qec 0.0.11__py3-none-any.whl → 0.2.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- qec/__init__.py +0 -0
- qec/quantum_codes/__init__.py +2 -0
- qec/quantum_codes/codetables_de.py +93 -0
- qec/quantum_codes/five_qubit_code.py +67 -0
- qec/stabilizer_code/__init__.py +1 -0
- qec/stabilizer_code/css_code.py +6 -0
- qec/stabilizer_code/stabilizer_code.py +609 -0
- qec/utils/__init__.py +0 -0
- qec/utils/binary_pauli_utils.py +401 -0
- qec/utils/codetables_de_utils.py +272 -0
- qec/utils/sparse_binary_utils.py +64 -0
- qec-0.2.0.dist-info/LICENSE +21 -0
- qec-0.2.0.dist-info/METADATA +82 -0
- qec-0.2.0.dist-info/RECORD +16 -0
- {qec-0.0.11.dist-info → qec-0.2.0.dist-info}/WHEEL +1 -1
- qec/css.py +0 -164
- qec/hgp.py +0 -75
- qec/lifted_hgp.py +0 -79
- qec/protograph.py +0 -150
- qec/quantum_codes.py +0 -185
- qec/stab.py +0 -119
- qec/xzzx_codes.py +0 -333
- qec-0.0.11.dist-info/METADATA +0 -18
- qec-0.0.11.dist-info/RECORD +0 -11
- {qec-0.0.11.dist-info → qec-0.2.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,609 @@
|
|
1
|
+
from qec.utils.sparse_binary_utils import convert_to_binary_scipy_sparse
|
2
|
+
from qec.utils.binary_pauli_utils import (
|
3
|
+
symplectic_product,
|
4
|
+
check_binary_pauli_matrices_commute,
|
5
|
+
pauli_str_to_binary_pcm,
|
6
|
+
binary_pcm_to_pauli_str,
|
7
|
+
binary_pauli_hamming_weight,
|
8
|
+
)
|
9
|
+
|
10
|
+
import numpy as np
|
11
|
+
import scipy.sparse
|
12
|
+
from tqdm import tqdm
|
13
|
+
from ldpc import BpOsdDecoder
|
14
|
+
import ldpc.mod2
|
15
|
+
import time
|
16
|
+
from typing import Tuple, Optional, Union, Sequence
|
17
|
+
import logging
|
18
|
+
|
19
|
+
logging.basicConfig(level=logging.DEBUG)
|
20
|
+
|
21
|
+
|
22
|
+
class StabilizerCode(object):
|
23
|
+
"""
|
24
|
+
A quantum stabilizer code, which defines and manipulates stabilizer generators,
|
25
|
+
computes logical operators, and stores parameters such as the number of physical qubits
|
26
|
+
and the number of logical qubits.
|
27
|
+
|
28
|
+
Parameters
|
29
|
+
----------
|
30
|
+
stabilizers : np.typing.ArrayLike or scipy.sparse.spmatrix or list
|
31
|
+
Either a binary parity check matrix (with an even number of columns),
|
32
|
+
or a list of Pauli strings that specify the stabilizers of the code.
|
33
|
+
name : str, optional
|
34
|
+
A name for the code. Defaults to "stabilizer code".
|
35
|
+
|
36
|
+
Attributes
|
37
|
+
----------
|
38
|
+
name : str
|
39
|
+
The name of the code.
|
40
|
+
stabilizer_matrix : scipy.sparse.spmatrix
|
41
|
+
The binary parity check matrix representation of the stabilizers.
|
42
|
+
phyical_qubit_count : int
|
43
|
+
The number of physical qubits in the code.
|
44
|
+
logical_qubit_count : int
|
45
|
+
The number of logical qubits in the code.
|
46
|
+
code_distance : int
|
47
|
+
(Not computed by default) The distance of the code, if known or computed.
|
48
|
+
logicals : scipy.sparse.spmatrix or None
|
49
|
+
A basis for the logical operators of the code.
