qadence 1.7.5__py3-none-any.whl → 1.7.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- qadence/backends/gpsr.py +19 -3
- qadence/backends/pyqtorch/convert_ops.py +99 -120
- qadence/engines/torch/differentiable_expectation.py +9 -2
- {qadence-1.7.5.dist-info → qadence-1.7.6.dist-info}/METADATA +2 -2
- {qadence-1.7.5.dist-info → qadence-1.7.6.dist-info}/RECORD +7 -7
- {qadence-1.7.5.dist-info → qadence-1.7.6.dist-info}/WHEEL +0 -0
- {qadence-1.7.5.dist-info → qadence-1.7.6.dist-info}/licenses/LICENSE +0 -0
qadence/backends/gpsr.py
CHANGED
@@ -10,14 +10,30 @@ from qadence.types import PI
|
|
10
10
|
from qadence.utils import _round_complex
|
11
11
|
|
12
12
|
|
13
|
-
def general_psr(spectrum: Tensor, shift_prefac: float = 0.5) -> Callable:
|
13
|
+
def general_psr(spectrum: Tensor, n_eqs: int | None = None, shift_prefac: float = 0.5) -> Callable:
|
14
|
+
"""Define whether single_gap_psr or multi_gap_psr is used.
|
15
|
+
|
16
|
+
Args:
|
17
|
+
spectrum (Tensor): Spectrum of the operation we apply PSR onto.
|
18
|
+
n_eqs (int | None, optional): Number of equations. Defaults to None.
|
19
|
+
If provided, we keep the n_eqs higher spectral gaps.
|
20
|
+
shift_prefac (float, optional): Shift prefactor. Defaults to 0.5.
|
21
|
+
|
22
|
+
Returns:
|
23
|
+
Callable: single_gap_psr or multi_gap_psr function for
|
24
|
+
concerned operation.
|
25
|
+
"""
|
14
26
|
diffs = _round_complex(spectrum - spectrum.reshape(-1, 1))
|
15
27
|
sorted_unique_spectral_gaps = torch.unique(torch.abs(torch.tril(diffs)))
|
16
28
|
|
17
29
|
# We have to filter out zeros
|
18
30
|
sorted_unique_spectral_gaps = sorted_unique_spectral_gaps[sorted_unique_spectral_gaps > 0]
|
19
|
-
n_eqs =
|
20
|
-
|
31
|
+
n_eqs = (
|
32
|
+
len(sorted_unique_spectral_gaps)
|
33
|
+
if n_eqs is None
|
34
|
+
else min(n_eqs, len(sorted_unique_spectral_gaps))
|
35
|
+
)
|
36
|
+
sorted_unique_spectral_gaps = torch.tensor(list(sorted_unique_spectral_gaps)[:n_eqs])
|
21
37
|
|
22
38
|
if n_eqs == 1:
|
23
39
|
return single_gap_psr
|
@@ -7,7 +7,6 @@ from typing import Any, Sequence, Tuple
|
|
7
7
|
import pyqtorch as pyq
|
8
8
|
import sympy
|
9
9
|
import torch
|
10
|
-
from pyqtorch.apply import apply_operator
|
11
10
|
from pyqtorch.embed import Embedding
|
12
11
|
from pyqtorch.matrices import _dagger
|
13
12
|
from pyqtorch.time_dependent.sesolve import sesolve
|
@@ -45,7 +44,6 @@ from qadence.blocks import (
|
|
45
44
|
)
|
46
45
|
from qadence.blocks.block_to_tensor import (
|
47
46
|
_block_to_tensor_embedded,
|
48
|
-
block_to_tensor,
|
49
47
|
)
|
50
48
|
from qadence.blocks.primitive import ProjectorBlock
|
51
49
|
from qadence.blocks.utils import parameters
|
@@ -78,6 +76,14 @@ def is_single_qubit_chain(block: AbstractBlock) -> bool:
|
|
78
76
|
)
|
79
77
|
|
80
78
|
|
79
|
+
def extract_parameter(block: ScaleBlock | ParametricBlock, config: Configuration) -> str | Tensor:
|
80
|
+
return (
|
81
|
+
tensor([block.parameters.parameter], dtype=float64)
|
82
|
+
if not block.is_parametric
|
83
|
+
else config.get_param_name(block)[0]
|
84
|
+
)
|
85
|
+
|
86
|
+
|
81
87
|
def convert_block(
|
82
88
|
block: AbstractBlock, n_qubits: int = None, config: Configuration = None
|
83
89
|
) -> Sequence[Module | Tensor | str | sympy.Expr]:
