qec 0.2.0__py3-none-any.whl → 0.2.1__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- qec/stabilizer_code/css_code.py +605 -2
- qec/stabilizer_code/stabilizer_code.py +125 -143
- qec/utils/binary_pauli_utils.py +3 -1
- qec/utils/codetables_de_utils.py +2 -0
- {qec-0.2.0.dist-info → qec-0.2.1.dist-info}/METADATA +1 -1
- qec-0.2.1.dist-info/RECORD +16 -0
- qec-0.2.0.dist-info/RECORD +0 -16
- {qec-0.2.0.dist-info → qec-0.2.1.dist-info}/LICENSE +0 -0
- {qec-0.2.0.dist-info → qec-0.2.1.dist-info}/WHEEL +0 -0
- {qec-0.2.0.dist-info → qec-0.2.1.dist-info}/top_level.txt +0 -0
qec/stabilizer_code/css_code.py
CHANGED
@@ -1,6 +1,609 @@
|
|
1
1
|
from qec.stabilizer_code import StabilizerCode
|
2
|
+
from qec.utils.sparse_binary_utils import convert_to_binary_scipy_sparse
|
3
|
+
|
4
|
+
# Added / ammended from old code
|
5
|
+
from typing import Union, Tuple
|
6
|
+
import numpy as np
|
7
|
+
import ldpc.mod2
|
8
|
+
import scipy
|
9
|
+
from ldpc import BpOsdDecoder
|
10
|
+
from tqdm import tqdm
|
11
|
+
import time
|
12
|
+
import logging
|
13
|
+
from typing import Optional
|
14
|
+
|
15
|
+
logging.basicConfig(level=logging.DEBUG)
|
2
16
|
|
3
17
|
|
4
18
|
class CSSCode(StabilizerCode):
|
5
|
-
|
6
|
-
|
19
|
+
"""
|
20
|
+
A class for generating and manipulating Calderbank-Shor-Steane (CSS) quantum error-correcting codes.
|
21
|
+
|
22
|
+
Prameters
|
23
|
+
---------
|
24
|
+
x_stabilizer_matrix (hx): Union[np.ndarray, scipy.sparse.spmatrix]
|
25
|
+
The X-check matrix.
|
26
|
+
z_stabilizer_matrix (hz): Union[np.ndarray, scipy.sparse.spmatrix]
|
27
|
+
The Z-check matrix.
|
28
|
+
name: str, optional
|
29
|
+
A name for this CSS code. Defaults to "CSS code".
|
30
|
+
|
31
|
+
Attributes
|
32
|
+
----------
|
33
|
+
x_stabilizer_matrix (hx): Union[np.ndarray, scipy.sparse.spmatrix]
|
34
|
+
The X-check matrix.
|
35
|
+
z_stabilizer_matrix (hz): Union[np.ndarray, scipy.sparse.spmatrix]
|
36
|
+
The Z-check matrix.
|
37
|
+
name (str):
|
38
|
+
A name for this CSS code.
|
39
|
+
physical_qubit_count (N): int
|
40
|
+
The number of physical qubits in the code.
|
41
|
+
logical_qubit_count (K): int
|
42
|
+
The number of logical qubits in the code. Dimension of the code.
|
43
|
+
code_distance (d): int
|
44
|
+
(Not computed by default) Minimum distance of the code.
|
45
|
+
x_logical_operator_basis (lx): (Union[np.ndarray, scipy.sparse.spmatrix]
|
46
|
+
Logical X operator basis.
|
47
|
+
z_logical_operator_basis (lz): (Union[np.ndarray, scipy.sparse.spmatrix]
|
48
|
+
Logical Z operator basis.
|
49
|
+
"""
|
50
|
+
|
51
|
+
def __init__(
|
52
|
+
self,
|
53
|
+
x_stabilizer_matrix: Union[np.ndarray, scipy.sparse.spmatrix],
|
54
|
+
z_stabilizer_matrix: Union[np.ndarray, scipy.sparse.spmatrix],
|
55
|
+
name: str = None,
|
56
|
+
):
|
57
|
+
"""
|
58
|
+
Initialise a new instance of the CSSCode class.
|
59
|
+
|
60
|
+
Parameters
|
61
|
+
----------
|
62
|
+
x_stabilizer_matrix (hx): Union[np.ndarray, scipy.sparse.spmatrix]
|
63
|
+
The X-check matrix.
|
64
|
+
z_stabilizer_matrix (hz): Union[np.ndarray, scipy.sparse.spmatrix]
|
65
|
+
The Z-check matrix.
|
66
|
+
name: str, optional
|
67
|
+
A name for this CSS code. Defaults to "CSS code".
|
68
|
+
"""
|
69
|
+
|
70
|
+
# Assign a default name if none is provided
|
71
|
+
if name is None:
|
72
|
+
self.name = "CSS code"
|
73
|
+
else:
|
74
|
+
self.name = name
|
75
|
+
|
76
|
+
self.x_logical_operator_basis = None
|
77
|
+
self.z_logical_operator_basis = None
|
78
|
+
|
79
|
+
# Check if the input matrices are NumPy arrays or SciPy sparse matrices
|
80
|
+
if not isinstance(x_stabilizer_matrix, (np.ndarray, scipy.sparse.spmatrix)):
|
81
|
+
raise TypeError(
|
82
|
+
"Please provide x and z stabilizer matrices as either a numpy array or a scipy sparse matrix."
|
83
|
+
)
|
84
|
+
|
85
|
+
# Convert matrices to sparse representation and set them as class attributes (replaced the old code "convert_to_sparse")
|
86
|
+
self.x_stabilizer_matrix = convert_to_binary_scipy_sparse(x_stabilizer_matrix)
|
87
|
+
self.z_stabilizer_matrix = convert_to_binary_scipy_sparse(z_stabilizer_matrix)
|
88
|
+
|
89
|
+
# Calculate the number of physical qubits from the matrix dimension
|
90
|
+
self.physical_qubit_count = self.x_stabilizer_matrix.shape[1]
|
91
|
+
|
92
|
+
# Validate the number of qubits for both matrices
|
93
|
+
try:
|
94
|
+
assert self.physical_qubit_count == self.z_stabilizer_matrix.shape[1]
|
95
|
+
except AssertionError:
|
96
|
+
raise ValueError(
|
97
|
+
f"Input matrices x_stabilizer_matrix and z_stabilizer_matrix must have the same number of columns.\
|
98
|
+
Current column count, x_stabilizer_matrix: {x_stabilizer_matrix.shape[1]}; z_stabilizer_matrix: {z_stabilizer_matrix.shape[1]}"
|
99
|
+
)
|
100
|
+
|
101
|
+
# Validate if the input matrices commute
|
102
|
+
try:
|
103
|
+
assert not np.any(
|
104
|
+
(self.x_stabilizer_matrix @ self.z_stabilizer_matrix.T).data % 2
|
105
|
+
)
|
106
|
+
except AssertionError:
|
107
|
+
raise ValueError(
|
108
|
+
"Input matrices hx and hz do not commute. I.e. they do not satisfy\
|
109
|
+
the requirement that hx@hz.T = 0."
|
110
|
+
)
|
111
|
+
|
112
|
+
# Compute a basis of the logical operators
|
113
|
+
self.compute_logical_basis()
|
114
|
+
|
115
|
+
def compute_logical_basis(self):
|
116
|
+
"""
|
117
|
+
Compute the logical operator basis for the given CSS code.