|
50
|
+
"""
|
51
|
+
|
52
|
+
def __init__(
|
53
|
+
self,
|
54
|
+
stabilizers: Union[np.ndarray, scipy.sparse.spmatrix, list],
|
55
|
+
name: str = None,
|
56
|
+
):
|
57
|
+
"""
|
58
|
+
Construct a StabilizerCode instance from either a parity check matrix or a list of
|
59
|
+
Pauli stabilizers.
|
60
|
+
|
61
|
+
Parameters
|
62
|
+
----------
|
63
|
+
stabilizers : np.typing.ArrayLike or scipy.sparse.spmatrix or list
|
64
|
+
Either a binary parity check matrix (with an even number of columns),
|
65
|
+
or a list of Pauli strings that specify the stabilizers of the code.
|
66
|
+
name : str, optional
|
67
|
+
A name for the code. If None, it defaults to "stabilizer code".
|
68
|
+
|
69
|
+
Raises
|
70
|
+
------
|
71
|
+
TypeError
|
72
|
+
If `stabilizers` is not an array-like, sparse matrix, or list of Pauli strings.
|
73
|
+
ValueError
|
74
|
+
If the parity check matrix does not have an even number of columns,
|
75
|
+
or the stabilizers do not mutually commute.
|
76
|
+
"""
|
77
|
+
self.name = name if name else "stabilizer code"
|
78
|
+
|
79
|
+
self.stabilizer_matrix = None
|
80
|
+
self.physical_qubit_count = None
|
81
|
+
self.logical_qubit_count = None
|
82
|
+
self.code_distance = None
|
83
|
+
self.logical_operator_basis = None
|
84
|
+
|
85
|
+
if isinstance(stabilizers, list):
|
86
|
+
stabilizers = np.array(stabilizers)
|
87
|
+
|
88
|
+
if not isinstance(stabilizers, (np.ndarray, scipy.sparse.spmatrix)):
|
89
|
+
raise TypeError(
|
90
|
+
"Please provide either a parity check matrix or a list of Pauli stabilizers."
|
91
|
+
)
|
92
|
+
|
93
|
+
if isinstance(stabilizers, np.ndarray) and stabilizers.dtype.kind in {"U", "S"}:
|
94
|
+
self.stabilizer_matrix = pauli_str_to_binary_pcm(stabilizers)
|
95
|
+
else:
|
96
|
+
if stabilizers.shape[1] % 2 == 0:
|
97
|
+
self.stabilizer_matrix = convert_to_binary_scipy_sparse(stabilizers)
|
98
|
+
else:
|
99
|
+
raise ValueError(
|
100
|
+
"The parity check matrix must have an even number of columns."
|
101
|
+
)
|
102
|
+
|
103
|
+
self.physical_qubit_count = self.stabilizer_matrix.shape[1] // 2
|
104
|
+
|
105
|
+
# Check that stabilizers commute
|
106
|
+
if not self.check_stabilizers_commute():
|
107
|
+
raise ValueError("The stabilizers do not commute.")
|
108
|
+
|
109
|
+
# Compute the number of logical qubits
|
110
|
+
self.logical_qubit_count = self.physical_qubit_count - ldpc.mod2.rank(
|
111
|
+
self.stabilizer_matrix, method="dense"
|
112
|
+
)
|
113
|
+
|
114
|
+
# Compute a basis for the logical operators of the code
|
115
|
+
self.logical_operator_basis = self.compute_logical_basis()
|
116
|
+
|
117
|
+
@property
|
118
|
+
def pauli_stabilizers(self):
|
119
|
+
"""
|
120
|
+
Get or set the stabilizers in Pauli string format.
|
121
|
+
|
122
|
+
Returns
|
123
|
+
-------
|
124
|
+
np.ndarray
|
125
|
+
An array of Pauli strings representing the stabilizers.
|
126
|
+
"""
|
127
|
+
return binary_pcm_to_pauli_str(self.stabilizer_matrix)
|
128
|
+
|
129
|
+
@pauli_stabilizers.setter
|
130
|
+
def pauli_stabilizers(self, pauli_stabilizers: np.ndarray):
|
131
|
+
"""
|
132
|
+
Set the stabilizers using Pauli strings.
