qadence 1.9.1__py3-none-any.whl → 1.9.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- qadence/analog/device.py +7 -0
- qadence/backends/pulser/backend.py +1 -1
- qadence/backends/pyqtorch/convert_ops.py +5 -5
- qadence/backends/utils.py +15 -1
- qadence/engines/torch/differentiable_expectation.py +3 -1
- qadence/ml_tools/callbacks/__init__.py +10 -0
- qadence/ml_tools/callbacks/callback.py +325 -1
- qadence/ml_tools/callbacks/writer_registry.py +17 -17
- qadence/ml_tools/trainer.py +22 -19
- qadence/states.py +21 -0
- qadence/types.py +1 -1
- {qadence-1.9.1.dist-info → qadence-1.9.2.dist-info}/METADATA +9 -6
- {qadence-1.9.1.dist-info → qadence-1.9.2.dist-info}/RECORD +15 -15
- {qadence-1.9.1.dist-info → qadence-1.9.2.dist-info}/WHEEL +1 -1
- {qadence-1.9.1.dist-info → qadence-1.9.2.dist-info}/licenses/LICENSE +0 -0
qadence/analog/device.py
CHANGED
@@ -5,6 +5,8 @@ from dataclasses import dataclass, fields
|
|
5
5
|
from qadence.analog import AddressingPattern
|
6
6
|
from qadence.types import PI, DeviceType, Interaction
|
7
7
|
|
8
|
+
from .constants import C6_DICT
|
9
|
+
|
8
10
|
|
9
11
|
@dataclass(frozen=True, eq=True)
|
10
12
|
class RydbergDevice:
|
@@ -41,6 +43,11 @@ class RydbergDevice:
|
|
41
43
|
type: DeviceType = DeviceType.IDEALIZED
|
42
44
|
"""DeviceType.IDEALIZED or REALISTIC to convert to the Pulser backend."""
|
43
45
|
|
46
|
+
@property
|
47
|
+
def coeff_ising(self) -> float:
|
48
|
+
"""Value of C_6."""
|
49
|
+
return C6_DICT[self.rydberg_level]
|
50
|
+
|
44
51
|
def __post_init__(self) -> None:
|
45
52
|
# FIXME: Currently not supporting custom interaction functions.
|
46
53
|
if self.interaction not in [Interaction.NN, Interaction.XY]:
|
@@ -259,7 +259,7 @@ class Backend(BackendInterface):
|
|
259
259
|
for i, param_values_el in enumerate(vals):
|
260
260
|
sequence = self.assign_parameters(circuit, param_values_el)
|
261
261
|
sim_result: CoherentResults = simulate_sequence(sequence, self.config, state)
|
262
|
-
final_state = sim_result.get_final_state().data.
|
262
|
+
final_state = sim_result.get_final_state().data.to_array()
|
263
263
|
batched_dm[i] = np.flip(final_state)
|
264
264
|
return torch.from_numpy(batched_dm)
|
265
265
|
|
@@ -264,7 +264,7 @@ def convert_block(
|
|
264
264
|
duration=duration,
|
265
265
|
solver=config.ode_solver,
|
266
266
|
steps=config.n_steps_hevo,
|
267
|
-
|
267
|
+
noise=noise_operators if len(noise_operators) > 0 else None,
|
268
268
|
)
|
269
269
|
]
|
270
270
|
|
@@ -351,22 +351,22 @@ def convert_block(
|
|
351
351
|
)
|
352
352
|
|
353
353
|
|
354
|
-
def convert_digital_noise(noise: NoiseHandler) -> pyq.noise.
|
354
|
+
def convert_digital_noise(noise: NoiseHandler) -> pyq.noise.DigitalNoiseProtocol | None:
|
355
355
|
"""Convert the digital noise into pyqtorch NoiseProtocol.
|
356
356
|
|
357
357
|
Args:
|
358
358
|
noise (NoiseHandler): Noise to convert.
|
359
359
|
|
360
360
|
Returns:
|
361
|
-
pyq.noise.
|
361
|
+
pyq.noise.DigitalNoiseProtocol | None: Pyqtorch native noise protocol
|
362
362
|
if there are any digital noise protocols.
|
363
363
|
"""
|
364
364
|
digital_part = noise.filter(NoiseProtocol.DIGITAL)
|
365
365
|
if digital_part is None:
|
366
366
|
return None
|
367
|
-
return pyq.noise.
|
367
|
+
return pyq.noise.DigitalNoiseProtocol(
|
368
368
|
[
|
369
|
-
pyq.noise.
|
369
|
+
pyq.noise.DigitalNoiseProtocol(proto, option.get("error_probability"))
|
370
370
|
for proto, option in zip(digital_part.protocol, digital_part.options)
|
371
371
|
]
|
372
372
|
)
|
qadence/backends/utils.py
CHANGED
@@ -110,9 +110,23 @@ def to_list_of_dicts(param_values: ParamDictType) -> list[ParamDictType]:
|
|
110
110
|
|
111
111
|
|
112
112
|
def pyqify(state: Tensor, n_qubits: int = None) -> ArrayLike:
|
113
|
-
"""Convert a state of shape (batch_size, 2**n_qubits) to [2] * n_qubits + [batch_size].
|
113
|
+
"""Convert a state of shape (batch_size, 2**n_qubits) to [2] * n_qubits + [batch_size].
|
114
|
+
|
115
|
+
Or set the batch_size of a density matrix as the last dimension for PyQTorch.
|
116
|
+
"""
|
114
117
|
if n_qubits is None:
|
115
118
|
n_qubits = int(log2(state.shape[1]))
|
119
|
+
if isinstance(state, DensityMatrix):
|
120
|
+
if (
|
121
|
+
len(state.shape) != 3
|
122
|
+
or (state.shape[1] != 2**n_qubits)
|
123
|
+
or (state.shape[1] != state.shape[2])
|
124
|
+
):
|
125
|
+
raise ValueError(
|
126
|
+
"The initial state must be composed of tensors/arrays of size "
|
127
|
+
f"(batch_size, 2**n_qubits, 2**n_qubits). Found: {state.shape = }."