|
118
|
+
|
119
|
+
Returns
|
120
|
+
-------
|
121
|
+
Tuple[scipy.sparse.spmatrix, scipy.sparse.spmatrix]
|
122
|
+
Logical X and Z operator bases (lx, lz).
|
123
|
+
|
124
|
+
Notes
|
125
|
+
-----
|
126
|
+
This method uses the kernel of the X and Z stabilizer matrices to find operators that commute with all the stabilizers,
|
127
|
+
and then identifies the subsets of which are not themselves linear combinations of the stabilizers.
|
128
|
+
"""
|
129
|
+
|
130
|
+
# Compute the kernel of hx and hz matrices
|
131
|
+
|
132
|
+
# Z logicals
|
133
|
+
|
134
|
+
# Compute the kernel of hx
|
135
|
+
ker_hx = ldpc.mod2.kernel(self.x_stabilizer_matrix) # kernel of X-stabilisers
|
136
|
+
# Sort the rows of ker_hx by weight
|
137
|
+
row_weights = ker_hx.getnnz(axis=1)
|
138
|
+
sorted_rows = np.argsort(row_weights)
|
139
|
+
ker_hx = ker_hx[sorted_rows, :]
|
140
|
+
# Z logicals are elements of ker_hx (that commute with all the X-stabilisers) that are not linear combinations of Z-stabilisers
|
141
|
+
logical_stack = scipy.sparse.vstack([self.z_stabilizer_matrix, ker_hx]).tocsr()
|
142
|
+
self.rank_hz = ldpc.mod2.rank(self.z_stabilizer_matrix)
|
143
|
+
# The first self.rank_hz pivot_rows of logical_stack are the Z-stabilisers. The remaining pivot_rows are the Z logicals
|
144
|
+
pivots = ldpc.mod2.pivot_rows(logical_stack)
|
145
|
+
self.z_logical_operator_basis = logical_stack[pivots[self.rank_hz :], :]
|
146
|
+
|
147
|
+
# X logicals
|
148
|
+
|
149
|
+
# Compute the kernel of hz
|
150
|
+
ker_hz = ldpc.mod2.kernel(self.z_stabilizer_matrix)
|
151
|
+
# Sort the rows of ker_hz by weight
|
152
|
+
row_weights = ker_hz.getnnz(axis=1)
|
153
|
+
sorted_rows = np.argsort(row_weights)
|
154
|
+
ker_hz = ker_hz[sorted_rows, :]
|
155
|
+
# X logicals are elements of ker_hz (that commute with all the Z-stabilisers) that are not linear combinations of X-stabilisers
|
156
|
+
logical_stack = scipy.sparse.vstack([self.x_stabilizer_matrix, ker_hz]).tocsr()
|
157
|
+
self.rank_hx = ldpc.mod2.rank(self.x_stabilizer_matrix)
|
158
|
+
# The first self.rank_hx pivot_rows of logical_stack are the X-stabilisers. The remaining pivot_rows are the X logicals
|
159
|
+
pivots = ldpc.mod2.pivot_rows(logical_stack)
|
160
|
+
self.x_logical_operator_basis = logical_stack[pivots[self.rank_hx :], :]
|
161
|
+
|
162
|
+
# set the dimension of the code (i.e. the number of logical qubits)
|
163
|
+
self.logical_qubit_count = self.x_logical_operator_basis.shape[0]
|
164
|
+
|
165
|
+
# find the minimum weight logical operators
|
166
|
+
self.x_code_distance = self.physical_qubit_count
|
167
|
+
self.z_code_distance = self.physical_qubit_count
|
168
|
+
|
169
|
+
for i in range(self.logical_qubit_count):
|
170
|
+
if self.x_logical_operator_basis[i].nnz < self.x_code_distance:
|
171
|
+
self.x_code_distance = self.x_logical_operator_basis[i].nnz
|
172
|
+
if self.z_logical_operator_basis[i].nnz < self.z_code_distance:
|
173
|
+
self.z_code_distance = self.z_logical_operator_basis[i].nnz
|
174
|
+
self.code_distance = np.min([self.x_code_distance, self.z_code_distance])
|
175
|
+
|
176
|
+
# FIXME: How does this differ from rank_hx and rank_hz descibed above (ldpc.mod2.rank())?
|
177
|
+
# compute the hx and hz rank
|
178
|
+
self.rank_hx = self.physical_qubit_count - ker_hx.shape[0]
|
179
|
+
self.rank_hz = self.physical_qubit_count - ker_hz.shape[0]
|
180
|
+
|
181
|
+
return (self.x_logical_operator_basis, self.z_logical_operator_basis)
|
182
|
+
|
183
|
+
# TODO: Add a function to save the logical operator basis to a file
|
184
|
+
|
185
|
+
def check_valid_logical_xz_basis(self) -> bool:
|
186
|
+
"""
|
187
|
+
Validate that the stored logical operators form a proper logical basis for the code.
|
188
|
+
|
189
|
+
Checks that they commute with the stabilizers, pairwise anti-commute, and have full rank.
|
190
|
+
|
191
|
+
Returns
|
192
|
+
-------
|
193
|
+
bool
|
194
|
+
True if the logical operators form a valid basis, otherwise False.
|
195
|
+
"""
|
196
|
+
|
197
|
+
# If logical bases are not computed yet, compute them
|
198
|
+
if (
|
199
|
+
self.x_logical_operator_basis is None
|
200
|
+
or self.z_logical_operator_basis is None
|
201
|
+
):
|
202
|
+
self.x_logical_operator_basis, self.z_logical_operator_basis = (
|
203
|
+
self.compute_logical_basis(
|
204
|
+
self.x_stabilizer_matrix, self.z_stabilizer_matrix
|
205
|
+
)
|
206
|
+
)
|
207
|
+
self.logical_qubit_count = self.x_logical_operator_basis.shape[0]
|
208
|
+
|
209
|
+
try:
|
210
|
+
# Test dimension
|
211
|
+
assert (
|
212
|
+
self.logical_qubit_count
|
213
|
+
== self.z_logical_operator_basis.shape[0]
|
214
|
+
== self.x_logical_operator_basis.shape[0]
|
215
|
+
), "Logical operator basis dimensions do not match."
|
216
|
+
|
217
|
+
# Check logical basis linearly independent (i.e. full rank)
|
218
|
+
assert (
|
219
|
+
ldpc.mod2.rank(self.x_logical_operator_basis)
|
220
|
+
== self.logical_qubit_count
|
221
|
+
), "X logical operator basis is not full rank, and hence not linearly independent."
|
222
|
+
assert (
|
223
|
+
ldpc.mod2.rank(self.z_logical_operator_basis)
|
224
|
+
== self.logical_qubit_count
|
225
|
+
), "Z logical operator basis is not full rank, and hence not linearly independent."
|
226
|
+
|
227
|
+
# Perform various tests to validate the logical bases
|
228
|
+
|
229
|
+
# Check that the logical operators commute with the stabilizers
|
230
|
+
try:
|
231
|
+
assert not np.any(
|
232
|
+
(self.x_logical_operator_basis @ self.z_stabilizer_matrix.T).data
|
233
|
+
% 2
|
234
|
+
), "X logical operators do not commute with Z stabilizers."
|
235
|
+
except AssertionError as e:
|
236
|
+
logging.error(e)
|
237
|
+
return False
|
238
|
+
|
239
|
+
try:
|
240
|
+
assert not np.any(
|
241
|
+
(self.z_logical_operator_basis @ self.x_stabilizer_matrix.T).data
|
242
|
+
% 2
|
243
|
+
), "Z logical operators do not commute with X stabilizers."