|
133
|
+
|
134
|
+
Parameters
|
135
|
+
----------
|
136
|
+
pauli_stabilizers : np.ndarray
|
137
|
+
An array of Pauli strings representing the stabilizers.
|
138
|
+
|
139
|
+
Raises
|
140
|
+
------
|
141
|
+
AssertionError
|
142
|
+
If the newly set stabilizers do not commute.
|
143
|
+
"""
|
144
|
+
self.stabilizer_matrix = pauli_str_to_binary_pcm(pauli_stabilizers)
|
145
|
+
if not self.check_stabilizers_commute():
|
146
|
+
raise ValueError("The stabilizers do not commute.")
|
147
|
+
|
148
|
+
def check_stabilizers_commute(self) -> bool:
|
149
|
+
"""
|
150
|
+
Check whether the current set of stabilizers mutually commute.
|
151
|
+
|
152
|
+
Returns
|
153
|
+
-------
|
154
|
+
bool
|
155
|
+
True if all stabilizers commute, otherwise False.
|
156
|
+
"""
|
157
|
+
return check_binary_pauli_matrices_commute(
|
158
|
+
self.stabilizer_matrix, self.stabilizer_matrix
|
159
|
+
)
|
160
|
+
|
161
|
+
def compute_logical_basis(self) -> scipy.sparse.spmatrix:
|
162
|
+
"""
|
163
|
+
Compute a basis for the logical operators of the code by extending the parity check
|
164
|
+
matrix. The resulting basis operators are stored in `self.logicals`.
|
165
|
+
|
166
|
+
Returns
|
167
|
+
-------
|
168
|
+
scipy.sparse.spmatrix
|
169
|
+
A basis for the logical operators in binary representation.
|
170
|
+
|
171
|
+
Notes
|
172
|
+
-----
|
173
|
+
This method uses the kernel of the parity check matrix to find operators that
|
174
|
+
commute with all stabilizers, and then identifies a subset that spans the space
|
175
|
+
of logical operators.
|
176
|
+
"""
|
177
|
+
kernel_h = ldpc.mod2.kernel(self.stabilizer_matrix)
|
178
|
+
|
179
|
+
# Sort the rows of the kernel by weight
|
180
|
+
row_weights = np.diff(kernel_h.indptr)
|
181
|
+
sorted_rows = np.argsort(row_weights)
|
182
|
+
kernel_h = kernel_h[sorted_rows, :]
|
183
|
+
|
184
|
+
swapped_kernel = scipy.sparse.hstack(
|
185
|
+
[
|
186
|
+
kernel_h[:, self.physical_qubit_count :],
|
187
|
+
kernel_h[:, : self.physical_qubit_count],
|
188
|
+
]
|
189
|
+
)
|
190
|
+
|
191
|
+
logical_stack = scipy.sparse.vstack([self.stabilizer_matrix, swapped_kernel])
|
192
|
+
p_rows = ldpc.mod2.pivot_rows(logical_stack)
|
193
|
+
|
194
|
+
self.logical_operator_basis = logical_stack[
|
195
|
+
p_rows[self.stabilizer_matrix.shape[0] :]
|
196
|
+
]
|
197
|
+
|
198
|
+
if self.logical_operator_basis.nnz == 0:
|
199
|
+
self.code_distance = np.inf
|
200
|
+
return self.logical_operator_basis
|
201
|
+
|
202
|
+
basis_minimum_hamming_weight = np.min(
|
203
|
+
binary_pauli_hamming_weight(self.logical_operator_basis).flatten()
|
204
|
+
)
|
205
|
+
|
206
|
+
# Update distance based on the minimum hamming weight of the logical operators in this basis
|
207
|
+
if self.code_distance is None:
|
208
|
+
self.code_distance = basis_minimum_hamming_weight
|
209
|
+
elif basis_minimum_hamming_weight < self.code_distance:
|
210
|
+
self.code_distance = basis_minimum_hamming_weight
|
211
|
+
else:
|
212
|
+
pass
|
213
|
+
|
214
|
+
return logical_stack[p_rows[self.stabilizer_matrix.shape[0] :]]
|
215
|
+
|
216
|
+
def check_valid_logical_basis(self) -> bool:
|
217
|
+
"""
|
218
|
+
Validate that the stored logical operators form a proper logical basis for the code.