|
128
|
+
)
|
129
|
+
return torch.einsum("kij->ijk", state)
|
116
130
|
if len(state.shape) != 2 or (state.shape[1] != 2**n_qubits):
|
117
131
|
raise ValueError(
|
118
132
|
"The initial state must be composed of tensors/arrays of size "
|
@@ -49,7 +49,9 @@ class PSRExpectation(Function):
|
|
49
49
|
if isinstance(expectation_values[0], list):
|
50
50
|
exp_vals: list = []
|
51
51
|
for expectation_value in expectation_values:
|
52
|
-
res = list(
|
52
|
+
res = list(
|
53
|
+
map(lambda x: x.get_final_state().data.to_array(), expectation_value)
|
54
|
+
)
|
53
55
|
exp_vals.append(torch.tensor(res))
|
54
56
|
expectation_values = exp_vals
|
55
57
|
return torch.stack(expectation_values)
|
@@ -2,9 +2,14 @@ from __future__ import annotations
|
|
2
2
|
|
3
3
|
from .callback import (
|
4
4
|
Callback,
|
5
|
+
EarlyStopping,
|
6
|
+
GradientMonitoring,
|
5
7
|
LoadCheckpoint,
|
6
8
|
LogHyperparameters,
|
7
9
|
LogModelTracker,
|
10
|
+
LRSchedulerCosineAnnealing,
|
11
|
+
LRSchedulerCyclic,
|
12
|
+
LRSchedulerStepDecay,
|
8
13
|
PlotMetrics,
|
9
14
|
PrintMetrics,
|
10
15
|
SaveBestCheckpoint,
|
@@ -26,5 +31,10 @@ __all__ = [
|
|
26
31
|
"SaveBestCheckpoint",
|
27
32
|
"SaveCheckpoint",
|
28
33
|
"WriteMetrics",
|
34
|
+
"GradientMonitoring",
|
35
|
+
"LRSchedulerStepDecay",
|
36
|
+
"LRSchedulerCyclic",
|
37
|
+
"LRSchedulerCosineAnnealing",
|
38
|
+
"EarlyStopping",
|
29
39
|
"get_writer",
|
30
40
|
]
|
@@ -1,5 +1,7 @@
|
|
1
1
|
from __future__ import annotations
|
2
2
|
|
3
|
+
import math
|
4
|
+
from logging import getLogger
|
3
5
|
from typing import Any, Callable
|
4
6
|
|
5
7
|
from qadence.ml_tools.callbacks.saveload import load_checkpoint, write_checkpoint
|
@@ -12,6 +14,8 @@ from qadence.ml_tools.stages import TrainingStage
|
|
12
14
|
CallbackFunction = Callable[..., Any]
|
13
15
|
CallbackConditionFunction = Callable[..., bool]
|
14
16
|
|
17
|
+
logger = getLogger("ml_tools")
|
18
|
+
|
15
19
|
|
16
20
|
class Callback:
|
17
21
|
"""Base class for defining various training callbacks.
|
@@ -258,7 +262,7 @@ class WriteMetrics(Callback):
|
|
258
262
|
writer (BaseWriter ): The writer object for logging.
|
259
263
|
"""
|
260
264
|
opt_result = trainer.opt_result
|
261
|
-
writer.write(opt_result)
|
265
|
+
writer.write(opt_result.iteration, opt_result.metrics)
|
262
266
|
|
263
267
|
|
264
268
|
class PlotMetrics(Callback):
|
@@ -449,3 +453,323 @@ class LogModelTracker(Callback):
|
|
449
453
|
writer.log_model(
|
450
454
|
model, trainer.train_dataloader, trainer.val_dataloader, trainer.test_dataloader
|
451
455
|
)
|
456
|
+
|
457
|
+
|
458
|
+
class LRSchedulerStepDecay(Callback):
|
459
|
+
"""
|
460
|
+
Reduces the learning rate by a factor at regular intervals.
|
461
|
+
|
462
|
+
This callback adjusts the learning rate by multiplying it with a decay factor
|
463
|
+
after a specified number of iterations. The learning rate is updated as:
|
464
|
+
lr = lr * gamma
|
465
|
+
|
466
|
+
Example Usage in `TrainConfig`:
|
467
|
+
To use `LRSchedulerStepDecay`, include it in the `callbacks` list when setting
|
468
|
+
up your `TrainConfig`:
|
469
|
+
```python exec="on" source="material-block" result="json"
|
470
|
+
from qadence.ml_tools import TrainConfig
|
471
|
+
from qadence.ml_tools.callbacks import LRSchedulerStepDecay
|
472
|
+
|
473
|
+
# Create an instance of the LRSchedulerStepDecay callback
|
474
|
+
lr_step_decay = LRSchedulerStepDecay(on="train_epoch_end",
|
475
|
+
called_every=100,
|
476
|
+
gamma=0.5)
|
477
|
+
|
478
|
+
config = TrainConfig(
|
479
|
+
max_iter=10000,
|
480
|
+
# Print metrics every 1000 training epochs
|
481
|
+
print_every=1000,
|
482
|
+
# Add the custom callback
|
483
|
+
callbacks=[lr_step_decay]
|
484
|
+
)
|
485
|
+
```
|
486
|
+
"""
|
487
|
+
|
488
|
+
def __init__(self, on: str, called_every: int, gamma: float = 0.5):
|
489
|
+
"""Initializes the LRSchedulerStepDecay callback.
|
490
|
+
|
491
|
+
Args:
|
492
|
+
on (str): The event to trigger the callback.
|
493
|
+
called_every (int): Frequency of callback calls in terms of iterations.
|
494
|
+
gamma (float, optional): The decay factor applied to the learning rate.
|
495
|
+
A value < 1 reduces the learning rate over time. Default is 0.5.
|
496
|
+
"""
|
497
|
+
super().__init__(on=on, called_every=called_every)
|
498
|
+
self.gamma = gamma
|
499
|
+
|
500
|
+
def run_callback(self, trainer: Any, config: TrainConfig, writer: BaseWriter) -> None:
|
501
|
+
"""
|
502
|
+
Runs the callback to apply step decay to the learning rate.
|
503
|
+
|
504
|
+
Args:
|
505
|
+
trainer (Any): The training object.
|
506
|
+
config (TrainConfig): The configuration object.
|
507
|
+
writer (BaseWriter): The writer object for logging.
|
508
|
+
"""
|
509
|
+
for param_group in trainer.optimizer.param_groups:
|
510
|
+
param_group["lr"] *= self.gamma
|
511
|
+
|
512
|
+
|
513
|
+
class LRSchedulerCyclic(Callback):
|
514
|
+
"""
|
515
|
+
Applies a cyclic learning rate schedule during training.
