qadence 1.7.4__py3-none-any.whl → 1.7.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- qadence/analog/addressing.py +7 -3
- qadence/backends/api.py +9 -8
- qadence/backends/gpsr.py +18 -2
- qadence/backends/horqrux/convert_ops.py +1 -1
- qadence/backends/pyqtorch/backend.py +8 -11
- qadence/backends/pyqtorch/convert_ops.py +100 -123
- qadence/backends/utils.py +1 -1
- qadence/blocks/composite.py +5 -3
- qadence/blocks/utils.py +36 -2
- qadence/constructors/utils.py +26 -26
- qadence/engines/jax/differentiable_expectation.py +1 -1
- qadence/engines/torch/differentiable_expectation.py +17 -6
- qadence/extensions.py +28 -8
- qadence/ml_tools/__init__.py +2 -1
- qadence/ml_tools/config.py +131 -25
- qadence/ml_tools/constructors.py +39 -33
- qadence/ml_tools/data.py +27 -1
- qadence/ml_tools/optimize_step.py +3 -2
- qadence/ml_tools/saveload.py +3 -2
- qadence/ml_tools/train_grad.py +154 -94
- qadence/ml_tools/train_no_grad.py +86 -40
- qadence/model.py +47 -3
- qadence/types.py +2 -2
- {qadence-1.7.4.dist-info → qadence-1.7.6.dist-info}/METADATA +4 -4
- {qadence-1.7.4.dist-info → qadence-1.7.6.dist-info}/RECORD +27 -27
- {qadence-1.7.4.dist-info → qadence-1.7.6.dist-info}/WHEEL +0 -0
- {qadence-1.7.4.dist-info → qadence-1.7.6.dist-info}/licenses/LICENSE +0 -0
qadence/analog/addressing.py
CHANGED
@@ -59,9 +59,13 @@ class AddressingPattern:
|
|
59
59
|
) -> dict:
|
60
60
|
# augment weight dict if needed
|
61
61
|
weights = {
|
62
|
-
i:
|
63
|
-
|
64
|
-
|
62
|
+
i: (
|
63
|
+
Parameter(0.0)
|
64
|
+
if i not in weights
|
65
|
+
else (
|
66
|
+
Parameter(weights[i]) if not isinstance(weights[i], Parameter) else weights[i]
|
67
|
+
)
|
68
|
+
)
|
65
69
|
for i in range(self.n_qubits)
|
66
70
|
}
|
67
71
|
|
qadence/backends/api.py
CHANGED
@@ -3,6 +3,9 @@ from __future__ import annotations
|
|
3
3
|
from qadence.backend import Backend, BackendConfiguration
|
4
4
|
from qadence.engines.differentiable_backend import DifferentiableBackend
|
5
5
|
from qadence.extensions import (
|
6
|
+
BackendNotFoundError,
|
7
|
+
ConfigNotFoundError,
|
8
|
+
EngineNotFoundError,
|
6
9
|
import_backend,
|
7
10
|
import_config,
|
8
11
|
import_engine,
|
@@ -49,12 +52,9 @@ def backend_factory(
|
|
49
52
|
diff_backend_cls = import_engine(backend_inst.engine)
|
50
53
|
backend_inst = diff_backend_cls(backend=backend_inst, diff_mode=DiffMode(diff_mode)) # type: ignore[operator]
|
51
54
|
return backend_inst
|
52
|
-
except
|
53
|
-
msg
|
54
|
-
|
55
|
-
logger.error(msg)
|
56
|
-
raise Exception(msg)
|
57
|
-
# Set backend configurations which depend on the differentiation mode
|
55
|
+
except (BackendNotFoundError, EngineNotFoundError, ConfigNotFoundError) as e:
|
56
|
+
logger.error(e.msg)
|
57
|
+
raise e
|
58
58
|
|
59
59
|
|
60
60
|
def config_factory(backend_name: BackendName | str, config: dict) -> BackendConfiguration:
|
@@ -62,6 +62,7 @@ def config_factory(backend_name: BackendName | str, config: dict) -> BackendConf
|
|
62
62
|
try:
|
63
63
|
BackendConfigCls = import_config(backend_name)
|
64
64
|
cfg = BackendConfigCls(**config) # type: ignore[operator]
|
65
|
-
except
|
66
|
-
logger.
