qadence 1.7.5__py3-none-any.whl → 1.7.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
qadence/backends/gpsr.py CHANGED
@@ -10,14 +10,30 @@ from qadence.types import PI
10
10
  from qadence.utils import _round_complex
11
11
 
12
12
 
13
- def general_psr(spectrum: Tensor, shift_prefac: float = 0.5) -> Callable:
13
+ def general_psr(spectrum: Tensor, n_eqs: int | None = None, shift_prefac: float = 0.5) -> Callable:
14
+ """Define whether single_gap_psr or multi_gap_psr is used.
15
+
16
+ Args:
17
+ spectrum (Tensor): Spectrum of the operation we apply PSR onto.
18
+ n_eqs (int | None, optional): Number of equations. Defaults to None.
19
+ If provided, we keep the n_eqs higher spectral gaps.
20
+ shift_prefac (float, optional): Shift prefactor. Defaults to 0.5.
21
+
22
+ Returns:
23
+ Callable: single_gap_psr or multi_gap_psr function for
24
+ concerned operation.
25
+ """
14
26
  diffs = _round_complex(spectrum - spectrum.reshape(-1, 1))
15
27
  sorted_unique_spectral_gaps = torch.unique(torch.abs(torch.tril(diffs)))
16
28
 
17
29
  # We have to filter out zeros
18
30
  sorted_unique_spectral_gaps = sorted_unique_spectral_gaps[sorted_unique_spectral_gaps > 0]
19
- n_eqs = len(sorted_unique_spectral_gaps)
20
- sorted_unique_spectral_gaps = torch.tensor(list(sorted_unique_spectral_gaps))
31
+ n_eqs = (
32
+ len(sorted_unique_spectral_gaps)
33
+ if n_eqs is None
34
+ else min(n_eqs, len(sorted_unique_spectral_gaps))
35
+ )
36
+ sorted_unique_spectral_gaps = torch.tensor(list(sorted_unique_spectral_gaps)[:n_eqs])
21
37
 
22
38
  if n_eqs == 1:
23
39
  return single_gap_psr
@@ -7,7 +7,6 @@ from typing import Any, Sequence, Tuple
7
7
  import pyqtorch as pyq
8
8
  import sympy
9
9
  import torch
10
- from pyqtorch.apply import apply_operator
11
10
  from pyqtorch.embed import Embedding
12
11
  from pyqtorch.matrices import _dagger
13
12
  from pyqtorch.time_dependent.sesolve import sesolve
@@ -45,7 +44,6 @@ from qadence.blocks import (
45
44
  )
46
45
  from qadence.blocks.block_to_tensor import (
47
46
  _block_to_tensor_embedded,
48
- block_to_tensor,
49
47
  )
50
48
  from qadence.blocks.primitive import ProjectorBlock
51
49
  from qadence.blocks.utils import parameters
@@ -78,6 +76,14 @@ def is_single_qubit_chain(block: AbstractBlock) -> bool:
78
76
  )
79
77
 
80
78
 
79
+ def extract_parameter(block: ScaleBlock | ParametricBlock, config: Configuration) -> str | Tensor:
80
+ return (
81
+ tensor([block.parameters.parameter], dtype=float64)
82
+ if not block.is_parametric
83
+ else config.get_param_name(block)[0]
84
+ )
85
+
86
+
81
87
  def convert_block(
82
88
  block: AbstractBlock, n_qubits: int = None, config: Configuration = None
83
89
  ) -> Sequence[Module | Tensor | str | sympy.Expr]:
@@ -94,29 +100,43 @@ def convert_block(
94
100
 
95
101
  if isinstance(block, ScaleBlock):
96
102
  scaled_ops = convert_block(block.block, n_qubits, config)
97
- scale = (
98
- tensor([block.parameters.parameter], dtype=float64)
99
- if not block.is_parametric
100
- else config.get_param_name(block)[0]
101
- )
103
+ scale = extract_parameter(block, config)
102
104
  return [pyq.Scale(pyq.Sequence(scaled_ops), scale)]
103
105
 