|
516
|
+
|
517
|
+
This callback oscillates the learning rate between a minimum (base_lr)
|
518
|
+
and a maximum (max_lr) over a defined cycle length (step_size). The learning
|
519
|
+
rate follows a triangular wave pattern.
|
520
|
+
|
521
|
+
Example Usage in `TrainConfig`:
|
522
|
+
To use `LRSchedulerCyclic`, include it in the `callbacks` list when setting
|
523
|
+
up your `TrainConfig`:
|
524
|
+
```python exec="on" source="material-block" result="json"
|
525
|
+
from qadence.ml_tools import TrainConfig
|
526
|
+
from qadence.ml_tools.callbacks import LRSchedulerCyclic
|
527
|
+
|
528
|
+
# Create an instance of the LRSchedulerCyclic callback
|
529
|
+
lr_cyclic = LRSchedulerCyclic(on="train_batch_end",
|
530
|
+
called_every=1,
|
531
|
+
base_lr=0.001,
|
532
|
+
max_lr=0.01,
|
533
|
+
step_size=2000)
|
534
|
+
|
535
|
+
config = TrainConfig(
|
536
|
+
max_iter=10000,
|
537
|
+
# Print metrics every 1000 training epochs
|
538
|
+
print_every=1000,
|
539
|
+
# Add the custom callback
|
540
|
+
callbacks=[lr_cyclic]
|
541
|
+
)
|
542
|
+
```
|
543
|
+
"""
|
544
|
+
|
545
|
+
def __init__(self, on: str, called_every: int, base_lr: float, max_lr: float, step_size: int):
|
546
|
+
"""Initializes the LRSchedulerCyclic callback.
|
547
|
+
|
548
|
+
Args:
|
549
|
+
on (str): The event to trigger the callback.
|
550
|
+
called_every (int): Frequency of callback calls in terms of iterations.
|
551
|
+
base_lr (float): The minimum learning rate.
|
552
|
+
max_lr (float): The maximum learning rate.
|
553
|
+
step_size (int): Number of iterations for half a cycle.
|
554
|
+
"""
|
555
|
+
super().__init__(on=on, called_every=called_every)
|
556
|
+
self.base_lr = base_lr
|
557
|
+
self.max_lr = max_lr
|
558
|
+
self.step_size = step_size
|
559
|
+
|
560
|
+
def run_callback(self, trainer: Any, config: TrainConfig, writer: BaseWriter) -> None:
|
561
|
+
"""
|
562
|
+
Adjusts the learning rate cyclically.
|
563
|
+
|
564
|
+
Args:
|
565
|
+
trainer (Any): The training object.
|
566
|
+
config (TrainConfig): The configuration object.
|
567
|
+
writer (BaseWriter): The writer object for logging.
|
568
|
+
"""
|
569
|
+
cycle = trainer.opt_result.iteration // (2 * self.step_size)
|
570
|
+
x = abs(trainer.opt_result.iteration / self.step_size - 2 * cycle - 1)
|
571
|
+
scale = max(0, (1 - x))
|
572
|
+
new_lr = self.base_lr + (self.max_lr - self.base_lr) * scale
|
573
|
+
for param_group in trainer.optimizer.param_groups:
|
574
|
+
param_group["lr"] = new_lr
|
575
|
+
|
576
|
+
|
577
|
+
class LRSchedulerCosineAnnealing(Callback):
|
578
|
+
"""
|
579
|
+
Applies cosine annealing to the learning rate during training.
|
580
|
+
|
581
|
+
This callback decreases the learning rate following a cosine curve,
|
582
|
+
starting from the initial learning rate and annealing to a minimum (min_lr).
|
583
|
+
|
584
|
+
Example Usage in `TrainConfig`:
|
585
|
+
To use `LRSchedulerCosineAnnealing`, include it in the `callbacks` list
|
586
|
+
when setting up your `TrainConfig`:
|
587
|
+
```python exec="on" source="material-block" result="json"
|
588
|
+
from qadence.ml_tools import TrainConfig
|
589
|
+
from qadence.ml_tools.callbacks import LRSchedulerCosineAnnealing
|
590
|
+
|
591
|
+
# Create an instance of the LRSchedulerCosineAnnealing callback
|
592
|
+
lr_cosine = LRSchedulerCosineAnnealing(on="train_batch_end",
|
593
|
+
called_every=1,
|
594
|
+
t_max=5000,
|
595
|
+
min_lr=1e-6)
|
596
|
+
|
597
|
+
config = TrainConfig(
|
598
|
+
max_iter=10000,
|
599
|
+
# Print metrics every 1000 training epochs
|
600
|
+
print_every=1000,
|
601
|
+
# Add the custom callback
|
602
|
+
callbacks=[lr_cosine]
|
603
|
+
)
|
604
|
+
```
|
605
|
+
"""
|
606
|
+
|
607
|
+
def __init__(self, on: str, called_every: int, t_max: int, min_lr: float = 0.0):
|
608
|
+
"""Initializes the LRSchedulerCosineAnnealing callback.
|
609
|
+
|
610
|
+
Args:
|
611
|
+
on (str): The event to trigger the callback.
|
612
|
+
called_every (int): Frequency of callback calls in terms of iterations.
|
613
|
+
t_max (int): The total number of iterations for one annealing cycle.
|
614
|
+
min_lr (float, optional): The minimum learning rate. Default is 0.0.
|
615
|
+
"""
|
616
|
+
super().__init__(on=on, called_every=called_every)
|
617
|
+
self.t_max = t_max
|
618
|
+
self.min_lr = min_lr
|
619
|
+
|
620
|
+
def run_callback(self, trainer: Any, config: TrainConfig, writer: BaseWriter) -> None:
|
621
|
+
"""
|
622
|
+
Adjusts the learning rate using cosine annealing.
|
623
|
+
|
624
|
+
Args:
|
625
|
+
trainer (Any): The training object.
|
626
|
+
config (TrainConfig): The configuration object.
|
627
|
+
writer (BaseWriter): The writer object for logging.
|
628
|
+
"""
|
629
|
+
for param_group in trainer.optimizer.param_groups:
|
630
|
+
max_lr = param_group["lr"]
|
631
|
+
new_lr = (
|
632
|
+
self.min_lr
|
633
|
+
+ (max_lr - self.min_lr)
|
634
|
+
* (1 + math.cos(math.pi * trainer.opt_result.iteration / self.t_max))
|
635
|
+
/ 2
|
636
|
+
)
|
637
|
+
param_group["lr"] = new_lr
|
638
|
+
|
639
|
+
|
640
|
+
class EarlyStopping(Callback):
|
641
|
+
"""
|
642
|
+
Stops training when a monitored metric has not improved for a specified number of epochs.