|
@@ -94,29 +100,43 @@ def convert_block(
|
|
94
100
|
|
95
101
|
if isinstance(block, ScaleBlock):
|
96
102
|
scaled_ops = convert_block(block.block, n_qubits, config)
|
97
|
-
scale = (
|
98
|
-
tensor([block.parameters.parameter], dtype=float64)
|
99
|
-
if not block.is_parametric
|
100
|
-
else config.get_param_name(block)[0]
|
101
|
-
)
|
103
|
+
scale = extract_parameter(block, config)
|
102
104
|
return [pyq.Scale(pyq.Sequence(scaled_ops), scale)]
|
103
105
|
|
104
106
|
elif isinstance(block, TimeEvolutionBlock):
|
105
|
-
|
106
|
-
|
107
|
-
|
108
|
-
|
109
|
-
|
110
|
-
|
111
|
-
|
112
|
-
|
113
|
-
|
114
|
-
|
115
|
-
|
116
|
-
|
117
|
-
|
118
|
-
|
119
|
-
|
107
|
+
if getattr(block.generator, "is_time_dependent", False):
|
108
|
+
return [PyQTimeDependentEvolution(qubit_support, n_qubits, block, config)]
|
109
|
+
else:
|
110
|
+
if isinstance(block.generator, sympy.Basic):
|
111
|
+
generator = config.get_param_name(block)[1]
|
112
|
+
elif isinstance(block.generator, Tensor):
|
113
|
+
m = block.generator.to(dtype=cdouble)
|
114
|
+
generator = convert_block(
|
115
|
+
MatrixBlock(
|
116
|
+
m,
|
117
|
+
qubit_support=qubit_support,
|
118
|
+
check_unitary=False,
|
119
|
+
check_hermitian=True,
|
120
|
+
)
|
121
|
+
)[0]
|
122
|
+
else:
|
123
|
+
generator = convert_block(block.generator, n_qubits, config)[0] # type: ignore[arg-type]
|
124
|
+
time_param = config.get_param_name(block)[0]
|
125
|
+
is_parametric = (
|
126
|
+
block.generator.is_parametric
|
127
|
+
if isinstance(block.generator, AbstractBlock)
|
128
|
+
else False
|
129
|
+
)
|
130
|
+
return [
|
131
|
+
pyq.HamiltonianEvolution(
|
132
|
+
qubit_support=qubit_support,
|
133
|
+
generator=generator,
|
134
|
+
time=time_param,
|
135
|
+
generator_parametric=is_parametric, # type: ignore[union-attr]
|
136
|
+
cache_length=0,
|
137
|
+
)
|
138
|
+
]
|
139
|
+
|
120
140
|
elif isinstance(block, MatrixBlock):
|
121
141
|
return [pyq.primitives.Primitive(block.matrix, block.qubit_support)]
|
122
142
|
elif isinstance(block, CompositeBlock):
|
@@ -142,14 +162,14 @@ def convert_block(
|
|
142
162
|
if isinstance(block, U):
|
143
163
|
op = pyq_cls(qubit_support[0], *config.get_param_name(block))
|
144
164
|
else:
|
145
|
-
op = pyq_cls(qubit_support[0],
|
165
|
+
op = pyq_cls(qubit_support[0], extract_parameter(block, config))
|
146
166
|
else:
|
147
167
|
op = pyq_cls(qubit_support[0])
|
148
168
|
return [op]
|
149
169
|
elif isinstance(block, tuple(two_qubit_gateset)):
|
150
170
|
pyq_cls = getattr(pyq, block.name)
|
151
171
|
if isinstance(block, ParametricBlock):
|
152
|
-
op = pyq_cls(qubit_support[0], qubit_support[1],
|
172
|
+
op = pyq_cls(qubit_support[0], qubit_support[1], extract_parameter(block, config))
|
153
173
|
else:
|
154
174
|
op = pyq_cls(qubit_support[0], qubit_support[1])
|
155
175
|
return [op]
|
@@ -157,7 +177,7 @@ def convert_block(
|
|
157
177
|
block_name = block.name[1:] if block.name.startswith("M") else block.name
|
158
178
|
pyq_cls = getattr(pyq, block_name)
|
159
179
|
if isinstance(block, ParametricBlock):
|
160
|
-
op = pyq_cls(qubit_support[:-1], qubit_support[-1],
|
180
|
+
op = pyq_cls(qubit_support[:-1], qubit_support[-1], extract_parameter(block, config))
|
161
181
|