|
65
|
+
except ConfigNotFoundError as e:
|
66
|
+
logger.error(e.msg)
|
67
|
+
raise e
|
67
68
|
return cfg
|
qadence/backends/gpsr.py
CHANGED
@@ -11,13 +11,29 @@ from qadence.utils import _round_complex
|
|
11
11
|
|
12
12
|
|
13
13
|
def general_psr(spectrum: Tensor, n_eqs: int | None = None, shift_prefac: float = 0.5) -> Callable:
|
14
|
+
"""Define whether single_gap_psr or multi_gap_psr is used.
|
15
|
+
|
16
|
+
Args:
|
17
|
+
spectrum (Tensor): Spectrum of the operation we apply PSR onto.
|
18
|
+
n_eqs (int | None, optional): Number of equations. Defaults to None.
|
19
|
+
If provided, we keep the n_eqs higher spectral gaps.
|
20
|
+
shift_prefac (float, optional): Shift prefactor. Defaults to 0.5.
|
21
|
+
|
22
|
+
Returns:
|
23
|
+
Callable: single_gap_psr or multi_gap_psr function for
|
24
|
+
concerned operation.
|
25
|
+
"""
|
14
26
|
diffs = _round_complex(spectrum - spectrum.reshape(-1, 1))
|
15
27
|
sorted_unique_spectral_gaps = torch.unique(torch.abs(torch.tril(diffs)))
|
16
28
|
|
17
29
|
# We have to filter out zeros
|
18
30
|
sorted_unique_spectral_gaps = sorted_unique_spectral_gaps[sorted_unique_spectral_gaps > 0]
|
19
|
-
n_eqs =
|
20
|
-
|
31
|
+
n_eqs = (
|
32
|
+
len(sorted_unique_spectral_gaps)
|
33
|
+
if n_eqs is None
|
34
|
+
else min(n_eqs, len(sorted_unique_spectral_gaps))
|
35
|
+
)
|
36
|
+
sorted_unique_spectral_gaps = torch.tensor(list(sorted_unique_spectral_gaps)[:n_eqs])
|
21
37
|
|
22
38
|
if n_eqs == 1:
|
23
39
|
return single_gap_psr
|
@@ -7,11 +7,11 @@ from operator import add
|
|
7
7
|
from typing import Any, Callable, Dict
|
8
8
|
|
9
9
|
import jax.numpy as jnp
|
10
|
-
from horqrux.abstract import Primitive as Gate
|
11
10
|
from horqrux.analog import _HamiltonianEvolution as NativeHorqHEvo
|
12
11
|
from horqrux.apply import apply_gate
|
13
12
|
from horqrux.parametric import RX, RY, RZ
|
14
13
|
from horqrux.primitive import NOT, SWAP, H, I, X, Y, Z
|
14
|
+
from horqrux.primitive import Primitive as Gate
|
15
15
|
from horqrux.utils import inner
|
16
16
|
from jax import Array
|
17
17
|
from jax.scipy.linalg import expm
|
@@ -71,19 +71,16 @@ class Backend(BackendInterface):
|
|
71
71
|
def observable(self, observable: AbstractBlock, n_qubits: int) -> ConvertedObservable:
|
72
72
|
# make sure only leaves, i.e. primitive blocks are scaled
|
73
73
|
transpilations = [
|
74
|
-
lambda block:
|
75
|
-
|
76
|
-
|
74
|
+
lambda block: (
|
75
|
+
chain_single_qubit_ops(block)
|
76
|
+
if self.config.use_single_qubit_composition
|
77
|
+
else flatten(block)
|
78
|
+
),
|
77
79
|
scale_primitive_blocks_only,
|
78
80
|
]
|
79
81
|
block = transpile(*transpilations)(observable) # type: ignore[call-overload]
|
80
82
|
operations = convert_block(block, n_qubits, self.config)
|
81
|
-
|
82
|
-
pyq.DiagonalObservable
|
83
|
-
if block._is_diag_pauli and not block.is_parametric
|
84
|
-
else pyq.Observable
|
85
|
-
)
|
86
|
-
native = obs_cls(n_qubits=n_qubits, operations=operations)
|
83
|
+
native = pyq.Observable(operations=operations)
|
87
84
|