|
244
|
+
except AssertionError as e:
|
245
|
+
logging.error(e)
|
246
|
+
return False
|
247
|
+
|
248
|
+
# Check that the logical operators anticommute with each other (by checking that the rank of the product is full rank)
|
249
|
+
test = self.x_logical_operator_basis @ self.z_logical_operator_basis.T
|
250
|
+
test.data = test.data % 2
|
251
|
+
assert (
|
252
|
+
ldpc.mod2.rank(test) == self.logical_qubit_count
|
253
|
+
), "Logical operators do not pairwise anticommute."
|
254
|
+
|
255
|
+
test = self.z_logical_operator_basis @ self.x_logical_operator_basis.T
|
256
|
+
test.data = test.data % 2
|
257
|
+
assert (
|
258
|
+
ldpc.mod2.rank(test) == self.logical_qubit_count
|
259
|
+
), "Logical operators do not pairwise anticommute."
|
260
|
+
|
261
|
+
# TODO: Check that the logical operators are not themselves stabilizers?
|
262
|
+
|
263
|
+
except AssertionError as e:
|
264
|
+
logging.error(e)
|
265
|
+
return False
|
266
|
+
|
267
|
+
return True
|
268
|
+
|
269
|
+
def compute_exact_code_distance(
|
270
|
+
self, timeout: float = 0.5
|
271
|
+
) -> Tuple[Optional[int], Optional[int], float]:
|
272
|
+
"""
|
273
|
+
Compute the exact distance of the CSS code by searching through linear combinations
|
274
|
+
of logical operators and stabilisers, ensuring balanced progress between X and Z searches.
|
275
|
+
|
276
|
+
Parameters
|
277
|
+
----------
|
278
|
+
timeout : float, optional
|
279
|
+
The time limit (in seconds) for the exhaustive search. Default is 0.5 seconds.
|
280
|
+
To obtain the exact distance, set to `np.inf`.
|
281
|
+
|
282
|
+
Returns
|
283
|
+
-------
|
284
|
+
Tuple[Optional[int], Optional[int], float]
|
285
|
+
A tuple containing:
|
286
|
+
- The best-known X distance of the code (or None if no X distance was found)
|
287
|
+
- The best-known Z distance of the code (or None if no Z distance was found)
|
288
|
+
- The fraction of total combinations considered before timeout
|
289
|
+
|
290
|
+
Notes
|
291
|
+
-----
|
292
|
+
- Searches X and Z combinations in an interleaved manner to ensure balanced progress
|
293
|
+
- For each type (X/Z):
|
294
|
+
- We compute the row span of both stabilisers and logical operators
|
295
|
+
- For every logical operator in the logical span, we add (mod 2) each stabiliser
|
296
|
+
- We compute the Hamming weight of each candidate operator
|
297
|
+
- We track the minimal Hamming weight encountered
|
298
|
+
"""
|
299
|
+
start_time = time.time()
|
300
|
+
|
301
|
+
# Get stabiliser spans
|
302
|
+
x_stabiliser_span = ldpc.mod2.row_span(self.x_stabilizer_matrix)[1:]
|
303
|
+
z_stabiliser_span = ldpc.mod2.row_span(self.z_stabilizer_matrix)[1:]
|
304
|
+
|
305
|
+
# Get logical spans
|
306
|
+
x_logical_span = ldpc.mod2.row_span(self.x_logical_operator_basis)[1:]
|
307
|
+
z_logical_span = ldpc.mod2.row_span(self.z_logical_operator_basis)[1:]
|
308
|
+
|
309
|
+
# Initialize distances
|
310
|
+
if self.x_code_distance is None:
|
311
|
+
x_code_distance = np.inf
|
312
|
+
else:
|
313
|
+
x_code_distance = self.x_code_distance
|
314
|
+
|
315
|
+
if self.z_code_distance is None:
|
316
|
+
z_code_distance = np.inf
|
317
|
+
else:
|
318
|
+
z_code_distance = self.z_code_distance
|
319
|
+
|
320
|
+
# Prepare iterators for both X and Z combinations
|
321
|
+
x_combinations = (
|
322
|
+
(x_l, x_s) for x_l in x_logical_span for x_s in x_stabiliser_span
|
323
|
+
)
|
324
|
+
z_combinations = (
|
325
|
+
(z_l, z_s) for z_l in z_logical_span for z_s in z_stabiliser_span
|
326
|
+
)
|
327
|
+
|
328
|
+
total_x_combinations = x_stabiliser_span.shape[0] * x_logical_span.shape[0]
|
329
|
+
total_z_combinations = z_stabiliser_span.shape[0] * z_logical_span.shape[0]
|
330
|
+
total_combinations = total_x_combinations + total_z_combinations
|
331
|
+
combinations_considered = 0
|
332
|
+
|
333
|
+
# Create iterables that we can exhaust
|
334
|
+
x_iter = iter(x_combinations)
|
335
|
+
z_iter = iter(z_combinations)
|
336
|
+
x_exhausted = False
|
337
|
+
z_exhausted = False
|
338
|
+
|
339
|
+
while not (x_exhausted and z_exhausted):
|
340
|
+
if time.time() - start_time > timeout:
|
341
|
+
break
|
342
|
+
|
343
|
+
# Try X combination if not exhausted
|
344
|
+
if not x_exhausted:
|
345
|
+
try:
|
346
|
+
x_logical, x_stabiliser = next(x_iter)
|
347
|
+
candidate_x = x_logical + x_stabiliser
|
348
|
+
candidate_x.data %= 2
|
349
|
+
x_weight = candidate_x.getnnz()
|
350
|
+
if x_weight < x_code_distance:
|
351
|
+
x_code_distance = x_weight
|
352
|
+
combinations_considered += 1
|
353
|
+
except StopIteration:
|
354
|
+
x_exhausted = True
|
355
|
+
|
356
|
+
# Try Z combination if not exhausted
|
357
|
+
if not z_exhausted:
|
358
|
+
try:
|
359
|
+
z_logical, z_stabiliser = next(z_iter)
|
360
|
+
candidate_z = z_logical + z_stabiliser
|
361
|
+
candidate_z.data %= 2
|
362
|
+
z_weight = candidate_z.getnnz()
|
363
|
+
if z_weight < z_code_distance:
|
364
|
+
z_code_distance = z_weight
|
365
|
+
combinations_considered += 1
|
366
|
+
except StopIteration:
|
367
|
+
z_exhausted = True
|
368
|
+
|
369
|
+
# Update code distances
|
370
|
+
self.x_code_distance = x_code_distance if x_code_distance != np.inf else None
|
371
|
+
self.z_code_distance = z_code_distance if z_code_distance != np.inf else None
|
372
|
+
self.code_distance = (
|
373
|
+
min(x_code_distance, z_code_distance)
|
374
|
+
if x_code_distance != np.inf and z_code_distance != np.inf
|
375
|
+
else None
|
376
|
+
)
|
377
|
+
|
378
|
+
# Calculate fraction of combinations considered
|
379
|
+
fraction_considered = combinations_considered / total_combinations
|
380
|
+
|
381
|
+
return (
|
382
|
+
int(x_code_distance) if x_code_distance != np.inf else None,
|
383
|
+
int(z_code_distance) if z_code_distance != np.inf else None,
|
384
|
+
fraction_considered,
|
385
|
+
)
|
386
|
+
|
387
|
+
def estimate_min_distance(
|
388
|
+
self,
|
389
|
+
timeout_seconds: float = 0.25,
|
390
|
+
p: float = 0.25,
|
391
|
+
reduce_logical_basis: bool = False,
|
392
|
+
decoder: Optional[BpOsdDecoder] = None,
|
393
|
+
) -> int:
|
394
|
+
"""
|
395
|
+
Estimate the minimum distance of the CSS code using a BP+OSD decoder-based search.