else:
|
162
182
|
if "CSWAP" in block_name:
|
163
183
|
op = pyq_cls(qubit_support[:-2], qubit_support[-2:])
|
@@ -172,7 +192,7 @@ def convert_block(
|
|
172
192
|
)
|
173
193
|
|
174
194
|
|
175
|
-
class
|
195
|
+
class PyQTimeDependentEvolution(Module):
|
176
196
|
def __init__(
|
177
197
|
self,
|
178
198
|
qubit_support: Tuple[int, ...],
|
@@ -188,50 +208,17 @@ class PyQHamiltonianEvolution(Module):
|
|
188
208
|
self.hmat: Tensor
|
189
209
|
self.config = config
|
190
210
|
|
191
|
-
|
192
|
-
hmat =
|
193
|
-
block.generator,
|
194
|
-
|
195
|
-
use_full_support=False,
|
196
|
-
)
|
197
|
-
hmat = hmat.permute(1, 2, 0)
|
198
|
-
self.register_buffer("hmat", hmat)
|
199
|
-
self._hamiltonian = lambda self, values: self.hmat
|
200
|
-
|
201
|
-
elif isinstance(block.generator, Tensor):
|
202
|
-
m = block.generator.to(dtype=cdouble)
|
203
|
-
hmat = block_to_tensor(
|
204
|
-
MatrixBlock(
|
205
|
-
m,
|
206
|
-
qubit_support=block.qubit_support,
|
207
|
-
check_unitary=False,
|
208
|
-
check_hermitian=True,
|
209
|
-
),
|
211
|
+
def _hamiltonian(self: PyQTimeDependentEvolution, values: dict[str, Tensor]) -> Tensor:
|
212
|
+
hmat = _block_to_tensor_embedded(
|
213
|
+
block.generator, # type: ignore[arg-type]
|
214
|
+
values=values,
|
210
215
|
qubit_support=self.qubit_support,
|
211
216
|
use_full_support=False,
|
217
|
+
device=self.device,
|
212
218
|
)
|
213
|
-
|
214
|
-
self.register_buffer("hmat", hmat)
|
215
|
-
self._hamiltonian = lambda self, values: self.hmat
|
216
|
-
|
217
|
-
elif isinstance(block.generator, sympy.Basic):
|
218
|
-
self._hamiltonian = (
|
219
|
-
lambda self, values: values[self.param_names[1]].squeeze(3).permute(1, 2, 0)
|
220
|
-
)
|
221
|
-
# FIXME Why are we squeezing
|
222
|
-
else:
|
223
|
-
|
224
|
-
def _hamiltonian(self: PyQHamiltonianEvolution, values: dict[str, Tensor]) -> Tensor:
|
225
|
-
hmat = _block_to_tensor_embedded(
|
226
|
-
block.generator, # type: ignore[arg-type]
|
227
|
-
values=values,
|
228
|
-
qubit_support=self.qubit_support,
|
229
|
-
use_full_support=False,
|
230
|
-
device=self.device,
|
231
|
-
)
|
232
|
-
return hmat.permute(1, 2, 0)
|
219
|
+
return hmat.permute(1, 2, 0)
|
233
220
|
|
234
|
-
|
221
|
+
self._hamiltonian = _hamiltonian
|
235
222
|
|
236
223
|
self._time_evolution = lambda values: values[self.param_names[0]]
|
237
224
|
self._device: torch_device = (
|
@@ -322,59 +309,51 @@ class PyQHamiltonianEvolution(Module):
|
|
322
309
|
values: dict[str, Tensor] | ParameterDict = dict(),
|
323
310
|
embedding: Embedding | None = None,
|
324
311
|
) -> Tensor:
|
325
|
-
|
326
|
-
|
327
|
-
|
328
|
-
|
329
|
-
|
330
|
-
|
331
|
-
|
332
|
-
|
333
|
-
|
334
|
-
|
335
|
-
|
336
|
-
|
337
|
-
|
338
|
-
|
339
|
-
|
340
|
-
|
341
|
-
|
342
|
-
|
343
|
-
|
344
|
-
|
345
|
-
|
346
|
-
|
347
|
-
|
348
|
-
|
349
|
-
|
350
|
-
|
351
|
-
|
352
|
-
|
353
|
-
|
354
|
-
|
355
|
-
|
356
|
-
|
357
|
-
#
|
358
|
-
|
359
|
-
|
360
|
-
|
361
|
-
|
362
|
-
|
363
|
-
|
364
|
-
|
365
|
-
|
366
|
-
|
367
|
-
|
368
|
-
|
369
|
-
|
370
|
-
sesolve(Ht, unpyqify(state).T[:, 0:1], tsave, self.config.ode_solver).states[-1].T
|
371
|
-
)
|
372
|
-
else:
|
373
|
-
result = apply_operator(
|
374
|
-
state,
|
375
|
-
self.unitary(values),
|
376
|
-