return ConvertedObservable(native=native, abstract=block, original=observable)
|
88
85
|
|
89
86
|
def run(
|
@@ -140,7 +137,7 @@ class Backend(BackendInterface):
|
|
140
137
|
)
|
141
138
|
observable = observable if isinstance(observable, list) else [observable]
|
142
139
|
_expectation = torch.hstack(
|
143
|
-
[obs.native(state, param_values).reshape(-1, 1) for obs in observable]
|
140
|
+
[obs.native.expectation(state, param_values).reshape(-1, 1) for obs in observable]
|
144
141
|
)
|
145
142
|
return _expectation
|
146
143
|
|
@@ -169,7 +166,7 @@ class Backend(BackendInterface):
|
|
169
166
|
observables = observable if isinstance(observable, list) else [observable]
|
170
167
|
for vals in to_list_of_dicts(param_values):
|
171
168
|
wf = self.run(circuit, vals, state, endianness, pyqify_state=True, unpyqify_state=False)
|
172
|
-
exs = torch.cat([obs.native(wf, vals) for obs in observables], 0)
|
169
|
+
exs = torch.cat([obs.native.expectation(wf, vals) for obs in observables], 0)
|
173
170
|
list_expvals.append(exs)
|
174
171
|
|
175
172
|
batch_expvals = torch.vstack(list_expvals)
|
@@ -7,7 +7,6 @@ from typing import Any, Sequence, Tuple
|
|
7
7
|
import pyqtorch as pyq
|
8
8
|
import sympy
|
9
9
|
import torch
|
10
|
-
from pyqtorch.apply import apply_operator
|
11
10
|
from pyqtorch.embed import Embedding
|
12
11
|
from pyqtorch.matrices import _dagger
|
13
12
|
from pyqtorch.time_dependent.sesolve import sesolve
|
@@ -45,7 +44,6 @@ from qadence.blocks import (
|
|
45
44
|
)
|
46
45
|
from qadence.blocks.block_to_tensor import (
|
47
46
|
_block_to_tensor_embedded,
|
48
|
-
block_to_tensor,
|
49
47
|
)
|
50
48
|
from qadence.blocks.primitive import ProjectorBlock
|
51
49
|
from qadence.blocks.utils import parameters
|
@@ -78,6 +76,14 @@ def is_single_qubit_chain(block: AbstractBlock) -> bool:
|
|
78
76
|
)
|
79
77
|
|
80
78
|
|
79
|
+
def extract_parameter(block: ScaleBlock | ParametricBlock, config: Configuration) -> str | Tensor:
|
80
|
+
return (
|
81
|
+
tensor([block.parameters.parameter], dtype=float64)
|
82
|
+
if not block.is_parametric
|
83
|
+
else config.get_param_name(block)[0]
|
84
|
+
)
|
85
|
+
|
86
|
+
|
81
87
|
def convert_block(
|
82
88
|
block: AbstractBlock, n_qubits: int = None, config: Configuration = None
|
83
89
|
) -> Sequence[Module | Tensor | str | sympy.Expr]:
|
@@ -94,31 +100,45 @@ def convert_block(
|
|
94
100
|
|
95
101
|
if isinstance(block, ScaleBlock):
|
96
102
|
scaled_ops = convert_block(block.block, n_qubits, config)
|
97
|
-
scale = (
|
98
|
-
tensor([block.parameters.parameter], dtype=float64)
|
99
|
-
if not block.is_parametric
|
100
|
-
else config.get_param_name(block)[0]
|
101
|
-
)
|
103
|
+
scale = extract_parameter(block, config)
|
102
104
|
return [pyq.Scale(pyq.Sequence(scaled_ops), scale)]
|
103
105
|
|
104
106
|
elif isinstance(block, TimeEvolutionBlock):
|
105
|
-
|
106
|
-
|
107
|
-
|
108
|
-
|
109
|
-
|
110
|
-
|
111
|
-
|
112
|
-
|
113
|
-
|
114
|
-
|
115
|
-
|
116
|
-
|
117
|
-
|
118
|
-
|
119
|
-
|
107
|
+
if getattr(block.generator, "is_time_dependent", False):
|
108
|
+