104
106
  elif isinstance(block, TimeEvolutionBlock):
105
- # TODO add native pyq hamevo
106
- # generator = convert_block(block.generator, n_qubits, config)[0] # type: ignore[arg-type]
107
- # time_param = config.get_param_name(block)[0]
108
- # is_parametric = (
109
- # block.generator.is_parametric if isinstance(block.generator, AbstractBlock) else False
110
- # )
111
- # return [
112
- # pyq.HamiltonianEvolution(
113
- # qubit_support=qubit_support,
114
- # generator=generator,
115
- # time=time_param,
116
- # generator_parametric=is_parametric, # type: ignore[union-attr]
117
- # )
118
- # ]
119
- return [PyQHamiltonianEvolution(qubit_support, n_qubits, block, config)]
107
+ if getattr(block.generator, "is_time_dependent", False):
108
+ return [PyQTimeDependentEvolution(qubit_support, n_qubits, block, config)]
109
+ else:
110
+ if isinstance(block.generator, sympy.Basic):
111
+ generator = config.get_param_name(block)[1]
112
+ elif isinstance(block.generator, Tensor):
113
+ m = block.generator.to(dtype=cdouble)
114
+ generator = convert_block(
115
+ MatrixBlock(
116
+ m,
117
+ qubit_support=qubit_support,
118
+ check_unitary=False,
119
+ check_hermitian=True,
120
+ )
121
+ )[0]
122
+ else:
123
+ generator = convert_block(block.generator, n_qubits, config)[0] # type: ignore[arg-type]
124
+ time_param = config.get_param_name(block)[0]
125
+ is_parametric = (
126
+ block.generator.is_parametric
127
+ if isinstance(block.generator, AbstractBlock)
128
+ else False
129
+ )
130
+ return [
131
+ pyq.HamiltonianEvolution(
132
+ qubit_support=qubit_support,
133
+ generator=generator,
134
+ time=time_param,
135
+ generator_parametric=is_parametric, # type: ignore[union-attr]
136
+ cache_length=0,
137
+ )
138
+ ]
139
+
120
140
  elif isinstance(block, MatrixBlock):
121
141
  return [pyq.primitives.Primitive(block.matrix, block.qubit_support)]
122
142
  elif isinstance(block, CompositeBlock):
@@ -142,14 +162,14 @@ def convert_block(
142
162
  if isinstance(block, U):
143
163
  op = pyq_cls(qubit_support[0], *config.get_param_name(block))
144
164
  else:
145
- op = pyq_cls(qubit_support[0], config.get_param_name(block)[0])
165
+ op = pyq_cls(qubit_support[0], extract_parameter(block, config))
146
166
  else:
147
167
  op = pyq_cls(qubit_support[0])
148
168
  return [op]
149
169
  elif isinstance(block, tuple(two_qubit_gateset)):
150
170
  pyq_cls = getattr(pyq, block.name)
151
171
  if isinstance(block, ParametricBlock):
152
- op = pyq_cls(qubit_support[0], qubit_support[1], config.get_param_name(block)[0])
172
+ op = pyq_cls(qubit_support[0], qubit_support[1], extract_parameter(block, config))
153
173
  else:
154
174
  op = pyq_cls(qubit_support[0], qubit_support[1])
155
175
  return [op]
@@ -157,7 +177,7 @@ def convert_block(
157
177
  block_name = block.name[1:] if block.name.startswith("M") else block.name
158
178
  pyq_cls = getattr(pyq, block_name)
159
179
  if isinstance(block, ParametricBlock):
160
- op = pyq_cls(qubit_support[:-1], qubit_support[-1], config.get_param_name(block)[0])
180
+ op = pyq_cls(qubit_support[:-1], qubit_support[-1], extract_parameter(block, config))
161
181
  else:
162
182
  if "CSWAP" in block_name:
163
183
  op = pyq_cls(qubit_support[:-2], qubit_support[-2:])
@@ -172,7 +192,7 @@ def convert_block(
172
192
  )
173
193
 