self.qubit_support,
|
377
|
-
)
|
312
|
+
def Ht(t: Tensor | float) -> Tensor:
|
313
|
+
# values dict has to change with new value of t
|
314
|
+
# initial value of a feature parameter inside generator block
|
315
|
+
# has to be inferred here
|
316
|
+
new_vals = dict()
|
317
|
+
for str_expr, val in values.items():
|
318
|
+
expr = sympy.sympify(str_expr)
|
319
|
+
t_symb = sympy.Symbol(self._get_time_parameter())
|
320
|
+
free_symbols = expr.free_symbols
|
321
|
+
if t_symb in free_symbols:
|
322
|
+
# create substitution list for time and feature params
|
323
|
+
subs_list = [(t_symb, t)]
|
324
|
+
|
325
|
+
if len(free_symbols) > 1:
|
326
|
+
# get feature param symbols
|
327
|
+
feat_symbols = free_symbols.difference(set([t_symb]))
|
328
|
+
|
329
|
+
# get feature param values
|
330
|
+
feat_vals = values["orig_param_values"]
|
331
|
+
|
332
|
+
# update substitution list with feature param values
|
333
|
+
for fs in feat_symbols:
|
334
|
+
subs_list.append((fs, feat_vals[str(fs)]))
|
335
|
+
|
336
|
+
# evaluate expression with new time param value
|
337
|
+
new_vals[str_expr] = torch.tensor(float(expr.subs(subs_list)))
|
338
|
+
else:
|
339
|
+
# expression doesn't contain time parameter - copy it as is
|
340
|
+
new_vals[str_expr] = val
|
341
|
+
|
342
|
+
# get matrix form of generator
|
343
|
+
hmat = _block_to_tensor_embedded(
|
344
|
+
self.block.generator, # type: ignore[arg-type]
|
345
|
+
values=new_vals,
|
346
|
+
qubit_support=self.qubit_support,
|
347
|
+
use_full_support=False,
|
348
|
+
device=self.device,
|
349
|
+
).squeeze(0)
|
350
|
+
|
351
|
+
return hmat
|
352
|
+
|
353
|
+
tsave = torch.linspace(0, self.block.duration, self.config.n_steps_hevo) # type: ignore [attr-defined]
|
354
|
+
result = pyqify(
|
355
|
+
sesolve(Ht, unpyqify(state).T[:, 0:1], tsave, self.config.ode_solver).states[-1].T
|
356
|
+
)
|
378
357
|
|
379
358
|
return result
|
380
359
|
|
@@ -386,7 +365,7 @@ class PyQHamiltonianEvolution(Module):
|
|
386
365
|
def dtype(self) -> torch_dtype:
|
387
366
|
return self._dtype
|
388
367
|
|
389
|
-
def to(self, *args: Any, **kwargs: Any) ->
|
368
|
+
def to(self, *args: Any, **kwargs: Any) -> PyQTimeDependentEvolution:
|
390
369
|
if hasattr(self, "hmat"):
|
391
370
|
self.hmat = self.hmat.to(*args, **kwargs)
|
392
371
|
self._device = self.hmat.device
|
@@ -231,8 +231,15 @@ class DifferentiableExpectation:
|
|
231
231
|
if shift_factor == 1:
|
232
232
|
param_to_psr[param_id] = psr_fn(eigenvalues, **psr_args)
|
233
233
|
else:
|
234
|
-
psr_args_factor =
|
235
|
-
|
234
|
+
psr_args_factor = psr_args.copy()
|
235
|
+
if "shift_prefac" in psr_args_factor:
|
236
|
+
if psr_args_factor["shift_prefac"] is not None:
|
237
|
+
psr_args_factor["shift_prefac"] = (
|
238
|
+
shift_factor * psr_args_factor["shift_prefac"]
|
239
|
+
)
|
240
|
+
else:
|
241
|
+
psr_args_factor["shift_prefac"] = shift_factor
|
242
|
+
param_to_psr[param_id] = psr_fn(eigenvalues, **psr_args_factor)
|
236
243
|
for obs in observable:
|
237
244
|
for param_id, _ in uuid_to_eigen(obs).items():
|
238
245
|
# We need the embedded fixed params of the observable in the param_values dict
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.3
|
2
2
|
Name: qadence
|
3
|
-
Version: 1.7.