|
396
|
+
|
397
|
+
Parameters
|
398
|
+
----------
|
399
|
+
timeout_seconds : float, optional
|
400
|
+
Time limit in seconds for the search. Default: 0.25
|
401
|
+
p : float, optional
|
402
|
+
Probability for including each logical operator in trial combinations. Default: 0.25
|
403
|
+
reduce_logical_basis : bool, optional
|
404
|
+
Whether to attempt reducing the logical operator basis. Default: False
|
405
|
+
decoder : Optional[BpOsdDecoder], optional
|
406
|
+
Pre-configured BP+OSD decoder. If None, initializes with default settings.
|
407
|
+
|
408
|
+
Returns
|
409
|
+
-------
|
410
|
+
int
|
411
|
+
Best estimate of code distance found within time limit.
|
412
|
+
"""
|
413
|
+
start_time = time.time()
|
414
|
+
|
415
|
+
# Ensure logical operator bases are computed
|
416
|
+
if (
|
417
|
+
self.x_logical_operator_basis is None
|
418
|
+
or self.z_logical_operator_basis is None
|
419
|
+
):
|
420
|
+
self.compute_logical_basis()
|
421
|
+
|
422
|
+
# Setup decoders for X and Z logical operators
|
423
|
+
bp_osd_x, x_stack, _, x_min_distance, x_max_distance = (
|
424
|
+
self._setup_distance_estimation_decoder(
|
425
|
+
self.x_stabilizer_matrix, self.x_logical_operator_basis, decoder
|
426
|
+
)
|
427
|
+
)
|
428
|
+
bp_osd_z, z_stack, _, z_min_distance, z_max_distance = (
|
429
|
+
self._setup_distance_estimation_decoder(
|
430
|
+
self.z_stabilizer_matrix, self.z_logical_operator_basis, decoder
|
431
|
+
)
|
432
|
+
)
|
433
|
+
|
434
|
+
candidate_logicals_x = []
|
435
|
+
candidate_logicals_z = []
|
436
|
+
|
437
|
+
# Search loop
|
438
|
+
with tqdm(total=timeout_seconds, desc="Estimating distance") as pbar:
|
439
|
+
while time.time() - start_time < timeout_seconds:
|
440
|
+
elapsed = time.time() - start_time
|
441
|
+
pbar.update(elapsed - pbar.n)
|
442
|
+
|
443
|
+
# Generate random logical combinations for X
|
444
|
+
dummy_syndrome_x = (
|
445
|
+
self._generate_random_logical_combination_for_distance_estimation(
|
446
|
+
x_stack, p, self.x_stabilizer_matrix.shape[0]
|
447
|
+
)
|
448
|
+
)
|
449
|
+
candidate_x = bp_osd_x.decode(dummy_syndrome_x)
|
450
|
+
x_weight = np.count_nonzero(candidate_x)
|
451
|
+
|
452
|
+
if x_weight < x_min_distance:
|
453
|
+
x_min_distance = x_weight
|
454
|
+
|
455
|
+
if x_weight < x_max_distance and reduce_logical_basis:
|
456
|
+
candidate_logicals_x.append(candidate_x)
|
457
|
+
|
458
|
+
# Generate random logical combinations for Z
|
459
|
+
dummy_syndrome_z = (
|
460
|
+
self._generate_random_logical_combination_for_distance_estimation(
|
461
|
+
z_stack, p, self.z_stabilizer_matrix.shape[0]
|
462
|
+
)
|
463
|
+
)
|
464
|
+
candidate_z = bp_osd_z.decode(dummy_syndrome_z)
|
465
|
+
z_weight = np.count_nonzero(candidate_z)
|
466
|
+
|
467
|
+
if z_weight < z_min_distance:
|
468
|
+
z_min_distance = z_weight
|
469
|
+
|
470
|
+
if z_weight < z_max_distance and reduce_logical_basis:
|
471
|
+
candidate_logicals_z.append(candidate_z)
|
472
|
+
|
473
|
+
# Update progress bar description
|
474
|
+
pbar.set_description(
|
475
|
+
f"Estimating distance: dx <= {x_min_distance}, dz <= {z_min_distance}"
|
476
|
+
)
|
477
|
+
|
478
|
+
# Update distances and reduce logical bases if applicable
|
479
|
+
self.x_code_distance = x_min_distance
|
480
|
+
self.z_code_distance = z_min_distance
|
481
|
+
self.code_distance = min(x_min_distance, z_min_distance)
|
482
|
+
|
483
|
+
if reduce_logical_basis:
|
484
|
+
self._reduce_logical_operator_basis(
|
485
|
+
candidate_logicals_x, candidate_logicals_z
|
486
|
+
)
|
487
|
+
|
488
|
+
return self.code_distance
|
489
|
+
|
490
|
+
def _setup_distance_estimation_decoder(
|
491
|
+
self, stabilizer_matrix, logical_operator_basis, decoder=None
|
492
|
+
) -> Tuple[BpOsdDecoder, scipy.sparse.spmatrix, scipy.sparse.spmatrix, int, int]:
|
493
|
+
"""
|
494
|
+
Helper function to set up the BP+OSD decoder for distance estimation.
|
495
|
+
|
496
|
+
Parameters
|
497
|
+
----------
|
498
|
+
stabilizer_matrix : scipy.sparse.spmatrix
|
499
|
+
Stabilizer matrix of the code.
|
500
|
+
logical_operator_basis : scipy.sparse.spmatrix
|
501
|
+
Logical operator basis of the code.
|
502
|
+
decoder : Optional[BpOsdDecoder], optional
|
503
|
+
Pre-configured decoder. If None, initializes with default settings.
|
504
|
+
|
505
|
+
Returns
|
506
|
+
-------
|
507
|
+
Tuple[BpOsdDecoder, scipy.sparse.spmatrix, scipy.sparse.spmatrix, int, int]
|
508
|
+
Decoder, stacked matrix, stabilizer matrix, minimum distance, and maximum distance.