174
194
 
175
- class PyQHamiltonianEvolution(Module):
195
+ class PyQTimeDependentEvolution(Module):
176
196
  def __init__(
177
197
  self,
178
198
  qubit_support: Tuple[int, ...],
@@ -188,50 +208,17 @@ class PyQHamiltonianEvolution(Module):
188
208
  self.hmat: Tensor
189
209
  self.config = config
190
210
 
191
- if isinstance(block.generator, AbstractBlock) and not block.generator.is_parametric:
192
- hmat = block_to_tensor(
193
- block.generator,
194
- qubit_support=self.qubit_support,
195
- use_full_support=False,
196
- )
197
- hmat = hmat.permute(1, 2, 0)
198
- self.register_buffer("hmat", hmat)
199
- self._hamiltonian = lambda self, values: self.hmat
200
-
201
- elif isinstance(block.generator, Tensor):
202
- m = block.generator.to(dtype=cdouble)
203
- hmat = block_to_tensor(
204
- MatrixBlock(
205
- m,
206
- qubit_support=block.qubit_support,
207
- check_unitary=False,
208
- check_hermitian=True,
209
- ),
211
+ def _hamiltonian(self: PyQTimeDependentEvolution, values: dict[str, Tensor]) -> Tensor:
212
+ hmat = _block_to_tensor_embedded(
213
+ block.generator, # type: ignore[arg-type]
214
+ values=values,
210
215
  qubit_support=self.qubit_support,
211
216
  use_full_support=False,
217
+ device=self.device,
212
218
  )
213
- hmat = hmat.permute(1, 2, 0)
214
- self.register_buffer("hmat", hmat)
215
- self._hamiltonian = lambda self, values: self.hmat
216
-
217
- elif isinstance(block.generator, sympy.Basic):
218
- self._hamiltonian = (
219
- lambda self, values: values[self.param_names[1]].squeeze(3).permute(1, 2, 0)
220
- )
221
- # FIXME Why are we squeezing
222
- else:
223
-
224
- def _hamiltonian(self: PyQHamiltonianEvolution, values: dict[str, Tensor]) -> Tensor:
225
- hmat = _block_to_tensor_embedded(
226
- block.generator, # type: ignore[arg-type]
227
- values=values,
228
- qubit_support=self.qubit_support,
229
- use_full_support=False,
230
- device=self.device,
231
- )
232
- return hmat.permute(1, 2, 0)
219
+ return hmat.permute(1, 2, 0)
233
220
 
234
- self._hamiltonian = _hamiltonian
221
+ self._hamiltonian = _hamiltonian
235
222
 