|
643
|
+
|
644
|
+
This callback monitors a specified metric (e.g., validation loss or accuracy). If the metric
|
645
|
+
does not improve for a given patience period, training is stopped.
|
646
|
+
|
647
|
+
Example Usage in `TrainConfig`:
|
648
|
+
To use `EarlyStopping`, include it in the `callbacks` list when setting up your `TrainConfig`:
|
649
|
+
```python exec="on" source="material-block" result="json"
|
650
|
+
from qadence.ml_tools import TrainConfig
|
651
|
+
from qadence.ml_tools.callbacks import EarlyStopping
|
652
|
+
|
653
|
+
# Create an instance of the EarlyStopping callback
|
654
|
+
early_stopping = EarlyStopping(on="val_epoch_end",
|
655
|
+
called_every=1,
|
656
|
+
monitor="val_loss",
|
657
|
+
patience=5,
|
658
|
+
mode="min")
|
659
|
+
|
660
|
+
config = TrainConfig(
|
661
|
+
max_iter=10000,
|
662
|
+
print_every=1000,
|
663
|
+
callbacks=[early_stopping]
|
664
|
+
)
|
665
|
+
```
|
666
|
+
"""
|
667
|
+
|
668
|
+
def __init__(
|
669
|
+
self, on: str, called_every: int, monitor: str, patience: int = 5, mode: str = "min"
|
670
|
+
):
|
671
|
+
"""Initializes the EarlyStopping callback.
|
672
|
+
|
673
|
+
Args:
|
674
|
+
on (str): The event to trigger the callback (e.g., "val_epoch_end").
|
675
|
+
called_every (int): Frequency of callback calls in terms of iterations.
|
676
|
+
monitor (str): The metric to monitor (e.g., "val_loss" or "train_loss").
|
677
|
+
All metrics returned by optimize step are available to monitor.
|
678
|
+
Please add "val_" and "train_" strings at the start of the metric name.
|
679
|
+
patience (int, optional): Number of iterations to wait for improvement. Default is 5.
|
680
|
+
mode (str, optional): Whether to minimize ("min") or maximize ("max") the metric.
|
681
|
+
Default is "min".
|
682
|
+
"""
|
683
|
+
super().__init__(on=on, called_every=called_every)
|
684
|
+
self.monitor = monitor
|
685
|
+
self.patience = patience
|
686
|
+
self.mode = mode
|
687
|
+
self.best_value = float("inf") if mode == "min" else -float("inf")
|
688
|
+
self.counter = 0
|
689
|
+
|
690
|
+
def run_callback(self, trainer: Any, config: TrainConfig, writer: BaseWriter) -> None:
|
691
|
+
"""
|
692
|
+
Monitors the metric and stops training if no improvement is observed.
|
693
|
+
|
694
|
+
Args:
|
695
|
+
trainer (Any): The training object.
|
696
|
+
config (TrainConfig): The configuration object.
|
697
|
+
writer (BaseWriter): The writer object for logging.
|
698
|
+
"""
|
699
|
+
current_value = trainer.opt_result.metrics.get(self.monitor)
|
700
|
+
if current_value is None:
|
701
|
+
raise ValueError(f"Metric '{self.monitor}' is not available in the trainer's metrics.")
|
702
|
+
|
703
|
+
if (self.mode == "min" and current_value < self.best_value) or (
|
704
|
+
self.mode == "max" and current_value > self.best_value
|
705
|
+
):
|
706
|
+
self.best_value = current_value
|
707
|
+
self.counter = 0
|
708
|
+
else:
|
709
|
+
self.counter += 1
|
710
|
+
|
711
|
+
if self.counter >= self.patience:
|
712
|
+
logger.info(
|
713
|
+
f"EarlyStopping: No improvement in '{self.monitor}' for {self.patience} epochs. "
|
714
|
+
"Stopping training."
|
715
|
+
)
|
716
|
+
trainer.stop_training = True
|
717
|
+
|
718
|
+
|
719
|
+
class GradientMonitoring(Callback):
|
720
|
+
"""
|
721
|
+
Logs gradient statistics (e.g., mean, standard deviation, max) during training.
|
722
|
+
|
723
|
+
This callback monitors and logs statistics about the gradients of the model parameters
|
724
|
+
to help debug or optimize the training process.
|
725
|
+
|
726
|
+
Example Usage in `TrainConfig`:
|
727
|
+
To use `GradientMonitoring`, include it in the `callbacks` list when
|
728
|
+
setting up your `TrainConfig`:
|
729
|
+
```python exec="on" source="material-block" result="json"
|
730
|
+
from qadence.ml_tools import TrainConfig
|
731
|
+
from qadence.ml_tools.callbacks import GradientMonitoring
|
732
|
+
|
733
|
+
# Create an instance of the GradientMonitoring callback
|
734
|
+
gradient_monitoring = GradientMonitoring(on="train_batch_end", called_every=10)
|
735
|
+
|
736
|
+
config = TrainConfig(
|
737
|
+
max_iter=10000,
|
738
|
+
print_every=1000,
|
739
|
+
callbacks=[gradient_monitoring]
|
740
|
+
)
|
741
|
+
```
|
742
|
+
"""
|
743
|
+
|
744
|
+
def __init__(self, on: str, called_every: int = 1):
|
745
|
+
"""Initializes the GradientMonitoring callback.
|
746
|
+
|
747
|
+
Args:
|
748
|
+
on (str): The event to trigger the callback (e.g., "train_batch_end").
|
749
|
+
called_every (int): Frequency of callback calls in terms of iterations.
|
750
|
+
"""
|
751
|
+
super().__init__(on=on, called_every=called_every)
|
752
|
+
|
753
|
+
def run_callback(self, trainer: Any, config: TrainConfig, writer: BaseWriter) -> None:
|
754
|
+
"""
|
755
|
+
Logs gradient statistics.
|
756
|
+
|
757
|
+
Args:
|
758
|
+
trainer (Any): The training object.
|
759
|
+
config (TrainConfig): The configuration object.
|
760
|
+
writer (BaseWriter): The writer object for logging.
