs)
1084
+
1085
+ losses = np.fromiter(losses.values(), dtype=np.float64)
1086
+
1087
+ if params.ndim > 1:
1088
+ return losses
1089
+ else:
1090
+ return losses.item()
1091
+
1092
+ self._grad_shift_mask = _compute_parameter_shift_mask(
1093
+ self.n_layers * self.n_params
1094
+ )
1095
+
1096
+ def grad_fn(params):
1097
+ self._grad_mode = True
1098
+
1099
+ self.reporter.info(
1100
+ message="📈 Computing Gradients 📈", iteration=self.current_iteration
1101
+ )
1102
+
1103
+ self._curr_params = self._grad_shift_mask + params
1104
+
1105
+ exp_vals = self._run_optimization_circuits(**kwargs)
1106
+ exp_vals_arr = np.fromiter(exp_vals.values(), dtype=np.float64)
1107
+
1108
+ pos_shifts = exp_vals_arr[::2]
1109
+ neg_shifts = exp_vals_arr[1::2]
1110
+ grads = 0.5 * (pos_shifts - neg_shifts)
1111
+
1112
+ self._grad_mode = False
1113
+
1114
+ return grads
1115
+
1116
+ def _iteration_counter(intermediate_result: OptimizeResult):
1117
+
1118
+ self._losses_history.append(
1119
+ dict(
1120
+ zip(
1121
+ [str(i) for i in range(len(intermediate_result.x))],
1122
+ intermediate_result.fun,
1123
+ )
1124
+ )
1125
+ )
1126
+
1127
+ current_loss = np.min(intermediate_result.fun)
1128
+ if current_loss < self._best_loss:
1129
+ self._best_loss = current_loss
1130
+ best_idx = np.argmin(intermediate_result.fun)
1131
+ self._best_params = intermediate_result.x[best_idx].copy()
1132
+
1133
+ self.current_iteration += 1
1134
+
1135
+ self.reporter.update(iteration=self.current_iteration)
1136
+
1137
+ # Checkpointing
1138
+ if checkpoint_config._should_checkpoint(self.current_iteration):
1139
+ self.save_state(checkpoint_config)
1140
+
1141
+ if self._cancellation_event and self._cancellation_event.is_set():
1142
+ raise _CancelledError("Cancellation requested by batch.")
1143
+
1144
+ # The scipy implementation of COBYLA interprets the `maxiter` option
1145
+ # as the maximum number of function evaluations, not iterations.
1146
+ # To provide a consistent user experience, we disable `scipy`'s
1147
+ # `maxiter` and manually stop the optimization from the callback
1148
+ # when the desired number of iterations is reached.
1149
+ if (
1150
+ isinstance(self.optimizer, ScipyOptimizer)
1151
+ and self.optimizer.method == ScipyMethod.COBYLA
1152
+ and intermediate_result.nit + 1 == self.max_iterations
1153
+ ):
1154
+ raise StopIteration
1155
+
1156
+ self.reporter.info(message="Finished Setup")
1157
+
1158
+ if self._curr_params is None:
1159
+ self._initialize_params()
1160
+ else:
1161
+ self._validate_initial_params(self._curr_params)
1162
+
1163
+ try:
1164
+ self._minimize_res = self.optimizer.optimize(
1165
+ cost_fn=cost_fn,
1166
+ initial_params=self._curr_params,
1167
+ callback_fn=_iteration_counter,
1168
+ jac=grad_fn,
1169
+ max_iterations=self.max_iterations,
1170
+ rng=self._rng,
1171
+ )
1172
+ except _CancelledError:
1173
+ # The optimizer was stopped by our callback. This is not a real
1174
+ # error, just a signal to exit this task cleanly.
1175
+ return self._total_circuit_count, self._total_run_time
1176
+
1177
+ self._final_params = self._minimize_res.x
1178
+
1179
+ # Set _best_params from final result (source of truth)
1180
+ x = np.atleast_2d(self._minimize_res.x)
1181
+ fun = np.atleast_1d(self._minimize_res.fun)
1182
+ best_idx = np.argmin(fun)
1183
+ self._best_params = x[best_idx].copy()
1184
+
1185
+ if perform_final_computation:
1186
+ self._perform_final_computation(**kwargs)
1187
+
1188
+ self.reporter.info(message="Finished successfully!")
1189
+
1190
+ return self.total_circuit_count, self.total_run_time
1191
+
1192
+ def _run_solution_measurement(self) -> None:
1193
+ """Execute measurement circuits to obtain probability distributions for solution extraction."""
1194
+
1195
+ if "meas_circuit" not in self.meta_circuits:
1196
+ raise NotImplementedError(
1197
+ f"{type(self).__name__} does not implement a 'meas_circuit'."
1198
+ )
1199
+
1200
+ self._is_compute_probabilities = True
1201
+
1202
+ # Compute probabilities for best parameters (the ones that achieved best loss)
1203
+ self._curr_params = np.atleast_2d(self._best_params)
1204
+ self._curr_circuits = self._generate_circuits()
1205
+ best_probs = self._dispatch_circuits_and_process_results()
1206
+ self._best_probs.update(best_probs)
1207
+
1208
+ self._is_compute_probabilities = False