236
223
  self._time_evolution = lambda values: values[self.param_names[0]]
237
224
  self._device: torch_device = (
@@ -322,59 +309,51 @@ class PyQHamiltonianEvolution(Module):
322
309
  values: dict[str, Tensor] | ParameterDict = dict(),
323
310
  embedding: Embedding | None = None,
324
311
  ) -> Tensor:
325
- if getattr(self.block.generator, "is_time_dependent", False): # type: ignore [union-attr]
326
-
327
- def Ht(t: Tensor | float) -> Tensor:
328
- # values dict has to change with new value of t
329
- # initial value of a feature parameter inside generator block
330
- # has to be inferred here
331
- new_vals = dict()
332
- for str_expr, val in values.items():
333
- expr = sympy.sympify(str_expr)
334
- t_symb = sympy.Symbol(self._get_time_parameter())
335
- free_symbols = expr.free_symbols
336
- if t_symb in free_symbols:
337
- # create substitution list for time and feature params
338
- subs_list = [(t_symb, t)]
339
-
340
- if len(free_symbols) > 1:
341
- # get feature param symbols
342
- feat_symbols = free_symbols.difference(set([t_symb]))
343
-
344
- # get feature param values
345
- feat_vals = values["orig_param_values"]
346
-
347
- # update substitution list with feature param values
348
- for fs in feat_symbols:
349
- subs_list.append((fs, feat_vals[str(fs)]))
350
-
351
- # evaluate expression with new time param value
352
- new_vals[str_expr] = torch.tensor(float(expr.subs(subs_list)))
353
- else:
354
- # expression doesn't contain time parameter - copy it as is
355
- new_vals[str_expr] = val
356
-
357
- # get matrix form of generator
358
- hmat = _block_to_tensor_embedded(
359
- self.block.generator, # type: ignore[arg-type]
360
- values=new_vals,
361
- qubit_support=self.qubit_support,
362
- use_full_support=False,
363
- device=self.device,
364
- ).squeeze(0)
365
-
366
- return hmat
367
-
368
- tsave = torch.linspace(0, self.block.duration, self.config.n_steps_hevo) # type: ignore [attr-defined]
369
- result = pyqify(
370
- sesolve(Ht, unpyqify(state).T[:, 0:1], tsave, self.config.ode_solver).states[-1].T
371
- )
372
- else:
373
- result = apply_operator(
374
- state,
375
- self.unitary(values),
376
- self.qubit_support,
377
- )
312
+ def Ht(t: Tensor | float) -> Tensor:
313
+ # values dict has to change with new value of t
314
+ # initial value of a feature parameter inside generator block
315
+ # has to be inferred here
316
+ new_vals = dict()
317
+ for str_expr, val in values.items():
318
+ expr = sympy.sympify(str_expr)
319
+ t_symb = sympy.Symbol(self._get_time_parameter())
320
+ free_symbols = expr.free_symbols
321
+ if t_symb in free_symbols:
322
+ # create substitution list for time and feature params
323
+ subs_list = [(t_symb, t)]
324
+
325
+ if len(free_symbols) > 1:
326
+ # get feature param symbols
327
+ feat_symbols = free_symbols.difference(set([t_symb]))
328
+
329
+ # get feature param values
330
+ feat_vals = values["orig_param_values"]
331
+
332
+ # update substitution list with feature param values
333
+ for fs in feat_symbols:
334
+ subs_list.append((fs, feat_vals[str(fs)]))
335
+
336
+ # evaluate expression with new time param value
337
+ new_vals[str_expr] = torch.tensor(float(expr.subs(subs_list)))
338
+ else:
339
+ # expression doesn't contain time parameter - copy it as is
340
+ new_vals[str_expr] = val
341
+
342
+ # get matrix form of generator
343
+ hmat = _block_to_tensor_embedded(
344
+ self.block.generator, # type: ignore[arg-type]
345
+ values=new_vals,
346
+ qubit_support=self.qubit_support,
347
+ use_full_support=False,
348
+ device=self.device,
349
+ ).squeeze(0)
350
+
351
+ return hmat
352
+
353
+ tsave = torch.linspace(0, self.block.duration, self.config.n_steps_hevo) # type: ignore [attr-defined]
354
+ result = pyqify(
355
+ sesolve(Ht, unpyqify(state).T[:, 0:1], tsave, self.config.ode_solver).states[-1].T
356
+ )
378
357
 
379
358
  return result
380
359
 
@@ -386,7 +365,7 @@ class PyQHamiltonianEvolution(Module):
386
365
  def dtype(self) -> torch_dtype:
387
366
  return self._dtype
388
367
 