|
761
|
+
"""
|
762
|
+
gradient_stats = {}
|
763
|
+
for name, param in trainer.model.named_parameters():
|
764
|
+
if param.grad is not None:
|
765
|
+
grad = param.grad
|
766
|
+
gradient_stats.update(
|
767
|
+
{
|
768
|
+
name + "_mean": grad.mean().item(),
|
769
|
+
name + "_std": grad.std().item(),
|
770
|
+
name + "_max": grad.max().item(),
|
771
|
+
name + "_min": grad.min().item(),
|
772
|
+
}
|
773
|
+
)
|
774
|
+
|
775
|
+
writer.write(trainer.opt_result.iteration, gradient_stats)
|
@@ -60,12 +60,14 @@ class BaseWriter(ABC):
|
|
60
60
|
raise NotImplementedError("Writers must implement a close method.")
|
61
61
|
|
62
62
|
@abstractmethod
|
63
|
-
def write(self,
|
63
|
+
def write(self, iteration: int, metrics: dict) -> None:
|
64
64
|
"""
|
65
65
|
Logs the results of the current iteration.
|
66
66
|
|
67
67
|
Args:
|
68
|
-
|
68
|
+
iteration (int): The current training iteration.
|
69
|
+
metrics (dict): A dictionary of metrics to log, where keys are metric names
|
70
|
+
and values are the corresponding metric values.
|
69
71
|
"""
|
70
72
|
raise NotImplementedError("Writers must implement a write method.")
|
71
73
|
|
@@ -166,23 +168,22 @@ class TensorBoardWriter(BaseWriter):
|
|
166
168
|
if self.writer:
|
167
169
|
self.writer.close()
|
168
170
|
|
169
|
-
def write(self,
|
171
|
+
def write(self, iteration: int, metrics: dict) -> None:
|
170
172
|
"""
|
171
173
|
Logs the results of the current iteration to TensorBoard.
|
172
174
|
|
173
175
|
Args:
|
174
|
-
|
176
|
+
iteration (int): The current training iteration.
|
177
|
+
metrics (dict): A dictionary of metrics to log, where keys are metric names
|
178
|
+
and values are the corresponding metric values.
|
175
179
|
"""
|
176
|
-
# Not writing loss as loss is available in the metrics
|
177
|
-
# if result.loss is not None:
|
178
|
-
# self.writer.add_scalar("loss", float(result.loss), result.iteration)
|
179
180
|
if self.writer:
|
180
|
-
for key, value in
|
181
|
-
self.writer.add_scalar(key, value,
|
181
|
+
for key, value in metrics.items():
|
182
|
+
self.writer.add_scalar(key, value, iteration)
|
182
183
|
else:
|
183
184
|
raise RuntimeError(
|
184
185
|
"The writer is not initialized."
|
185
|
-
"Please call the 'writer.open()' method before writing"
|
186
|
+
"Please call the 'writer.open()' method before writing."
|
186
187
|
)
|
187
188
|
|
188
189
|
def log_hyperparams(self, hyperparams: dict) -> None:
|
@@ -305,22 +306,21 @@ class MLFlowWriter(BaseWriter):
|
|
305
306
|
if self.run:
|
306
307
|
self.mlflow.end_run()
|
307
308
|
|
308
|
-
def write(self,
|
309
|
+
def write(self, iteration: int, metrics: dict) -> None:
|
309
310
|
"""
|
310
311
|
Logs the results of the current iteration to MLflow.
|
311
312
|
|
312
313
|
Args:
|
313
|
-
|
314
|
+
iteration (int): The current training iteration.
|
315
|
+
metrics (dict): A dictionary of metrics to log, where keys are metric names
|
316
|
+
and values are the corresponding metric values.
|
314
317
|
"""
|
315
|
-
# Not writing loss as loss is available in the metrics
|
316
|
-
# if result.loss is not None:
|
317
|
-
# self.mlflow.log_metric("loss", float(result.loss), step=result.iteration)
|
318
318
|
if self.mlflow:
|
319
|
-
self.mlflow.log_metrics(
|
319
|
+
self.mlflow.log_metrics(metrics, step=iteration)
|
320
320
|
else:
|
321
321
|
raise RuntimeError(
|
322
322
|
"The writer is not initialized."
|
323
|
-
"Please call the 'writer.open()' method before writing"
|
323
|
+
"Please call the 'writer.open()' method before writing."
|
324
324
|
)
|
325
325
|
|
326
326
|
def log_hyperparams(self, hyperparams: dict) -> None:
|
qadence/ml_tools/trainer.py
CHANGED
@@ -281,6 +281,7 @@ class Trainer(BaseTrainer):
|
|
281
281
|
self.device: torch_device | None = device
|
282
282
|
self.dtype: torch_dtype | None = dtype
|
283
283
|
self.data_dtype: torch_dtype | None = None
|
284
|
+
self.stop_training: bool = False
|
284
285
|
if self.dtype:
|
285
286
|
self.data_dtype = float64 if (self.dtype == complex128) else float32
|
286
287
|
|
@@ -321,6 +322,7 @@ class Trainer(BaseTrainer):
|
|
321
322
|
The callback_manager.start_training takes care of loading checkpoint,
|
322
323
|
and setting up the writer.
|
323
324
|
"""
|
325
|
+
self.stop_training = False
|
324
326
|
self.config_manager.initialize_config()
|
325
327
|
self.callback_manager.start_training(trainer=self)
|
326
328
|
|
@@ -377,25 +379,26 @@ class Trainer(BaseTrainer):
|
|
377
379
|
for epoch in range(
|
378
380
|
self.global_step, self.global_step + self.config_manager.config.max_iter + 1
|
379
381
|
):
|
380
|
-
|
381
|
-
|
382
|
-
|
383
|
-
|
384
|
-
|
385
|
-
|
386
|
-
|
387
|
-
|
388
|
-
|
389
|
-
self.
|
390
|
-
|
391
|
-
|
392
|
-
|
393
|
-
|
394
|
-
|
395
|
-
|
396
|
-
|
397
|
-
|
398
|
-
|
382
|
+
if not self.stop_training:
|
383
|
+
try:
|
384
|
+
self.current_epoch = epoch
|
385
|
+
self.on_train_epoch_start()
|
386
|
+
train_epoch_loss_metrics = self.run_training(self.train_dataloader)
|
387
|
+
train_losses.append(train_epoch_loss_metrics)
|
388
|
+
self.on_train_epoch_end(train_epoch_loss_metrics)
|
389
|
+
|
390
|
+
# Run validation periodically if specified
|
391
|
+
if self.perform_val and self.current_epoch % self.config.val_every == 0:
|
392
|
+
self.on_val_epoch_start()
|
393
|
+
val_epoch_loss_metrics = self.run_validation(self.val_dataloader)
|
394
|
+
val_losses.append(val_epoch_loss_metrics)
|
395
|
+
self.on_val_epoch_end(val_epoch_loss_metrics)
|
396
|
+
self.progress.update(val_task, advance=1)
|
397
|
+
|
398
|
+
self.progress.update(train_task, advance=1)
|
399
|
+
except KeyboardInterrupt:
|
400
|
+
logger.info("Terminating training gracefully after the current iteration.")