|
219
|
+
|
220
|
+
Checks that they commute with the stabilizers, pairwise anti-commute (in the symplectic
|
221
|
+
sense), and have full rank.
|
222
|
+
|
223
|
+
Returns
|
224
|
+
-------
|
225
|
+
bool
|
226
|
+
True if the logical operators form a valid basis, otherwise False.
|
227
|
+
"""
|
228
|
+
try:
|
229
|
+
assert check_binary_pauli_matrices_commute(
|
230
|
+
self.stabilizer_matrix, self.logical_operator_basis
|
231
|
+
), "Logical operators do not commute with stabilizers."
|
232
|
+
|
233
|
+
logical_product = symplectic_product(
|
234
|
+
self.logical_operator_basis, self.logical_operator_basis
|
235
|
+
)
|
236
|
+
logical_product.eliminate_zeros()
|
237
|
+
assert (
|
238
|
+
logical_product.nnz != 0
|
239
|
+
), "The logical operators do not anti-commute with one another."
|
240
|
+
|
241
|
+
assert (
|
242
|
+
ldpc.mod2.rank(self.logical_operator_basis, method="dense")
|
243
|
+
== 2 * self.logical_qubit_count
|
244
|
+
), "The logical operators do not form a basis for the code."
|
245
|
+
|
246
|
+
assert (
|
247
|
+
self.logical_operator_basis.shape[0] == 2 * self.logical_qubit_count
|
248
|
+
), "The logical operators are not linearly independent."
|
249
|
+
|
250
|
+
except AssertionError as e:
|
251
|
+
logging.error(e)
|
252
|
+
return False
|
253
|
+
|
254
|
+
return True
|
255
|
+
|
256
|
+
def compute_exact_code_distance(
|
257
|
+
self, timeout: float = 0.5
|
258
|
+
) -> Tuple[Optional[int], float]:
|
259
|
+
"""
|
260
|
+
Compute the distance of the code by searching through linear combinations of
|
261
|
+
logical operators and stabilizers, returning a tuple of the minimal Hamming weight
|
262
|
+
found and the fraction of logical operators considered before timing out.
|
263
|
+
|
264
|
+
Parameters
|
265
|
+
----------
|
266
|
+
timeout : float, optional
|
267
|
+
The time limit (in seconds) for the exhaustive search. Default is 0.5 seconds. To obtain the exact distance, set to `np.inf`.
|
268
|
+
|
269
|
+
Returns
|
270
|
+
-------
|
271
|
+
Tuple[Optional[int], float]
|
272
|
+
A tuple containing:
|
273
|
+
- The best-known distance of the code as an integer (or `None` if no distance was found).
|
274
|
+
- The fraction of logical combinations considered before the search ended.
|
275
|
+
|
276
|
+
Notes
|
277
|
+
-----
|
278
|
+
- We compute the row span of both the stabilizers and the logical operators.
|
279
|
+
- For every logical operator in the logical span, we add (mod 2) each stabilizer
|
280
|
+
in the stabilizer span to form candidate logical operators.
|
281
|
+
- We compute the Hamming weight of each candidate operator (i.e. how many qubits
|
282
|
+
are acted upon by the operator).
|
283
|
+
- We track the minimal Hamming weight encountered. If `timeout` is exceeded,
|
284
|
+
we immediately return the best distance found so far.