|
509
|
+
"""
|
510
|
+
# Remove redundant rows from stabilizer matrix
|
511
|
+
p_rows = ldpc.mod2.pivot_rows(stabilizer_matrix)
|
512
|
+
full_rank_stabilizer_matrix = stabilizer_matrix[p_rows]
|
513
|
+
|
514
|
+
# Build a stacked matrix of stabilizers and logicals
|
515
|
+
stack = scipy.sparse.vstack(
|
516
|
+
[full_rank_stabilizer_matrix, logical_operator_basis]
|
517
|
+
).tocsr()
|
518
|
+
|
519
|
+
# Initial distance estimate from current logicals
|
520
|
+
min_distance = np.min(logical_operator_basis.getnnz(axis=1))
|
521
|
+
max_distance = np.max(logical_operator_basis.getnnz(axis=1))
|
522
|
+
|
523
|
+
# Set up BP+OSD decoder if not provided
|
524
|
+
if decoder is None:
|
525
|
+
decoder = BpOsdDecoder(
|
526
|
+
stack,
|
527
|
+
error_rate=0.1,
|
528
|
+
max_iter=10,
|
529
|
+
bp_method="ms",
|
530
|
+
schedule="parallel",
|
531
|
+
ms_scaling_factor=1.0,
|
532
|
+
osd_method="osd_0",
|
533
|
+
osd_order=0,
|
534
|
+
)
|
535
|
+
|
536
|
+
return decoder, stack, full_rank_stabilizer_matrix, min_distance, max_distance
|
537
|
+
|
538
|
+
def _generate_random_logical_combination_for_distance_estimation(
|
539
|
+
self, stack: scipy.sparse.spmatrix, p: float, stabilizer_count: int
|
540
|
+
) -> np.ndarray:
|
541
|
+
"""
|
542
|
+
Generate a random logical combination for the BP+OSD decoder.
|
543
|
+
|
544
|
+
Parameters
|
545
|
+
----------
|
546
|
+
stack : scipy.sparse.spmatrix
|
547
|
+
The stacked stabilizer and logical operator matrix.
|
548
|
+
p : float
|
549
|
+
Probability for including each logical operator in the combination.
|
550
|
+
stabilizer_count : int
|
551
|
+
Number of stabilizer rows in the stacked matrix.
|
552
|
+
|
553
|
+
Returns
|
554
|
+
-------
|
555
|
+
np.ndarray
|
556
|
+
Randomly generated syndrome vector.
|
557
|
+
"""
|
558
|
+
random_mask = np.random.choice([0, 1], size=stack.shape[0], p=[1 - p, p])
|
559
|
+
random_mask[:stabilizer_count] = (
|
560
|
+
0 # Ensure no stabilizer-only rows are selected
|
561
|
+
)
|
562
|
+
|
563
|
+
while not np.any(random_mask):
|
564
|
+
random_mask = np.random.choice([0, 1], size=stack.shape[0], p=[1 - p, p])
|
565
|
+
random_mask[:stabilizer_count] = 0
|
566
|
+
|
567
|
+
dummy_syndrome = np.zeros(stack.shape[0], dtype=np.uint8)
|
568
|
+
dummy_syndrome[np.nonzero(random_mask)[0]] = 1
|
569
|
+
|
570
|
+
return dummy_syndrome
|
571
|
+
|
572
|
+
def fix_logical_operators(self, fix_logical: str = "X"):
|
573
|
+
if not isinstance(fix_logical, str):
|
574
|
+
raise TypeError("fix_logical parameter must be a string")
|
575
|
+
|
576
|
+
if fix_logical.lower() == "x":
|
577
|
+
temp = self.z_logical_operator_basis @ self.x_logical_operator_basis.T
|
578
|
+
temp.data = temp.data % 2
|
579
|
+
temp = ldpc.mod2.inverse(temp)
|
580
|
+
self.z_logical_operator_basis = temp @ self.z_logical_operator_basis
|
581
|
+
self.z_logical_operator_basis.data = self.z_logical_operator_basis.data % 2
|
582
|
+
|
583
|
+
elif fix_logical.lower() == "z":
|
584
|
+
temp = self.x_logical_operator_basis @ self.z_logical_operator_basis.T
|
585
|
+
temp.data = temp.data % 2
|
586
|
+
temp = ldpc.mod2.inverse(temp)
|
587
|
+
self.x_logical_operator_basis = temp @ self.x_logical_operator_basis
|
588
|
+
self.x_logical_operator_basis.data = self.x_logical_operator_basis.data % 2
|
589
|
+
else:
|
590
|
+
raise ValueError("Invalid fix_logical parameter")
|
591
|
+
|
592
|
+
@property
|
593
|
+
def logical_operator_weights(self) -> Tuple[np.ndarray, np.ndarray]:
|
594
|
+
x_weights = []
|
595
|
+
z_weights = []
|
596
|
+
for i in range(self.logical_qubit_count):
|
597
|
+
x_weights.append(self.x_logical_operator_basis[i].nnz)
|
598
|
+
z_weights.append(self.z_logical_operator_basis[i].nnz)
|
599
|
+
|
600
|
+
return (np.array(x_weights), np.array(z_weights))
|
601
|
+
|
602
|
+
def __str__(self):
|
603
|
+
"""
|
604
|
+
Return a string representation of the CSSCode object.
|
605
|
+
|
606
|
+
Returns:
|
607
|
+
str: String representation of the CSS code.
|
608
|
+
"""
|
609
|
+
return f"{self.name} Code: [[N={self.physical_qubit_count}, K={self.logical_qubit_count}, dx<={self.x_code_distance}, dz<={self.z_code_distance}]]"
|
@@ -45,7 +45,7 @@ class StabilizerCode(object):
|
|
45
45
|
The number of logical qubits in the code.
|
46
46
|
code_distance : int
|
47
47
|
(Not computed by default) The distance of the code, if known or computed.
|
48
|
-
|
48
|
+
logical_operator_basis : scipy.sparse.spmatrix or None
|
49
49
|
A basis for the logical operators of the code.
|
50
50
|
"""
|
51
51
|
|
@@ -177,7 +177,7 @@ class StabilizerCode(object):
|
|
177
177
|
kernel_h = ldpc.mod2.kernel(self.stabilizer_matrix)
|
178
178
|
|
179
179
|
# Sort the rows of the kernel by weight
|
180
|
-
row_weights =
|
180
|
+
row_weights = kernel_h.getnnz(axis=1)
|
181
181
|
sorted_rows = np.argsort(row_weights)
|
182
182
|
kernel_h = kernel_h[sorted_rows, :]
|
183
183
|
|
@@ -377,166 +377,64 @@ class StabilizerCode(object):
|
|
377
377
|
"""
|
378
378
|
return f"< Stabilizer Code, Name: {self.name}, Parameters: [[{self.physical_qubit_count}, {self.logical_qubit_count}, {self.code_distance}]] >"
|
379
379
|
|
380
|
-
def reduce_logical_operator_basis(
|
381
|
-
self,
|
382
|
-
candidate_logicals: Union[Sequence, np.ndarray, scipy.sparse.spmatrix] = [],
|
383
|
-
):
|
384
|
-
"""
|
385
|
-
Reduce the logical operator basis to include lower-weight logicals.
|
386
|
-
|
387
|
-
Parameters
|
388
|
-
----------
|
389
|
-
candidate_logicals : Union[Sequence, np.ndarray, scipy.sparse.spmatrix], optional
|
390
|
-
A list or array of candidate logical operators to be considered for reducing the basis.
|
391
|
-
Defaults to an empty list.