|
401
|
+
break
|
399
402
|
|
400
403
|
self.on_train_end(train_losses, val_losses)
|
401
404
|
return train_losses
|
qadence/states.py
CHANGED
@@ -6,6 +6,7 @@ from typing import List
|
|
6
6
|
|
7
7
|
import torch
|
8
8
|
from numpy.typing import ArrayLike
|
9
|
+
from pyqtorch.utils import DensityMatrix
|
9
10
|
from torch import Tensor, concat
|
10
11
|
from torch.distributions import Categorical, Distribution
|
11
12
|
|
@@ -37,6 +38,8 @@ __all__ = [
|
|
37
38
|
"is_normalized",
|
38
39
|
"rand_bitstring",
|
39
40
|
"equivalent_state",
|
41
|
+
"DensityMatrix",
|
42
|
+
"density_mat",
|
40
43
|
]
|
41
44
|
|
42
45
|
ATOL_64 = 1e-14 # 64 bit precision
|
@@ -319,6 +322,24 @@ def random_state(
|
|
319
322
|
return state
|
320
323
|
|
321
324
|
|
325
|
+
# DENSITY MATRIX
|
326
|
+
|
327
|
+
|
328
|
+
def density_mat(state: Tensor) -> DensityMatrix:
|
329
|
+
"""
|
330
|
+
Computes the density matrix from a pure state vector.
|
331
|
+
|
332
|
+
Arguments:
|
333
|
+
state: The pure state vector :math:`|\\psi\\rangle`.
|
334
|
+
|
335
|
+
Returns:
|
336
|
+
Tensor: The density matrix :math:`\\rho = |\psi \\rangle \\langle\\psi|`.
|
337
|
+
"""
|
338
|
+
if isinstance(state, DensityMatrix):
|
339
|
+
return state
|
340
|
+
return DensityMatrix(torch.einsum("bi,bj->bij", (state, state.conj())))
|
341
|
+
|
342
|
+
|
322
343
|
# BLOCKS
|
323
344
|
|
324
345
|
|
qadence/types.py
CHANGED
@@ -9,7 +9,7 @@ import numpy as np
|
|
9
9
|
import sympy
|
10
10
|
from matplotlib.figure import Figure
|
11
11
|
from numpy.typing import ArrayLike
|
12
|
-
from pyqtorch.noise import
|
12
|
+
from pyqtorch.noise import DigitalNoiseType as DigitalNoise
|
13
13
|
from pyqtorch.noise.readout import WhiteNoise
|
14
14
|
from pyqtorch.utils import DropoutMode, SolverType
|
15
15
|
from torch import Tensor, pi
|
@@ -1,9 +1,10 @@
|
|
1
|
-
Metadata-Version: 2.
|
1
|
+
Metadata-Version: 2.4
|
2
2
|
Name: qadence
|
3
|
-
Version: 1.9.
|
3
|
+
Version: 1.9.2
|
4
4
|
Summary: Pasqal interface for circuit-based quantum computing SDKs
|
5
5
|
Author-email: Aleksander Wennersteen <aleksander.wennersteen@pasqal.com>, Gert-Jan Both <gert-jan.both@pasqal.com>, Niklas Heim <niklas.heim@pasqal.com>, Mario Dagrada <mario.dagrada@pasqal.com>, Vincent Elfving <vincent.elfving@pasqal.com>, Dominik Seitz <dominik.seitz@pasqal.com>, Roland Guichard <roland.guichard@pasqal.com>, "Joao P. Moutinho" <joao.moutinho@pasqal.com>, Vytautas Abramavicius <vytautas.abramavicius@pasqal.com>, Gergana Velikova <gergana.velikova@pasqal.com>, Eduardo Maschio <eduardo.maschio@pasqal.com>, Smit Chaudhary <smit.chaudhary@pasqal.com>, Ignacio Fernández Graña <ignacio.fernandez-grana@pasqal.com>, Charles Moussa <charles.moussa@pasqal.com>, Giorgio Tosti Balducci <giorgio.tosti-balducci@pasqal.com>, Daniele Cucurachi <daniele.cucurachi@pasqal.com>
|
6
6
|
License: Apache 2.0
|
7
|
+
License-File: LICENSE
|
7
8
|
Classifier: License :: OSI Approved :: Apache Software License
|
8
9
|
Classifier: Programming Language :: Python
|
9
10
|
Classifier: Programming Language :: Python :: 3
|
@@ -21,7 +22,7 @@ Requires-Dist: matplotlib
|
|
21
22
|
Requires-Dist: nevergrad
|
22
23
|
Requires-Dist: numpy
|
23
24
|
Requires-Dist: openfermion
|
24
|
-
Requires-Dist: pyqtorch==1.
|
25
|
+
Requires-Dist: pyqtorch==1.7.0
|
25
26
|
Requires-Dist: pyyaml
|
26
27
|
Requires-Dist: rich
|
27
28
|
Requires-Dist: scipy
|
@@ -53,9 +54,9 @@ Requires-Dist: mlflow; extra == 'mlflow'
|
|
53
54
|
Provides-Extra: protocols
|
54
55
|
Requires-Dist: qadence-protocols; extra == 'protocols'
|
55
56
|
Provides-Extra: pulser
|
56
|
-
Requires-Dist: pasqal-cloud==0.12.
|
57
|
-
Requires-Dist: pulser-core==1.
|
58
|
-
Requires-Dist: pulser-simulation==1.