return [PyQTimeDependentEvolution(qubit_support, n_qubits, block, config)]
|
109
|
+
else:
|
110
|
+
if isinstance(block.generator, sympy.Basic):
|
111
|
+
generator = config.get_param_name(block)[1]
|
112
|
+
elif isinstance(block.generator, Tensor):
|
113
|
+
m = block.generator.to(dtype=cdouble)
|
114
|
+
generator = convert_block(
|
115
|
+
MatrixBlock(
|
116
|
+
m,
|
117
|
+
qubit_support=qubit_support,
|
118
|
+
check_unitary=False,
|
119
|
+
check_hermitian=True,
|
120
|
+
)
|
121
|
+
)[0]
|
122
|
+
else:
|
123
|
+
generator = convert_block(block.generator, n_qubits, config)[0] # type: ignore[arg-type]
|
124
|
+
time_param = config.get_param_name(block)[0]
|
125
|
+
is_parametric = (
|
126
|
+
block.generator.is_parametric
|
127
|
+
if isinstance(block.generator, AbstractBlock)
|
128
|
+
else False
|
129
|
+
)
|
130
|
+
return [
|
131
|
+
pyq.HamiltonianEvolution(
|
132
|
+
qubit_support=qubit_support,
|
133
|
+
generator=generator,
|
134
|
+
time=time_param,
|
135
|
+
generator_parametric=is_parametric, # type: ignore[union-attr]
|
136
|
+
cache_length=0,
|
137
|
+
)
|
138
|
+
]
|
139
|
+
|
120
140
|
elif isinstance(block, MatrixBlock):
|
121
|
-
return [pyq.
|
141
|
+
return [pyq.primitives.Primitive(block.matrix, block.qubit_support)]
|
122
142
|
elif isinstance(block, CompositeBlock):
|
123
143
|
ops = list(flatten(*(convert_block(b, n_qubits, config) for b in block.blocks)))
|
124
144
|
if isinstance(block, AddBlock):
|
@@ -142,14 +162,14 @@ def convert_block(
|
|
142
162
|
if isinstance(block, U):
|
143
163
|
op = pyq_cls(qubit_support[0], *config.get_param_name(block))
|
144
164
|
else:
|
145
|
-
op = pyq_cls(qubit_support[0],
|
165
|
+
op = pyq_cls(qubit_support[0], extract_parameter(block, config))
|
146
166
|
else:
|
147
167
|
op = pyq_cls(qubit_support[0])
|
148
168
|
return [op]
|
149
169
|
elif isinstance(block, tuple(two_qubit_gateset)):
|
150
170
|
pyq_cls = getattr(pyq, block.name)
|
151
171
|
if isinstance(block, ParametricBlock):
|
152
|
-
op = pyq_cls(qubit_support[0], qubit_support[1],
|
172
|
+
op = pyq_cls(qubit_support[0], qubit_support[1], extract_parameter(block, config))
|
153
173
|
else:
|
154
174
|
op = pyq_cls(qubit_support[0], qubit_support[1])
|
155
175
|
return [op]
|
@@ -157,7 +177,7 @@ def convert_block(
|
|
157
177
|
block_name = block.name[1:] if block.name.startswith("M") else block.name
|
158
178
|
pyq_cls = getattr(pyq, block_name)
|
159
179
|
if isinstance(block, ParametricBlock):
|
160
|
-
op = pyq_cls(qubit_support[:-1], qubit_support[-1],
|
180
|
+
op = pyq_cls(qubit_support[:-1], qubit_support[-1], extract_parameter(block, config))
|
161
181
|
else:
|
162
182
|
if "CSWAP" in block_name:
|
163
183
|
op = pyq_cls(qubit_support[:-2], qubit_support[-2:])
|
@@ -172,7 +192,7 @@ def convert_block(
|
|
172
192
|
)
|
173
193
|
|
174
194
|
|
175
|
-
class
|
195
|
+
class PyQTimeDependentEvolution(Module):
|
176
196
|
def __init__(
|
177
197
|
self,
|
178
198
|
qubit_support: Tuple[int, ...],
|
@@ -188,50 +208,17 @@ class PyQHamiltonianEvolution(Module):
|
|
188
208
|