|
392
|
-
"""
|
393
|
-
if len(candidate_logicals) != 0:
|
394
|
-
# Convert candidates to a sparse matrix if they aren't already
|
395
|
-
if not isinstance(candidate_logicals, scipy.sparse.spmatrix):
|
396
|
-
candidate_logicals = scipy.sparse.csr_matrix(
|
397
|
-
scipy.sparse.csr_matrix(candidate_logicals)
|
398
|
-
)
|
399
|
-
|
400
|
-
# Stack the candidate logicals with the existing logicals
|
401
|
-
temp1 = scipy.sparse.vstack(
|
402
|
-
[candidate_logicals, self.logical_operator_basis]
|
403
|
-
).tocsr()
|
404
|
-
|
405
|
-
# Compute the Hamming weight over GF4 (number of qubits with non-identity operators)
|
406
|
-
# Split into X and Z parts
|
407
|
-
row_weights = binary_pauli_hamming_weight(temp1).flatten()
|
408
|
-
|
409
|
-
# Sort the rows by Hamming weight (ascending)
|
410
|
-
sorted_rows = np.argsort(row_weights)
|
411
|
-
temp1 = temp1[sorted_rows, :]
|
412
|
-
|
413
|
-
# Add the stabilizer matrix to the top of the stack
|
414
|
-
temp1 = scipy.sparse.vstack([self.stabilizer_matrix, temp1])
|
415
|
-
|
416
|
-
# Calculate the rank of the stabilizer matrix (todo: find way of removing this step)
|
417
|
-
stabilizer_rank = ldpc.mod2.rank(self.stabilizer_matrix)
|
418
|
-
|
419
|
-
# Perform row reduction to find a new logical basis
|
420
|
-
p_rows = ldpc.mod2.pivot_rows(temp1)
|
421
|
-
self.logical_operator_basis = temp1[p_rows[stabilizer_rank:]]
|
422
|
-
|
423
380
|
def estimate_min_distance(
|
424
381
|
self,
|
425
382
|
timeout_seconds: float = 0.25,
|
426
383
|
p: float = 0.25,
|
427
|
-
max_iter: int = 10,
|
428
|
-
error_rate: float = 0.1,
|
429
|
-
bp_method: str = "ms",
|
430
|
-
schedule: str = "parallel",
|
431
|
-
ms_scaling_factor: float = 1.0,
|
432
|
-
osd_method: str = "osd_0",
|
433
|
-
osd_order: int = 0,
|
434
384
|
reduce_logical_basis: bool = False,
|
385
|
+
decoder: Optional[BpOsdDecoder] = None,
|
435
386
|
) -> int:
|
436
387
|
"""
|
437
388
|
Estimate the minimum distance of the stabilizer code using a BP+OSD decoder-based search.
|
438
389
|
|
439
390
|
Parameters
|
440
391
|
----------
|
441
|
-
timeout_seconds : float
|
442
|
-
|
443
|
-
p : float
|
444
|
-
Probability
|
445
|
-
|
446
|
-
|
447
|
-
|
448
|
-
|
449
|
-
Crossover probability for the BP+OSD decoder.
|
450
|
-
bp_method : str, optional
|
451
|
-
Belief Propagation method (e.g., "ms" for min-sum).
|
452
|
-
schedule : str, optional
|
453
|
-
Update schedule for BP (e.g., "parallel").
|
454
|
-
ms_scaling_factor : float, optional
|
455
|
-
Scaling factor for min-sum updates.
|
456
|
-
osd_method : str, optional
|
457
|
-
Order-statistic decoding method (e.g., "osd_0").
|
458
|
-
osd_order : int, optional
|
459
|
-
OSD order.
|
460
|
-
reduce_logical_basis : bool, optional
|
461
|
-
If True, attempts to reduce the logical operator basis to include lower-weight operators.
|
392
|
+
timeout_seconds : float
|
393
|
+
Time limit in seconds for the search. Default: 0.25
|
394
|
+
p : float
|
395
|
+
Probability for including each logical operator in trial combinations. Default: 0.25
|
396
|
+
reduce_logical_basis : bool
|
397
|
+
Whether to attempt reducing logical operator basis. Default: False
|
398
|
+
decoder : Optional[BpOsdDecoder]
|
399
|
+
Pre-configured BP+OSD decoder. If None, initialises with default settings.
|
462
400
|
|
463
401
|
Returns
|
464
402
|
-------
|
465
403
|
int
|
466
|
-
|
404
|
+
Best estimate of code distance found within time limit
|
467
405
|
"""
|
468
406
|
if self.logical_operator_basis is None:
|
469
407
|
self.logical_operator_basis = self.compute_logical_basis()
|
470
408
|
|
471
|
-
|
472
|
-
# # Remove redundnant rows from stabilizer matrix
|
473
|
-
p_rows = ldpc.mod2.pivot_rows(self.stabilizer_matrix)
|
474
|
-
full_rank_stabilizer_matrix = self.stabilizer_matrix[p_rows]
|
475
|
-
# full_rank_stabilizer_matrix = self.stabilizer_matrix
|
476
|
-
|
477
|
-
# Build a stacked matrix of stabilizers and logicals
|
478
|
-
stack = scipy.sparse.vstack(
|
479
|
-
[full_rank_stabilizer_matrix, self.logical_operator_basis]
|
480
|
-
).tocsr()
|
481
|
-
|
482
|
-
# Initial distance estimate from the current logicals
|
483
|
-
|
484
|
-
min_distance = np.min(
|
485
|
-
binary_pauli_hamming_weight(self.logical_operator_basis)
|
486
|
-
)
|
487
|
-
|
488
|
-
max_distance = np.max(self.logical_basis_weights())
|
489
|
-
|
490
|
-
# Set up BP+OSD decoder
|
491
|
-
bp_osd = BpOsdDecoder(
|
492
|
-
stack,
|
493
|
-
error_rate=error_rate,
|
494
|
-
max_iter=max_iter,
|
495
|
-
bp_method=bp_method,
|
496
|
-
schedule=schedule,
|
497
|
-
ms_scaling_factor=ms_scaling_factor,
|
498
|
-
osd_method=osd_method,
|
499
|
-
osd_order=osd_order,
|
500
|
-
)
|
501
|
-
|
502
|
-
return (
|
503
|
-
bp_osd,
|
504
|
-
stack,
|
505
|
-
full_rank_stabilizer_matrix,
|
506
|
-
min_distance,
|
507
|
-
max_distance,
|
508
|
-
)
|
509
|
-
|
510
|
-
# setup the decoder
|
409
|
+
# Initial setup of decoder and parameters
|
511
410
|
bp_osd, stack, full_rank_stabilizer_matrix, min_distance, max_distance = (
|
512
|
-
|
411
|
+
self._setup_distance_estimation_decoder(decoder)
|
513
412
|
)
|
514
413
|
|
515
|
-
#
|
414
|
+
# Initialize storage for candidate logicals and tracking
|
516
415
|
candidate_logicals = []
|
416
|
+
weight_one_syndromes_searched = 0
|
517
417
|
|
518
|
-
#
|
418
|
+
# Main search loop
|
519
419
|
start_time = time.time()
|
520
420
|
with tqdm(total=timeout_seconds, desc="Estimating distance") as pbar:
|
521
|
-
weight_one_syndromes_searched = 0
|
522
421
|
while time.time() - start_time < timeout_seconds:
|
422
|
+
# Update progress bar
|
523
423
|
elapsed = time.time() - start_time
|
524
|
-
# Update progress bar based on elapsed time
|
525
424
|
pbar.update(elapsed - pbar.n)
|
526
425
|
|
527
426
|
# Initialize an empty dummy syndrome
|
528
427
|
dummy_syndrome = np.zeros(stack.shape[0], dtype=np.uint8)
|
529
428
|
|
530
429
|
if weight_one_syndromes_searched < self.logical_operator_basis.shape[0]:
|
430
|
+
# Try each logical operator individually first
|
531
431
|
dummy_syndrome[
|
532
432
|
full_rank_stabilizer_matrix.shape[0]
|
533
433
|
+ weight_one_syndromes_searched
|
534
|
-
] = 1
|
434
|
+
] = 1
|
535
435
|
weight_one_syndromes_searched += 1
|
536
|
-
|
537
436
|
else:
|
538
437
|
# Randomly pick a combination of logical rows
|
539
|
-
# (with probability p, set the corresponding row in the syndrome to 1)
|
540
438
|
while True:
|
541
439
|
random_mask = np.random.choice(
|
542
440
|
[0, 1],
|
@@ -550,7 +448,6 @@ class StabilizerCode(object):
|
|
550
448
|
dummy_syndrome[self.stabilizer_matrix.shape[0] + idx] = 1
|
551
449
|
|
552
450
|
candidate = bp_osd.decode(dummy_syndrome)
|
553
|
-
|
554
451
|
w = np.count_nonzero(
|
555
452
|
candidate[: self.physical_qubit_count]
|
556
453
|
| candidate[self.physical_qubit_count :]
|
@@ -558,44 +455,129 @@ class StabilizerCode(object):
|
|
558
455
|
|
559
456
|
if w < min_distance:
|
560
457
|
min_distance = w
|
561
|
-
if w < max_distance:
|
562
|
-
|
563
|
-
|
564
|
-
[
|
565
|
-
|
566
|
-
|
567
|
-
|
568
|
-
|
569
|
-
|
570
|
-
|
571
|
-
# 3) If requested, reduce the logical operator basis to include lower-weight operators
|
458
|
+
if w < max_distance and reduce_logical_basis:
|
459
|
+
lc = np.hstack(
|
460
|
+
[
|
461
|
+
candidate[self.physical_qubit_count :],
|
462
|
+
candidate[: self.physical_qubit_count],
|
463
|
+
]
|
464
|
+
)
|
465
|
+
candidate_logicals.append(lc)
|
466
|
+
|
467
|
+
# Reduce logical operator basis if we have enough candidates
|
572
468
|
if (
|
573
469
|
len(candidate_logicals) >= self.logical_qubit_count
|
574
470
|
and reduce_logical_basis
|
575
471
|
):
|
576
|
-
self.