|
285
|
+
|
286
|
+
Examples
|
287
|
+
--------
|
288
|
+
>>> code = StabilizerCode(["XZZX", "ZZXX"])
|
289
|
+
>>> dist, fraction = code.compute_exact_code_distance(timeout=1.0)
|
290
|
+
>>> print(dist, fraction)
|
291
|
+
"""
|
292
|
+
start_time = time.time()
|
293
|
+
|
294
|
+
stabilizer_span = ldpc.mod2.row_span(self.stabilizer_matrix)[1:]
|
295
|
+
logical_span = ldpc.mod2.row_span(self.logical_operator_basis)[1:]
|
296
|
+
|
297
|
+
if self.code_distance is None:
|
298
|
+
distance = np.inf
|
299
|
+
else:
|
300
|
+
distance = self.code_distance
|
301
|
+
|
302
|
+
logicals_considered = 0
|
303
|
+
total_logical_operators = stabilizer_span.shape[0] * logical_span.shape[0]
|
304
|
+
|
305
|
+
for logical in logical_span:
|
306
|
+
if time.time() - start_time > timeout:
|
307
|
+
break
|
308
|
+
for stabilizer in stabilizer_span:
|
309
|
+
if time.time() - start_time > timeout:
|
310
|
+
break
|
311
|
+
candidate_logical = logical + stabilizer
|
312
|
+
candidate_logical.data %= 2
|
313
|
+
|
314
|
+
hamming_weight = binary_pauli_hamming_weight(candidate_logical)[0]
|
315
|
+
if hamming_weight < distance:
|
316
|
+
distance = hamming_weight
|
317
|
+
logicals_considered += 1
|
318
|
+
|
319
|
+
self.code_distance = distance
|
320
|
+
fraction_considered = logicals_considered / total_logical_operators
|
321
|
+
|
322
|
+
return (
|
323
|
+
(int(distance), fraction_considered)
|
324
|
+
if distance != np.inf
|
325
|
+
else (None, fraction_considered)
|
326
|
+
)
|
327
|
+
|
328
|
+
def get_code_parameters(self) -> tuple:
|
329
|
+
"""
|
330
|
+
Return the parameters of the code as a tuple: (n, k, d).
|
331
|
+
|
332
|
+
Returns
|
333
|
+
-------
|
334
|
+
tuple
|
335
|
+
A tuple of integers representing the number of physical qubits, logical qubits,
|
336
|
+
and the distance of the code.
|
337
|
+
"""
|
338
|
+
return self.physical_qubit_count, self.logical_qubit_count, self.code_distance
|
339
|
+
|
340
|
+
def save_code(self, save_dense: bool = False):
|
341
|
+
"""
|
342
|
+
Save the stabilizer code to disk.
|
343
|
+
|
344
|
+
Parameters
|
345
|
+
----------
|
346
|
+
save_dense : bool, optional
|
347
|
+
If True, saves the parity check matrix as a dense format.
|
348
|
+
Otherwise, saves the parity check matrix as a sparse format.
|
349
|
+
"""
|
350
|
+
pass
|
351
|
+
|
352
|
+
def load_code(self):
|
353
|
+
"""
|
354
|
+
Load the stabilizer code from a saved file.
|
355
|
+
"""
|
356
|
+
pass
|
357
|
+
|
358
|
+
def __repr__(self):
|
359
|
+
"""
|
360
|
+
Return an unambiguous string representation of the StabilizerCode instance.
|
361
|
+
|
362
|
+
Returns
|
363
|
+
-------
|
364
|
+
str
|
365
|
+
An unambiguous representation for debugging and development.
|
366
|
+
"""
|
367
|
+
return f"Name: {self.name}, Class: Stabilizer Code"
|
368
|
+
|
369
|
+
def __str__(self):
|
370
|
+
"""
|
371
|
+
Return a string describing the stabilizer code, including its parameters.
|
372
|
+
|
373
|
+
Returns
|
374
|
+
-------
|
375
|
+
str
|
376
|
+
A human-readable string with the name, n, k, and d parameters of the code.