|
3
|
+
Version: 1.7.6
|
4
4
|
Summary: Pasqal interface for circuit-based quantum computing SDKs
|
5
5
|
Author-email: Aleksander Wennersteen <aleksander.wennersteen@pasqal.com>, Gert-Jan Both <gert-jan.both@pasqal.com>, Niklas Heim <niklas.heim@pasqal.com>, Mario Dagrada <mario.dagrada@pasqal.com>, Vincent Elfving <vincent.elfving@pasqal.com>, Dominik Seitz <dominik.seitz@pasqal.com>, Roland Guichard <roland.guichard@pasqal.com>, "Joao P. Moutinho" <joao.moutinho@pasqal.com>, Vytautas Abramavicius <vytautas.abramavicius@pasqal.com>, Gergana Velikova <gergana.velikova@pasqal.com>, Eduardo Maschio <eduardo.maschio@pasqal.com>, Smit Chaudhary <smit.chaudhary@pasqal.com>, Ignacio Fernández Graña <ignacio.fernandez-grana@pasqal.com>, Charles Moussa <charles.moussa@pasqal.com>, Giorgio Tosti Balducci <giorgio.tosti-balducci@pasqal.com>
|
6
6
|
License: Apache 2.0
|
@@ -22,7 +22,7 @@ Requires-Dist: matplotlib
|
|
22
22
|
Requires-Dist: nevergrad
|
23
23
|
Requires-Dist: numpy
|
24
24
|
Requires-Dist: openfermion
|
25
|
-
Requires-Dist: pyqtorch==1.4.
|
25
|
+
Requires-Dist: pyqtorch==1.4.4
|
26
26
|
Requires-Dist: pyyaml
|
27
27
|
Requires-Dist: rich
|
28
28
|
Requires-Dist: scipy
|
@@ -28,7 +28,7 @@ qadence/analog/hamiltonian_terms.py,sha256=9LKidqqEMJTTdXeaxkxP_otTmcv9i4yeJ-JKC
|
|
28
28
|
qadence/analog/parse_analog.py,sha256=ppvMZtsKXOIkIehCgjbdmG9n232DIycSanyuyVth5Wg,4223
|
29
29
|
qadence/backends/__init__.py,sha256=ibm7wmZxuIoMYAQxgAx0MsfLYWOVHNWgLwyS1HjMuuI,215
|
30
30
|
qadence/backends/api.py,sha256=NPrvtZQ4klUBabUWJ5hbTUCVoaoW9-sHVbiXxAnTt3A,2643
|
31
|
-
qadence/backends/gpsr.py,sha256=
|
31
|
+
qadence/backends/gpsr.py,sha256=3lcOHgt0soCiDXAyZ8DVyS8dMgUypIPwkDADds2boSE,5371
|
32
32
|
qadence/backends/jax_utils.py,sha256=VfKhqCKknHDWZO21UFipWH_Lkiq175Z5GkP49gWjbyw,5038
|
33
33
|
qadence/backends/utils.py,sha256=7gWiV_yJH3yyGFxwt-AQLEMLYkBX8aThvmFUlF0M2R0,8302
|
34
34
|
qadence/backends/braket/__init__.py,sha256=eruyDZKMqkh1LE7eJ980vcrLJbia35uUX6krAP78clI,121
|
@@ -51,7 +51,7 @@ qadence/backends/pulser/waveforms.py,sha256=0uz95b7rUaUUtN0tuHBZmJ0H6UBmfHST_59o
|
|
51
51
|
qadence/backends/pyqtorch/__init__.py,sha256=0OdVy6cq0oQggV48LO1WXdaZuSkDkz7OYNEPIkNAmfk,140
|
52
52
|
qadence/backends/pyqtorch/backend.py,sha256=ITJ52hFAK0jfXo2-2QyIZ1Mt0NcxrwjJqVuT7dyR8hg,9178