|
472
|
+
self._reduce_logical_operator_basis(candidate_logicals)
|
577
473
|
(
|
578
474
|
bp_osd,
|
579
475
|
stack,
|
580
476
|
full_rank_stabilizer_matrix,
|
581
477
|
min_distance,
|
582
478
|
max_distance,
|
583
|
-
) =
|
479
|
+
) = self._setup_distance_estimation_decoder(decoder)
|
584
480
|
candidate_logicals = []
|
585
481
|
weight_one_syndromes_searched = 0
|
586
482
|
|
587
483
|
pbar.set_description(
|
588
|
-
f"Estimating distance: min-weight found <= {min_distance},
|
484
|
+
f"Estimating distance: min-weight found <= {min_distance}, "
|
485
|
+
f"basis weights: {self.logical_basis_weights()}"
|
589
486
|
)
|
590
487
|
|
591
|
-
|
592
|
-
|
593
|
-
candidate_logicals
|
594
|
-
weight_one_syndromes_searched = 0
|
595
|
-
max_distance = np.max(self.logical_basis_weights())
|
488
|
+
# Final basis reduction if needed
|
489
|
+
if reduce_logical_basis and candidate_logicals:
|
490
|
+
self._reduce_logical_operator_basis(candidate_logicals)
|
596
491
|
|
597
|
-
# Update and return the estimated distance
|
598
492
|
self.code_distance = min_distance
|
493
|
+
return min_distance
|
494
|
+
|
495
|
+
def _setup_distance_estimation_decoder(
|
496
|
+
self, decoder: Optional[BpOsdDecoder] = None
|
497
|
+
) -> Tuple[BpOsdDecoder, scipy.sparse.spmatrix, scipy.sparse.spmatrix, int, int]:
|
498
|
+
"""
|
499
|
+
Set up decoder and initial parameters.
|
500
|
+
|
501
|
+
Parameters
|
502
|
+
----------
|
503
|
+
decoder : Optional[BpOsdDecoder]
|
504
|
+
Pre-configured decoder. If None, initialises with default settings.
|
505
|
+
|
506
|
+
Returns
|
507
|
+
-------
|
508
|
+
Tuple[BpOsdDecoder, scipy.sparse.spmatrix, scipy.sparse.spmatrix, int, int]
|
509
|
+
Returns (decoder, stack matrix, full rank stabilizer matrix, min distance, max distance)
|
510
|
+
"""
|
511
|
+
# Remove redundant rows from stabilizer matrix
|
512
|
+
p_rows = ldpc.mod2.pivot_rows(self.stabilizer_matrix)
|
513
|
+
full_rank_stabilizer_matrix = self.stabilizer_matrix[p_rows]
|
514
|
+
|
515
|
+
# Build a stacked matrix of stabilizers and logicals
|
516
|
+
stack = scipy.sparse.vstack(
|
517
|
+
[full_rank_stabilizer_matrix, self.logical_operator_basis]
|
518
|
+
).tocsr()
|
519
|
+
|
520
|
+
# Initial distance estimate from current logicals
|
521
|
+
min_distance = np.min(binary_pauli_hamming_weight(self.logical_operator_basis))
|
522
|
+
max_distance = np.max(self.logical_basis_weights())
|
523
|
+
|
524
|
+
# Set up BP+OSD decoder if not provided
|
525
|
+
if decoder is None:
|
526
|
+
decoder = BpOsdDecoder(
|
527
|
+
stack,
|
528
|
+
error_rate=0.1,
|
529
|
+
max_iter=10,
|
530
|
+
bp_method="ms",
|
531
|
+
schedule="parallel",
|
532
|
+
ms_scaling_factor=1.0,
|
533
|
+
osd_method="osd_0",
|
534
|
+
osd_order=0,
|
535
|
+
)
|
536
|
+
|
537
|
+
return decoder, stack, full_rank_stabilizer_matrix, min_distance, max_distance
|
538
|
+
|
539
|
+
def _reduce_logical_operator_basis(
|
540
|
+
self,
|
541
|
+
candidate_logicals: Union[Sequence, np.ndarray, scipy.sparse.spmatrix] = [],
|
542
|
+
):
|
543
|
+
"""
|
544
|
+
Reduce the logical operator basis to include lower-weight logicals.
|
545
|
+
|
546
|
+
Parameters
|
547
|
+
----------
|
548
|
+
candidate_logicals : Union[Sequence, np.ndarray, scipy.sparse.spmatrix], optional
|
549
|
+
A list or array of candidate logical operators to be considered for reducing the basis.
|
550
|
+
Defaults to an empty list.