389
- def to(self, *args: Any, **kwargs: Any) -> PyQHamiltonianEvolution:
368
+ def to(self, *args: Any, **kwargs: Any) -> PyQTimeDependentEvolution:
390
369
  if hasattr(self, "hmat"):
391
370
  self.hmat = self.hmat.to(*args, **kwargs)
392
371
  self._device = self.hmat.device
@@ -231,8 +231,15 @@ class DifferentiableExpectation:
231
231
  if shift_factor == 1:
232
232
  param_to_psr[param_id] = psr_fn(eigenvalues, **psr_args)
233
233
  else:
234
- psr_args_factor = {k: v * shift_factor for k, v in psr_args.items()}
235
- param_to_psr[param_id] = psr_fn(eigenvalues, **psr_args)
234
+ psr_args_factor = psr_args.copy()
235
+ if "shift_prefac" in psr_args_factor:
236
+ if psr_args_factor["shift_prefac"] is not None:
237
+ psr_args_factor["shift_prefac"] = (
238
+ shift_factor * psr_args_factor["shift_prefac"]
239
+ )
240
+ else:
241
+ psr_args_factor["shift_prefac"] = shift_factor
242
+ param_to_psr[param_id] = psr_fn(eigenvalues, **psr_args_factor)
236
243
  for obs in observable:
237
244
  for param_id, _ in uuid_to_eigen(obs).items():
238
245
  # We need the embedded fixed params of the observable in the param_values dict
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: qadence
3
- Version: 1.7.5
3
+ Version: 1.7.6
4
4
  Summary: Pasqal interface for circuit-based quantum computing SDKs
5
5
  Author-email: Aleksander Wennersteen <aleksander.wennersteen@pasqal.com>, Gert-Jan Both <gert-jan.both@pasqal.com>, Niklas Heim <niklas.heim@pasqal.com>, Mario Dagrada <mario.dagrada@pasqal.com>, Vincent Elfving <vincent.elfving@pasqal.com>, Dominik Seitz <dominik.seitz@pasqal.com>, Roland Guichard <roland.guichard@pasqal.com>, "Joao P. Moutinho" <joao.moutinho@pasqal.com>, Vytautas Abramavicius <vytautas.abramavicius@pasqal.com>, Gergana Velikova <gergana.velikova@pasqal.com>, Eduardo Maschio <eduardo.maschio@pasqal.com>, Smit Chaudhary <smit.chaudhary@pasqal.com>, Ignacio Fernández Graña <ignacio.fernandez-grana@pasqal.com>, Charles Moussa <charles.moussa@pasqal.com>, Giorgio Tosti Balducci <giorgio.tosti-balducci@pasqal.com>
6
6
  License: Apache 2.0
@@ -22,7 +22,7 @@ Requires-Dist: matplotlib
22
22
  Requires-Dist: nevergrad
23
23
  Requires-Dist: numpy
24
24
  Requires-Dist: openfermion
25
- Requires-Dist: pyqtorch==1.4.3
25
+ Requires-Dist: pyqtorch==1.4.4
26
26
  Requires-Dist: pyyaml
27
27
  Requires-Dist: rich
28
28
  Requires-Dist: scipy
@@ -28,7 +28,7 @@ qadence/analog/hamiltonian_terms.py,sha256=9LKidqqEMJTTdXeaxkxP_otTmcv9i4yeJ-JKC
28
28
  qadence/analog/parse_analog.py,sha256=ppvMZtsKXOIkIehCgjbdmG9n232DIycSanyuyVth5Wg,4223
29
29
  qadence/backends/__init__.py,sha256=ibm7wmZxuIoMYAQxgAx0MsfLYWOVHNWgLwyS1HjMuuI,215
30
30
  qadence/backends/api.py,sha256=NPrvtZQ4klUBabUWJ5hbTUCVoaoW9-sHVbiXxAnTt3A,2643
31
- qadence/backends/gpsr.py,sha256=dTmXcOKm_kJywl2EPJbUIjkylRh3J7hfWQyhLDLXYZQ,4758
31
+ qadence/backends/gpsr.py,sha256=3lcOHgt0soCiDXAyZ8DVyS8dMgUypIPwkDADds2boSE,5371
32
32
  qadence/backends/jax_utils.py,sha256=VfKhqCKknHDWZO21UFipWH_Lkiq175Z5GkP49gWjbyw,5038