|
377
|
+
"""
|
378
|
+
return f"< Stabilizer Code, Name: {self.name}, Parameters: [[{self.physical_qubit_count}, {self.logical_qubit_count}, {self.code_distance}]] >"
|
379
|
+
|
380
|
+
def reduce_logical_operator_basis(
|
381
|
+
self,
|
382
|
+
candidate_logicals: Union[Sequence, np.ndarray, scipy.sparse.spmatrix] = [],
|
383
|
+
):
|
384
|
+
"""
|
385
|
+
Reduce the logical operator basis to include lower-weight logicals.
|
386
|
+
|
387
|
+
Parameters
|
388
|
+
----------
|
389
|
+
candidate_logicals : Union[Sequence, np.ndarray, scipy.sparse.spmatrix], optional
|
390
|
+
A list or array of candidate logical operators to be considered for reducing the basis.
|
391
|
+
Defaults to an empty list.
|
392
|
+
"""
|
393
|
+
if len(candidate_logicals) != 0:
|
394
|
+
# Convert candidates to a sparse matrix if they aren't already
|
395
|
+
if not isinstance(candidate_logicals, scipy.sparse.spmatrix):
|
396
|
+
candidate_logicals = scipy.sparse.csr_matrix(
|
397
|
+
scipy.sparse.csr_matrix(candidate_logicals)
|
398
|
+
)
|
399
|
+
|
400
|
+
# Stack the candidate logicals with the existing logicals
|
401
|
+
temp1 = scipy.sparse.vstack(
|
402
|
+
[candidate_logicals, self.logical_operator_basis]
|
403
|
+
).tocsr()
|
404
|
+
|
405
|
+
# Compute the Hamming weight over GF4 (number of qubits with non-identity operators)
|
406
|
+
# Split into X and Z parts
|
407
|
+
row_weights = binary_pauli_hamming_weight(temp1).flatten()
|
408
|
+
|
409
|
+
# Sort the rows by Hamming weight (ascending)
|
410
|
+
sorted_rows = np.argsort(row_weights)
|
411
|
+
temp1 = temp1[sorted_rows, :]
|
412
|
+
|
413
|
+
# Add the stabilizer matrix to the top of the stack
|
414
|
+
temp1 = scipy.sparse.vstack([self.stabilizer_matrix, temp1])
|
415
|
+
|
416
|
+
# Calculate the rank of the stabilizer matrix (todo: find way of removing this step)
|
417
|
+
stabilizer_rank = ldpc.mod2.rank(self.stabilizer_matrix)
|
418
|
+
|
419
|
+
# Perform row reduction to find a new logical basis
|
420
|
+
p_rows = ldpc.mod2.pivot_rows(temp1)
|
421
|
+
self.logical_operator_basis = temp1[p_rows[stabilizer_rank:]]
|
422
|
+
|
423
|
+
def estimate_min_distance(
|
424
|
+
self,
|
425
|
+
timeout_seconds: float = 0.25,
|
426
|
+
p: float = 0.25,
|
427
|
+
max_iter: int = 10,
|
428
|
+
error_rate: float = 0.1,
|
429
|
+
bp_method: str = "ms",
|
430
|
+
schedule: str = "parallel",
|
431
|
+
ms_scaling_factor: float = 1.0,
|
432
|
+
osd_method: str = "osd_0",
|
433
|
+
osd_order: int = 0,
|
434
|
+
reduce_logical_basis: bool = False,
|
435
|
+
) -> int:
|
436
|
+
"""
|
437
|
+
Estimate the minimum distance of the stabilizer code using a BP+OSD decoder-based search.
|
438
|
+
|
439
|
+
Parameters
|
440
|
+
----------
|
441
|
+
timeout_seconds : float, optional
|
442
|
+
The time limit (in seconds) for searching random linear combinations.
|
443
|
+
p : float, optional
|
444
|
+
Probability used to randomly include or exclude each logical operator
|
445
|
+
when generating trial logical operators.
|
446
|
+
max_iter : int, optional
|
447
|
+
Maximum number of BP decoder iterations.
|
448
|
+
error_rate : float, optional
|
449
|
+
Crossover probability for the BP+OSD decoder.