|
57
|
+
Requires-Dist: pasqal-cloud==0.12.6; extra == 'pulser'
|
58
|
+
Requires-Dist: pulser-core==1.2.0; extra == 'pulser'
|
59
|
+
Requires-Dist: pulser-simulation==1.2.0; extra == 'pulser'
|
59
60
|
Provides-Extra: visualization
|
60
61
|
Requires-Dist: graphviz; extra == 'visualization'
|
61
62
|
Description-Content-Type: text/markdown
|
@@ -80,6 +81,8 @@ programs** with tunable qubit interactions and arbitrary register topologies rea
|
|
80
81
|
[](https://pasqal-io.github.io/qadence/latest)
|
81
82
|
[](https://pypi.org/project/qadence/)
|
82
83
|
[](https://opensource.org/licenses/Apache-2.0)
|
84
|
+

|
85
|
+
|
83
86
|
|
84
87
|
## Feature highlights
|
85
88
|
|
@@ -17,26 +17,26 @@ qadence/qubit_support.py,sha256=Nkn1Q01RVViTcggSIom7EFKdWpAuM4TMGwBZ5feCUxA,2120
|
|
17
17
|
qadence/register.py,sha256=mwmvS6PcTY0F9cIhTUXG3NT73FIagfMCwVqYa4DrQrk,13001
|
18
18
|
qadence/serial_expr_grammar.peg,sha256=z5ytL7do9kO8o4h-V5GrsDuLdso0KsRcMuIYURFfmAY,328
|
19
19
|
qadence/serialization.py,sha256=qEET6Gu9u2aSibPve3bJrqDzK2_gO3RPDJjt4ZY8GbE,15596
|
20
|
-
qadence/states.py,sha256=
|
21
|
-
qadence/types.py,sha256=
|
20
|
+
qadence/states.py,sha256=OMFuPAmPTLfZYwefXMv82P96xp5aBDJpanmCNgkRO-o,15379
|
21
|
+
qadence/types.py,sha256=Jhd_qTI8X7R61LcueNfIsODLUFB7WfVHWiJpsQkrixs,11999
|
22
22
|
qadence/utils.py,sha256=zb2j7wURfy8kazaS84r4t35vAeDpo4Tpm4HbmPH-kFA,9865
|
23
23
|
qadence/analog/__init__.py,sha256=BCyS9R4KUjzUXN0Ax3b0eMo8ZAuSkGoJQVtZ4_pvAFs,279
|
24
24
|
qadence/analog/addressing.py,sha256=GSt4heEmRkBmoQIgdgkTclEFxZY-jjuAd77_SsZtGdI,6513
|
25
25
|
qadence/analog/constants.py,sha256=B2phQoN1ASL8CwM-Dsa1rbraYwGwwPSeiB3HbVe-MPA,1243
|
26
|
-
qadence/analog/device.py,sha256=
|
26
|
+
qadence/analog/device.py,sha256=t7oGjiZhk28IG2C-SVkc0RNSlV1L4SXV-tkLNiSYFNM,2570
|
27
27
|
qadence/analog/hamiltonian_terms.py,sha256=9LKidqqEMJTTdXeaxkxP_otTmcv9i4yeJ-JKCLOCK3Y,3421
|
28
28
|
qadence/analog/parse_analog.py,sha256=9Y_LMdw4wCHH6YSkvHhs6PUNwzT14HS7cUGheNSmDQg,4168
|
29
29
|
qadence/backends/__init__.py,sha256=ibm7wmZxuIoMYAQxgAx0MsfLYWOVHNWgLwyS1HjMuuI,215
|
30
30
|
qadence/backends/api.py,sha256=NPrvtZQ4klUBabUWJ5hbTUCVoaoW9-sHVbiXxAnTt3A,2643
|
31
31
|
qadence/backends/gpsr.py,sha256=HW5m6iHLq3hLHdJoU1q1i1laR0hBs7uCniXqrsFoNCI,5616
|
32
32
|
qadence/backends/jax_utils.py,sha256=VfKhqCKknHDWZO21UFipWH_Lkiq175Z5GkP49gWjbyw,5038
|
33
|
-
qadence/backends/utils.py,sha256=
|
33
|
+
qadence/backends/utils.py,sha256=SSiMxZjaFS8e8sB6ZBLXPKuJNQGl93pRMy9hnI4oDrw,9104
|
34
34
|
qadence/backends/horqrux/__init__.py,sha256=0OdVy6cq0oQggV48LO1WXdaZuSkDkz7OYNEPIkNAmfk,140
|
35
35
|
qadence/backends/horqrux/backend.py,sha256=KNFFGN9dsgB9QKtNXiP3LyMY9DQ-7W7ScyE6k29fHJY,8842
|
36
36
|
qadence/backends/horqrux/config.py,sha256=xz7JlUcwW_4JAbvProbSI9hA1SXZRRAN0Hr2bvmLzfg,892
|
37
37
|
qadence/backends/horqrux/convert_ops.py,sha256=3uG3yLq5wjfrWzFHDs0HEnd8kER91ZHVX3HCpYjOdjk,8565
|
38
38
|
qadence/backends/pulser/__init__.py,sha256=capQ-eHqwtOeLf4mWsI0BIseAHhiLGie5cFD4-iVhUo,116
|
39
|
-
qadence/backends/pulser/backend.py,sha256=
|
39
|
+
qadence/backends/pulser/backend.py,sha256=cI4IgijPpItNdDmLpKkJFas0X02wMiZd_XmVas41gEI,14846
|
40
40
|
qadence/backends/pulser/channels.py,sha256=ZF0yEXUFHAmi3IdeXjzdTNGR5NzaRRFTiUpUGVg2sO4,329
|
41
41
|
qadence/backends/pulser/cloud.py,sha256=0uUluvbFV9sOuCPraE-9uiVtC3Q8QaDY1IJMDi8grDM,2057
|
42
42
|
qadence/backends/pulser/config.py,sha256=aoHDmtgq5i0Zryxenw_p3uARY0B1w-UaYvfqDmrWHM0,2175
|
@@ -47,7 +47,7 @@ qadence/backends/pulser/waveforms.py,sha256=0uz95b7rUaUUtN0tuHBZmJ0H6UBmfHST_59o
|
|
47
47
|
qadence/backends/pyqtorch/__init__.py,sha256=0OdVy6cq0oQggV48LO1WXdaZuSkDkz7OYNEPIkNAmfk,140
|
48
48
|
qadence/backends/pyqtorch/backend.py,sha256=Sjuof9b332w4gk9o8Rso2rgSHxskexfkIazRfxRD0Ng,11458
|
49
49
|
qadence/backends/pyqtorch/config.py,sha256=sAxWVSkWvj6Lu0em1KJCDb6nfjqe8Dsxi7pyh6qYJpA,2387