self.hmat: Tensor
|
189
209
|
self.config = config
|
190
210
|
|
191
|
-
|
192
|
-
hmat =
|
193
|
-
block.generator,
|
194
|
-
|
195
|
-
use_full_support=False,
|
196
|
-
)
|
197
|
-
hmat = hmat.permute(1, 2, 0)
|
198
|
-
self.register_buffer("hmat", hmat)
|
199
|
-
self._hamiltonian = lambda self, values: self.hmat
|
200
|
-
|
201
|
-
elif isinstance(block.generator, Tensor):
|
202
|
-
m = block.generator.to(dtype=cdouble)
|
203
|
-
hmat = block_to_tensor(
|
204
|
-
MatrixBlock(
|
205
|
-
m,
|
206
|
-
qubit_support=block.qubit_support,
|
207
|
-
check_unitary=False,
|
208
|
-
check_hermitian=True,
|
209
|
-
),
|
211
|
+
def _hamiltonian(self: PyQTimeDependentEvolution, values: dict[str, Tensor]) -> Tensor:
|
212
|
+
hmat = _block_to_tensor_embedded(
|
213
|
+
block.generator, # type: ignore[arg-type]
|
214
|
+
values=values,
|
210
215
|
qubit_support=self.qubit_support,
|
211
216
|
use_full_support=False,
|
217
|
+
device=self.device,
|
212
218
|
)
|
213
|
-
|
214
|
-
self.register_buffer("hmat", hmat)
|
215
|
-
self._hamiltonian = lambda self, values: self.hmat
|
216
|
-
|
217
|
-
elif isinstance(block.generator, sympy.Basic):
|
218
|
-
self._hamiltonian = (
|
219
|
-
lambda self, values: values[self.param_names[1]].squeeze(3).permute(1, 2, 0)
|
220
|
-
)
|
221
|
-
# FIXME Why are we squeezing
|
222
|
-
else:
|
223
|
-
|
224
|
-
def _hamiltonian(self: PyQHamiltonianEvolution, values: dict[str, Tensor]) -> Tensor:
|
225
|
-
hmat = _block_to_tensor_embedded(
|
226
|
-
block.generator, # type: ignore[arg-type]
|
227
|
-
values=values,
|
228
|
-
qubit_support=self.qubit_support,
|
229
|
-
use_full_support=False,
|
230
|
-
device=self.device,
|
231
|
-
)
|
232
|
-
return hmat.permute(1, 2, 0)
|
219
|
+
return hmat.permute(1, 2, 0)
|
233
220
|
|
234
|
-
|
221
|
+
self._hamiltonian = _hamiltonian
|
235
222
|
|
236
223
|
self._time_evolution = lambda values: values[self.param_names[0]]
|
237
224
|
self._device: torch_device = (
|
@@ -322,61 +309,51 @@ class PyQHamiltonianEvolution(Module):
|
|
322
309
|
values: dict[str, Tensor] | ParameterDict = dict(),
|
323
310
|
embedding: Embedding | None = None,
|
324
311
|
) -> Tensor:
|
325
|
-
|
326
|
-
|
327
|
-
|
328
|
-
|
329
|
-
|
330
|
-
|
331
|
-
|
332
|
-
|
333
|
-
|
334
|
-
|
335
|
-
|
336
|
-
|
337
|
-
|
338
|
-
|
339
|
-
|
340
|
-
|
341
|
-
|
342
|
-
|
343
|
-
|
344
|
-
|
345
|
-
|
346
|
-
|
347
|
-
|
348
|
-
|
349
|
-
|
350
|
-
|
351
|
-
|
352
|
-
|
353
|
-
|
354
|
-
|
355
|
-
|
356
|
-
|
357
|
-
#
|
358
|
-
|
359
|
-
|
360
|
-
|
361
|
-
|
362
|
-
|
363
|
-
|
364
|
-
|
365
|
-
|
366
|
-
|
367
|
-
|
368
|
-
|
369
|
-
|
370
|
-
sesolve(Ht, unpyqify(state).T[:, 0:1], tsave, self.config.ode_solver).states[-1].T
|
371
|
-
)
|
372
|
-
else:
|
373
|
-
result = apply_operator(
|
374
|
-
state,
|
375
|
-
self.unitary(values),
|
376
|
-
self.qubit_support,
|
377
|
-
self.n_qubits,
|
378
|
-
self.batch_size,
|
379
|
-
)
|
312
|
+
def Ht(t: Tensor | float) -> Tensor:
|
313
|
+
# values dict has to change with new value of t
|
314
|
+
# initial value of a feature parameter inside generator block
|