|
450
|
+
bp_method : str, optional
|
451
|
+
Belief Propagation method (e.g., "ms" for min-sum).
|
452
|
+
schedule : str, optional
|
453
|
+
Update schedule for BP (e.g., "parallel").
|
454
|
+
ms_scaling_factor : float, optional
|
455
|
+
Scaling factor for min-sum updates.
|
456
|
+
osd_method : str, optional
|
457
|
+
Order-statistic decoding method (e.g., "osd_0").
|
458
|
+
osd_order : int, optional
|
459
|
+
OSD order.
|
460
|
+
reduce_logical_basis : bool, optional
|
461
|
+
If True, attempts to reduce the logical operator basis to include lower-weight operators.
|
462
|
+
|
463
|
+
Returns
|
464
|
+
-------
|
465
|
+
int
|
466
|
+
The best-known estimate of the code distance found within the time limit.
|
467
|
+
"""
|
468
|
+
if self.logical_operator_basis is None:
|
469
|
+
self.logical_operator_basis = self.compute_logical_basis()
|
470
|
+
|
471
|
+
def decoder_setup():
|
472
|
+
# # Remove redundnant rows from stabilizer matrix
|
473
|
+
p_rows = ldpc.mod2.pivot_rows(self.stabilizer_matrix)
|
474
|
+
full_rank_stabilizer_matrix = self.stabilizer_matrix[p_rows]
|
475
|
+
# full_rank_stabilizer_matrix = self.stabilizer_matrix
|
476
|
+
|
477
|
+
# Build a stacked matrix of stabilizers and logicals
|
478
|
+
stack = scipy.sparse.vstack(
|
479
|
+
[full_rank_stabilizer_matrix, self.logical_operator_basis]
|
480
|
+
).tocsr()
|
481
|
+
|
482
|
+
# Initial distance estimate from the current logicals
|
483
|
+
|
484
|
+
min_distance = np.min(
|
485
|
+
binary_pauli_hamming_weight(self.logical_operator_basis)
|
486
|
+
)
|
487
|
+
|
488
|
+
max_distance = np.max(self.logical_basis_weights())
|
489
|
+
|
490
|
+
# Set up BP+OSD decoder
|
491
|
+
bp_osd = BpOsdDecoder(
|
492
|
+
stack,
|
493
|
+
error_rate=error_rate,
|
494
|
+
max_iter=max_iter,
|
495
|
+
bp_method=bp_method,
|
496
|
+
schedule=schedule,
|
497
|
+
ms_scaling_factor=ms_scaling_factor,
|
498
|
+
osd_method=osd_method,
|
499
|
+
osd_order=osd_order,
|
500
|
+
)
|
501
|
+
|
502
|
+
return (
|
503
|
+
bp_osd,
|
504
|
+
stack,
|
505
|
+
full_rank_stabilizer_matrix,
|
506
|
+
min_distance,
|
507
|
+
max_distance,
|
508
|
+
)
|
509
|
+
|
510
|
+
# setup the decoder
|
511
|
+
bp_osd, stack, full_rank_stabilizer_matrix, min_distance, max_distance = (
|
512
|
+
decoder_setup()
|
513
|
+
)
|
514
|
+
|
515
|
+
# List to store candidate logical operators for basis reduction
|
516
|
+
candidate_logicals = []
|
517
|
+
|
518
|
+
# 2) Randomly search for better representatives of logical operators
|
519
|
+
start_time = time.time()
|
520
|
+
with tqdm(total=timeout_seconds, desc="Estimating distance") as pbar:
|
521
|
+
weight_one_syndromes_searched = 0
|
522
|
+
while time.time() - start_time < timeout_seconds:
|
523
|
+
elapsed = time.time() - start_time
|
524
|
+
# Update progress bar based on elapsed time
|
525
|
+
pbar.update(elapsed - pbar.n)
|
526
|
+
|
527
|
+
# Initialize an empty dummy syndrome
|
528
|
+
dummy_syndrome = np.zeros(stack.shape[0], dtype=np.uint8)