|
551
|
+
"""
|
552
|
+
if len(candidate_logicals) != 0:
|
553
|
+
# Convert candidates to a sparse matrix if they aren't already
|
554
|
+
if not isinstance(candidate_logicals, scipy.sparse.spmatrix):
|
555
|
+
candidate_logicals = scipy.sparse.csr_matrix(
|
556
|
+
scipy.sparse.csr_matrix(candidate_logicals)
|
557
|
+
)
|
558
|
+
|
559
|
+
# Stack the candidate logicals with the existing logicals
|
560
|
+
temp1 = scipy.sparse.vstack(
|
561
|
+
[candidate_logicals, self.logical_operator_basis]
|
562
|
+
).tocsr()
|
563
|
+
|
564
|
+
# Compute the Hamming weight over GF4 (number of qubits with non-identity operators)
|
565
|
+
# Split into X and Z parts
|
566
|
+
row_weights = binary_pauli_hamming_weight(temp1).flatten()
|
567
|
+
|
568
|
+
# Sort the rows by Hamming weight (ascending)
|
569
|
+
sorted_rows = np.argsort(row_weights)
|
570
|
+
temp1 = temp1[sorted_rows, :]
|
571
|
+
|
572
|
+
# Add the stabilizer matrix to the top of the stack
|
573
|
+
temp1 = scipy.sparse.vstack([self.stabilizer_matrix, temp1])
|
574
|
+
|
575
|
+
# Calculate the rank of the stabilizer matrix (todo: find way of removing this step)
|
576
|
+
stabilizer_rank = ldpc.mod2.rank(self.stabilizer_matrix)
|
577
|
+
|
578
|
+
# Perform row reduction to find a new logical basis
|
579
|
+
p_rows = ldpc.mod2.pivot_rows(temp1)
|
580
|
+
self.logical_operator_basis = temp1[p_rows[stabilizer_rank:]]
|
599
581
|
|
600
582
|
def logical_basis_weights(self):
|
601
583
|
"""
|
qec/utils/binary_pauli_utils.py
CHANGED
@@ -299,7 +299,9 @@ def symplectic_product(
|
|
299
299
|
a = convert_to_binary_scipy_sparse(a)
|
300
300
|
b = convert_to_binary_scipy_sparse(b)
|
301
301
|
|
302
|
-
assert (
|
302
|
+
assert (
|
303
|
+
a.shape[1] == b.shape[1]
|
304
|
+
), "Input matrices must have the same number of columns."
|
303
305
|
assert a.shape[1] % 2 == 0, "Input matrices must have an even number of columns."
|
304
306
|
|
305
307
|
n = a.shape[1] // 2
|
qec/utils/codetables_de_utils.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1
1
|
import logging
|
2
|
+
|
2
3
|
# Suppress debug and info messages from urllib3 and requests libraries
|
3
4
|
logging.getLogger("urllib3").setLevel(logging.WARNING)
|
4
5
|
logging.getLogger("requests").setLevel(logging.WARNING)
|
@@ -9,6 +10,7 @@ import requests
|
|
9
10
|
from bs4 import BeautifulSoup
|
10
11
|
import json
|
11
12
|
|
13
|
+
|
12
14
|
def get_codetables_de_matrix(q, n, k, output_json_path=None, write_to_file=False):
|
13
15
|
"""
|
14
16
|
Retrieve quantum code data from Markus Grassl's codetables.de website.
|
@@ -0,0 +1,16 @@
|
|
1
|
+
qec/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
2
|
+
qec/quantum_codes/__init__.py,sha256=DQ1ztrq-vBpTyoehaMWOhals46tRj553Jmkq68bDk-E,117
|
3
|
+
qec/quantum_codes/codetables_de.py,sha256=loBDBOK2cbDJ5moKmIx2MXg6e30XEPrEYau19bbDgac,3623
|
4
|
+
qec/quantum_codes/five_qubit_code.py,sha256=0zrGLyIpfyKwYG7uL00yMcM5PdhQGF17_MiI2qTMhOk,2190
|
5
|
+
qec/stabilizer_code/__init__.py,sha256=L5UMjHBlvfQBhkNlEZYSkyaHvNOcDHjc3oxYibMYHRk,63
|
6
|
+
qec/stabilizer_code/css_code.py,sha256=JhNiBHqfwu4OgMVUsXl6yJ4L5KNW4Dn2Sf0beBdAl2s,24763
|
7
|
+
qec/stabilizer_code/stabilizer_code.py,sha256=I5u8JKZu88ioC4E2nBJ-00xCmnL8nU6kdAvwYOfmNRk,22138
|
8
|
+
qec/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
9
|
+
qec/utils/binary_pauli_utils.py,sha256=BSlngYDdRICu0aVu4u_m0bvLicohORyGxfk5eRER7TQ,13245
|
10
|
+
qec/utils/codetables_de_utils.py,sha256=S1wcVGJkkASQQ5s71QAsYBmpyE-3xTb6UsvgMfQtuiw,9469
|
11
|
+
qec/utils/sparse_binary_utils.py,sha256=Y9xfGKzOGFiVTyhb6iF6N7-5oMY6Ah9oLrnv8HhSBHA,1965
|
12
|
+
qec-0.2.1.dist-info/LICENSE,sha256=1b_xwNz1znYBfEaCL6pN2gNBAn8pQIjDRs_UhDp1EJI,1066
|
13
|
+
qec-0.2.1.dist-info/METADATA,sha256=AbWaMM6fYb65-0lUw6qWuywZigdtHseO-6QAbNZK0QM,2367
|
14
|
+
qec-0.2.1.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
15
|
+
qec-0.2.1.dist-info/top_level.txt,sha256=d8l_7pJ5u9uWdviNp0FUK-j8VPZqywkDek7qa4NDank,4
|
16
|
+
qec-0.2.1.dist-info/RECORD,,
|
qec-0.2.0.dist-info/RECORD
DELETED
@@ -1,16 +0,0 @@
|
|
1
|
-
qec/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
2
|
-
qec/quantum_codes/__init__.py,sha256=DQ1ztrq-vBpTyoehaMWOhals46tRj553Jmkq68bDk-E,117
|
3
|
-
qec/quantum_codes/codetables_de.py,sha256=loBDBOK2cbDJ5moKmIx2MXg6e30XEPrEYau19bbDgac,3623
|
4
|
-
qec/quantum_codes/five_qubit_code.py,sha256=0zrGLyIpfyKwYG7uL00yMcM5PdhQGF17_MiI2qTMhOk,2190
|
5
|
-
qec/stabilizer_code/__init__.py,sha256=L5UMjHBlvfQBhkNlEZYSkyaHvNOcDHjc3oxYibMYHRk,63
|
6
|
-
qec/stabilizer_code/css_code.py,sha256=8BotcCuWrbnxnbZ1ZIJDI1jgr6-ohq-haPolc59TcWw,127
|
7
|
-
qec/stabilizer_code/stabilizer_code.py,sha256=_3oQwq2UNkPmP2R2qcsKTzYO4CLDvQdaiGxsN4_4r0I,22804
|
8
|
-
qec/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
9
|
-
qec/utils/binary_pauli_utils.py,sha256=FKxOMyEgUfSL1DF--8GUf4Nl6ytbK8Slyw7x2evhAac,13231
|
10
|
-
qec/utils/codetables_de_utils.py,sha256=soCf3u2v-C5EYYMiL8Ta4H6UF8KhRCEkjxLd6qBJai4,9467
|
11
|
-
qec/utils/sparse_binary_utils.py,sha256=Y9xfGKzOGFiVTyhb6iF6N7-5oMY6Ah9oLrnv8HhSBHA,1965
|
12
|
-
qec-0.2.0.dist-info/LICENSE,sha256=1b_xwNz1znYBfEaCL6pN2gNBAn8pQIjDRs_UhDp1EJI,1066
|
13
|
-
qec-0.2.0.dist-info/METADATA,sha256=DisbbTcVUey4dp5WelBc4aZeFcUkkwpsxRzMd44QncU,2367
|
14
|
-
qec-0.2.0.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
15
|
-
qec-0.2.0.dist-info/top_level.txt,sha256=d8l_7pJ5u9uWdviNp0FUK-j8VPZqywkDek7qa4NDank,4
|
16
|
-
qec-0.2.0.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|