|
50
|
-
qadence/backends/pyqtorch/convert_ops.py,sha256=
|
50
|
+
qadence/backends/pyqtorch/convert_ops.py,sha256=qG26-HmtUDaZO0KDnw2sbT3CRx_poS7eqJ3dn9wpWgc,13457
|
51
51
|
qadence/blocks/__init__.py,sha256=H6jEA_CptkE-eoB4UfSbUiDszbxxhZwECV_TgoZWXoU,960
|
52
52
|
qadence/blocks/abstract.py,sha256=DSQUE71rMyRBwAP--4Tx1WQC_LCXaNlftjd7goGyrpQ,12027
|
53
53
|
qadence/blocks/analog.py,sha256=ymnnlSVoW1XL05ZvnnHCqRTHuOXIEY_7E9M0PNKJZy4,10812
|
@@ -86,7 +86,7 @@ qadence/engines/jax/differentiable_backend.py,sha256=FcSrzzjzb0zfXC0-4mUJ6UB-wGO
|
|
86
86
|
qadence/engines/jax/differentiable_expectation.py,sha256=rn_l7IH-S4IvuAcyAIgyEuMZOIqswu5Nsfz0JffXjaE,3694
|
87
87
|
qadence/engines/torch/__init__.py,sha256=iZFdD32ot0B0CVyC-f5dVViOBnqoalxa6M9Lj4WQuPE,160
|
88
88
|
qadence/engines/torch/differentiable_backend.py,sha256=uQfyGg-25MAc0soK1FyvJ2FJakRuv5_5DOy7OPiZYg8,3567
|
89
|
-
qadence/engines/torch/differentiable_expectation.py,sha256=
|
89
|
+
qadence/engines/torch/differentiable_expectation.py,sha256=kc4WTos7d65DDmao6YSrpTM0rCBnpqhGK4xLHm_K4yk,10351
|
90
90
|
qadence/exceptions/__init__.py,sha256=BU6vWrI9mshzr1aTPm1Ticr_o_42GjTrWI4OZXhThsI,203
|
91
91
|
qadence/exceptions/exceptions.py,sha256=4j_VJpx2sZ2Mir5BJUWu4nwb131FY1ygO4q8-XlyfRc,190
|
92
92
|
qadence/measurements/__init__.py,sha256=RIjG9tVJMqhNzyj7maZI250Um0KgHl2PizDcKJag-JU,161
|
@@ -108,13 +108,13 @@ qadence/ml_tools/optimize_step.py,sha256=wUnxfWy0c9rEKe41-26On1bPFBwmSYBF4WCGn76
|
|
108
108
|
qadence/ml_tools/parameters.py,sha256=gew2Kq_5-RgRpaTvs8eauVhgo0sTqqDQEV6WHFEiLGM,1301
|
109
109
|
qadence/ml_tools/stages.py,sha256=qW2phMIvQBLM3tn2UoGN-ePiBnZoNq5k844eHVnnn8Y,1407
|
110
110
|
qadence/ml_tools/tensors.py,sha256=xZ9ZRzOqEaMgLUGWQf1najDmL6iLuN1ojCGVFs1Tm94,1337
|
111
|
-
qadence/ml_tools/trainer.py,sha256=
|
111
|
+
qadence/ml_tools/trainer.py,sha256=phKCr3-hmHTsKMoZ89z0U5KTZ_h7kaUX7w4WX7A0YH8,26990
|
112
112
|
qadence/ml_tools/utils.py,sha256=PW8FyoV0mG_DtN1U8njTDV5qxZ0EK4mnFwMAsLBArfk,1410
|
113
|
-
qadence/ml_tools/callbacks/__init__.py,sha256=
|
114
|
-
qadence/ml_tools/callbacks/callback.py,sha256=
|
113
|
+
qadence/ml_tools/callbacks/__init__.py,sha256=pTdfjulDGNKca--9BgrdmMyvJSah_0spp929Th6RzC8,913
|
114
|
+
qadence/ml_tools/callbacks/callback.py,sha256=XoqTS1uLOkbh4FtKpDSXbUA5_LzjOAoVMaa2jYcYB3w,28800
|
115
115
|
qadence/ml_tools/callbacks/callbackmanager.py,sha256=HwxgbqJi1GWYg2lgUqEyw9Y6a71YG_m5DmhpaeB6kLs,8007
|
116
116
|
qadence/ml_tools/callbacks/saveload.py,sha256=2z8v1A3qIIPZuusEcSNqgYTnKGKkDj71KvY_atJvKnM,6015
|
117
|
-
qadence/ml_tools/callbacks/writer_registry.py,sha256=
|
117
|
+
qadence/ml_tools/callbacks/writer_registry.py,sha256=_lPb4VvDHiiRNh2EaEKxOSslnJgBAImGw5SoVReg-Rs,15351
|
118
118
|
qadence/ml_tools/loss/__init__.py,sha256=d_0FlisdmgLY0qL1PeaabbcWX1B42RBdm7220cfzSN4,247
|
119
119
|
qadence/ml_tools/loss/loss.py,sha256=Bditg8nelMEpG4Yt0aopcAQz84xIc6O-AGUO2M0nqbM,2982
|
120
120
|
qadence/ml_tools/train_utils/__init__.py,sha256=1A2FlFg7kn68R1fdRC73S8DzA9gkBW7whdNHjzH5UTA,235
|
@@ -137,7 +137,7 @@ qadence/transpile/flatten.py,sha256=EdhSG5WyF56nbnxINNLqrHgY84MRM1YFjT3fR4aph5Q,
|
|
137
137
|
qadence/transpile/invert.py,sha256=KAefHTG2AWr39aengVhXrzCtJPhrZC-ZnL6vYvmbnY0,4867
|
138
138
|
qadence/transpile/noise.py,sha256=LDcDJtQGkgUPkL2t69gg6AScTb-p3J3SxCDZbYOu1L8,1668
|
139
139
|
qadence/transpile/transpile.py,sha256=6MRRkk1OS279L1fwUQjazA6qlfpbd-T_EJMKT8hAhOU,2721
|
140
|
-
qadence-1.9.
|
141
|
-
qadence-1.9.
|
142
|
-
qadence-1.9.
|
143
|
-
qadence-1.9.
|
140
|
+
qadence-1.9.2.dist-info/METADATA,sha256=JzJ9P6KRKQuAp8XeTW65OX5I6l9qc2aPMGGYNZczBpU,9954
|
141
|
+
qadence-1.9.2.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
142
|
+
qadence-1.9.2.dist-info/licenses/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
|
143
|
+
qadence-1.9.2.dist-info/RECORD,,
|
File without changes
|