|
529
|
+
|
530
|
+
if weight_one_syndromes_searched < self.logical_operator_basis.shape[0]:
|
531
|
+
dummy_syndrome[
|
532
|
+
full_rank_stabilizer_matrix.shape[0]
|
533
|
+
+ weight_one_syndromes_searched
|
534
|
+
] = 1 # pick exactly one logical operator
|
535
|
+
weight_one_syndromes_searched += 1
|
536
|
+
|
537
|
+
else:
|
538
|
+
# Randomly pick a combination of logical rows
|
539
|
+
# (with probability p, set the corresponding row in the syndrome to 1)
|
540
|
+
while True:
|
541
|
+
random_mask = np.random.choice(
|
542
|
+
[0, 1],
|
543
|
+
size=self.logical_operator_basis.shape[0],
|
544
|
+
p=[1 - p, p],
|
545
|
+
)
|
546
|
+
if np.any(random_mask):
|
547
|
+
break
|
548
|
+
for idx, bit in enumerate(random_mask):
|
549
|
+
if bit == 1:
|
550
|
+
dummy_syndrome[self.stabilizer_matrix.shape[0] + idx] = 1
|
551
|
+
|
552
|
+
candidate = bp_osd.decode(dummy_syndrome)
|
553
|
+
|
554
|
+
w = np.count_nonzero(
|
555
|
+
candidate[: self.physical_qubit_count]
|
556
|
+
| candidate[self.physical_qubit_count :]
|
557
|
+
)
|
558
|
+
|
559
|
+
if w < min_distance:
|
560
|
+
min_distance = w
|
561
|
+
if w < max_distance:
|
562
|
+
if reduce_logical_basis:
|
563
|
+
lc = np.hstack(
|
564
|
+
[
|
565
|
+
candidate[self.physical_qubit_count :],
|
566
|
+
candidate[: self.physical_qubit_count],
|
567
|
+
]
|
568
|
+
)
|
569
|
+
candidate_logicals.append(lc)
|
570
|
+
|
571
|
+
# 3) If requested, reduce the logical operator basis to include lower-weight operators
|
572
|
+
if (
|
573
|
+
len(candidate_logicals) >= self.logical_qubit_count
|
574
|
+
and reduce_logical_basis
|
575
|
+
):
|
576
|
+
self.reduce_logical_operator_basis(candidate_logicals)
|
577
|
+
(
|
578
|
+
bp_osd,
|
579
|
+
stack,
|
580
|
+
full_rank_stabilizer_matrix,
|
581
|
+
min_distance,
|
582
|
+
max_distance,
|
583
|
+
) = decoder_setup()
|
584
|
+
candidate_logicals = []
|
585
|
+
weight_one_syndromes_searched = 0
|
586
|
+
|
587
|
+
pbar.set_description(
|
588
|
+
f"Estimating distance: min-weight found <= {min_distance}, basis weights: {self.logical_basis_weights()}"
|
589
|
+
)
|
590
|
+
|
591
|
+
if reduce_logical_basis and len(candidate_logicals) > 0:
|
592
|
+
self.reduce_logical_operator_basis(candidate_logicals)
|
593
|
+
candidate_logicals = []
|
594
|
+
weight_one_syndromes_searched = 0
|
595
|
+
max_distance = np.max(self.logical_basis_weights())
|
596
|
+
|
597
|
+
# Update and return the estimated distance
|
598
|
+
self.code_distance = min_distance
|
599
|
+
|
600
|
+
def logical_basis_weights(self):
|
601
|
+
"""
|
602
|
+
Return the Hamming weights of the logical operators in the current basis.
|
603
|
+
|
604
|
+
Returns
|
605
|
+
-------
|
606
|
+
np.ndarray
|
607
|
+
An array of integers representing the Hamming weights of the logical operators.
|
608
|
+
"""
|
609
|
+
return binary_pauli_hamming_weight(self.logical_operator_basis).flatten()
|
qec/utils/__init__.py
ADDED
File without changes
|