33
33
  qadence/backends/utils.py,sha256=7gWiV_yJH3yyGFxwt-AQLEMLYkBX8aThvmFUlF0M2R0,8302
34
34
  qadence/backends/braket/__init__.py,sha256=eruyDZKMqkh1LE7eJ980vcrLJbia35uUX6krAP78clI,121
@@ -51,7 +51,7 @@ qadence/backends/pulser/waveforms.py,sha256=0uz95b7rUaUUtN0tuHBZmJ0H6UBmfHST_59o
51
51
  qadence/backends/pyqtorch/__init__.py,sha256=0OdVy6cq0oQggV48LO1WXdaZuSkDkz7OYNEPIkNAmfk,140
52
52
  qadence/backends/pyqtorch/backend.py,sha256=ITJ52hFAK0jfXo2-2QyIZ1Mt0NcxrwjJqVuT7dyR8hg,9178
53
53
  qadence/backends/pyqtorch/config.py,sha256=jK-if0OF6L_inP-oZhWI4-b8wcrOiK8-EVv3NYDOfBM,2056
54
- qadence/backends/pyqtorch/convert_ops.py,sha256=zDV9lj72K59YsJyky0Q7Je3NweZHrk5IO0uyMggLyKI,15097
54
+ qadence/backends/pyqtorch/convert_ops.py,sha256=gOETCypdCzecpvYy-5ROoCIML4HBy1Fq1NiqriD3tGc,14127
55
55
  qadence/blocks/__init__.py,sha256=H6jEA_CptkE-eoB4UfSbUiDszbxxhZwECV_TgoZWXoU,960
56
56
  qadence/blocks/abstract.py,sha256=QFwKPagbTrn3V4c2DHpBd-QL_mVIUXfbvyBLUdD6zw4,12023
57
57
  qadence/blocks/analog.py,sha256=ymnnlSVoW1XL05ZvnnHCqRTHuOXIEY_7E9M0PNKJZy4,10812
@@ -90,7 +90,7 @@ qadence/engines/jax/differentiable_backend.py,sha256=W5rDA8wb-ECnFWoLj4dVugF9v1l
90
90
  qadence/engines/jax/differentiable_expectation.py,sha256=poI--yV3srG3wndTcg6hk1lV63RYPJEQjypiWGzwqsk,3680
91
91
  qadence/engines/torch/__init__.py,sha256=iZFdD32ot0B0CVyC-f5dVViOBnqoalxa6M9Lj4WQuPE,160
92
92
  qadence/engines/torch/differentiable_backend.py,sha256=AWthwvKE8pCOih4dZ3tXxQX4W1ps9mBcvo7n4V9V24Y,3553
93
- qadence/engines/torch/differentiable_expectation.py,sha256=sN21wa5AbdlXTDRNK5FonYbmfXWbLDQ-ESHrn17Ruso,9946
93
+ qadence/engines/torch/differentiable_expectation.py,sha256=iaWpd4Y3e_rGKt-S0TNXqqSFg5z6I_5_ZIJxjQxd7Ow,10290
94
94
  qadence/exceptions/__init__.py,sha256=BU6vWrI9mshzr1aTPm1Ticr_o_42GjTrWI4OZXhThsI,203
95
95
  qadence/exceptions/exceptions.py,sha256=4j_VJpx2sZ2Mir5BJUWu4nwb131FY1ygO4q8-XlyfRc,190
96
96
  qadence/measurements/__init__.py,sha256=RIjG9tVJMqhNzyj7maZI250Um0KgHl2PizDcKJag-JU,161
@@ -133,7 +133,7 @@ qadence/transpile/digitalize.py,sha256=iWRwYAYQsD2INHj0HNbGJriv_3fRCuBW1nDBrwtKS
133
133
  qadence/transpile/flatten.py,sha256=EdhSG5WyF56nbnxINNLqrHgY84MRM1YFjT3fR4aph5Q,3427
134
134
  qadence/transpile/invert.py,sha256=KAefHTG2AWr39aengVhXrzCtJPhrZC-ZnL6vYvmbnY0,4867
135
135
  qadence/transpile/transpile.py,sha256=6MRRkk1OS279L1fwUQjazA6qlfpbd-T_EJMKT8hAhOU,2721
136
- qadence-1.7.5.dist-info/METADATA,sha256=fh8IjATKiYFEPkpPXOzirL9PCYnXk-YaLARmUmxoQP0,9936
137
- qadence-1.7.5.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
138
- qadence-1.7.5.dist-info/licenses/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
139
- qadence-1.7.5.dist-info/RECORD,,
136
+ qadence-1.7.6.dist-info/METADATA,sha256=Q0bt-7eH8L7b3QffCuD68-vjWa3F6kXBdZHarDsnC5c,9936
137
+ qadence-1.7.6.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
138
+ qadence-1.7.6.dist-info/licenses/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
139
+ qadence-1.7.6.dist-info/RECORD,,