|
53
53
|
qadence/backends/pyqtorch/config.py,sha256=jK-if0OF6L_inP-oZhWI4-b8wcrOiK8-EVv3NYDOfBM,2056
|
54
|
-
qadence/backends/pyqtorch/convert_ops.py,sha256=
|
54
|
+
qadence/backends/pyqtorch/convert_ops.py,sha256=gOETCypdCzecpvYy-5ROoCIML4HBy1Fq1NiqriD3tGc,14127
|
55
55
|
qadence/blocks/__init__.py,sha256=H6jEA_CptkE-eoB4UfSbUiDszbxxhZwECV_TgoZWXoU,960
|
56
56
|
qadence/blocks/abstract.py,sha256=QFwKPagbTrn3V4c2DHpBd-QL_mVIUXfbvyBLUdD6zw4,12023
|
57
57
|
qadence/blocks/analog.py,sha256=ymnnlSVoW1XL05ZvnnHCqRTHuOXIEY_7E9M0PNKJZy4,10812
|
@@ -90,7 +90,7 @@ qadence/engines/jax/differentiable_backend.py,sha256=W5rDA8wb-ECnFWoLj4dVugF9v1l
|
|
90
90
|
qadence/engines/jax/differentiable_expectation.py,sha256=poI--yV3srG3wndTcg6hk1lV63RYPJEQjypiWGzwqsk,3680
|
91
91
|
qadence/engines/torch/__init__.py,sha256=iZFdD32ot0B0CVyC-f5dVViOBnqoalxa6M9Lj4WQuPE,160
|
92
92
|
qadence/engines/torch/differentiable_backend.py,sha256=AWthwvKE8pCOih4dZ3tXxQX4W1ps9mBcvo7n4V9V24Y,3553
|
93
|
-
qadence/engines/torch/differentiable_expectation.py,sha256=
|
93
|
+
qadence/engines/torch/differentiable_expectation.py,sha256=iaWpd4Y3e_rGKt-S0TNXqqSFg5z6I_5_ZIJxjQxd7Ow,10290
|
94
94
|
qadence/exceptions/__init__.py,sha256=BU6vWrI9mshzr1aTPm1Ticr_o_42GjTrWI4OZXhThsI,203
|
95
95
|
qadence/exceptions/exceptions.py,sha256=4j_VJpx2sZ2Mir5BJUWu4nwb131FY1ygO4q8-XlyfRc,190
|
96
96
|
qadence/measurements/__init__.py,sha256=RIjG9tVJMqhNzyj7maZI250Um0KgHl2PizDcKJag-JU,161
|
@@ -133,7 +133,7 @@ qadence/transpile/digitalize.py,sha256=iWRwYAYQsD2INHj0HNbGJriv_3fRCuBW1nDBrwtKS
|
|
133
133
|
qadence/transpile/flatten.py,sha256=EdhSG5WyF56nbnxINNLqrHgY84MRM1YFjT3fR4aph5Q,3427
|
134
134
|
qadence/transpile/invert.py,sha256=KAefHTG2AWr39aengVhXrzCtJPhrZC-ZnL6vYvmbnY0,4867
|
135
135
|
qadence/transpile/transpile.py,sha256=6MRRkk1OS279L1fwUQjazA6qlfpbd-T_EJMKT8hAhOU,2721
|
136
|
-
qadence-1.7.
|
137
|
-
qadence-1.7.
|
138
|
-
qadence-1.7.
|
139
|
-
qadence-1.7.
|
136
|
+
qadence-1.7.6.dist-info/METADATA,sha256=Q0bt-7eH8L7b3QffCuD68-vjWa3F6kXBdZHarDsnC5c,9936
|
137
|
+
qadence-1.7.6.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
|
138
|
+
qadence-1.7.6.dist-info/licenses/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
|
139
|
+
qadence-1.7.6.dist-info/RECORD,,
|
File without changes
|
File without changes
|