315
|
+
# has to be inferred here
|
316
|
+
new_vals = dict()
|
317
|
+
for str_expr, val in values.items():
|
318
|
+
expr = sympy.sympify(str_expr)
|
319
|
+
t_symb = sympy.Symbol(self._get_time_parameter())
|
320
|
+
free_symbols = expr.free_symbols
|
321
|
+
if t_symb in free_symbols:
|
322
|
+
# create substitution list for time and feature params
|
323
|
+
subs_list = [(t_symb, t)]
|
324
|
+
|
325
|
+
if len(free_symbols) > 1:
|
326
|
+
# get feature param symbols
|
327
|
+
feat_symbols = free_symbols.difference(set([t_symb]))
|
328
|
+
|
329
|
+
# get feature param values
|
330
|
+
feat_vals = values["orig_param_values"]
|
331
|
+
|
332
|
+
# update substitution list with feature param values
|
333
|
+
for fs in feat_symbols:
|
334
|
+
subs_list.append((fs, feat_vals[str(fs)]))
|
335
|
+
|
336
|
+
# evaluate expression with new time param value
|
337
|
+
new_vals[str_expr] = torch.tensor(float(expr.subs(subs_list)))
|
338
|
+
else:
|
339
|
+
# expression doesn't contain time parameter - copy it as is
|
340
|
+
new_vals[str_expr] = val
|
341
|
+
|
342
|
+
# get matrix form of generator
|
343
|
+
hmat = _block_to_tensor_embedded(
|
344
|
+
self.block.generator, # type: ignore[arg-type]
|
345
|
+
values=new_vals,
|
346
|
+
qubit_support=self.qubit_support,
|
347
|
+
use_full_support=False,
|
348
|
+
device=self.device,
|
349
|
+
).squeeze(0)
|
350
|
+
|
351
|
+
return hmat
|
352
|
+
|
353
|
+
tsave = torch.linspace(0, self.block.duration, self.config.n_steps_hevo) # type: ignore [attr-defined]
|
354
|
+
result = pyqify(
|
355
|
+
sesolve(Ht, unpyqify(state).T[:, 0:1], tsave, self.config.ode_solver).states[-1].T
|
356
|
+
)
|
380
357
|
|
381
358
|
return result
|
382
359
|
|
@@ -388,7 +365,7 @@ class PyQHamiltonianEvolution(Module):
|
|
388
365
|
def dtype(self) -> torch_dtype:
|
389
366
|
return self._dtype
|
390
367
|
|
391
|
-
def to(self, *args: Any, **kwargs: Any) ->
|
368
|
+
def to(self, *args: Any, **kwargs: Any) -> PyQTimeDependentEvolution:
|
392
369
|
if hasattr(self, "hmat"):
|
393
370
|
self.hmat = self.hmat.to(*args, **kwargs)
|
394
371
|
self._device = self.hmat.device
|
qadence/backends/utils.py
CHANGED
@@ -9,7 +9,7 @@ import pyqtorch as pyq
|
|
9
9
|
import torch
|
10
10
|
from numpy.typing import ArrayLike
|
11
11
|
from pyqtorch.apply import apply_operator
|
12
|
-
from pyqtorch.
|
12
|
+
from pyqtorch.primitives import Parametric as PyQParametric
|
13
13
|
from torch import (
|
14
14
|
Tensor,
|
15
15
|
cat,
|
qadence/blocks/composite.py
CHANGED
@@ -129,9 +129,11 @@ class CompositeBlock(AbstractBlock):
|
|
129
129
|
from qadence.blocks.utils import _construct, tag
|
130
130
|
|
131
131
|
blocks = [
|
132
|
-
|
133
|
-
|
134
|
-
|
132
|
+
(
|
133
|
+
getattr(operations, b["type"])._from_dict(b)
|
134
|
+
if hasattr(operations, b["type"])
|
135
|
+
else getattr(qadenceblocks, b["type"])._from_dict(b)
|
136
|
+
)
|
135
137
|
for b in d["blocks"]
|
136
138
|
]
|
137
139
|
block = _construct(cls, blocks) # type: ignore[arg-type]
|
qadence/blocks/utils.py
CHANGED
@@ -263,11 +263,29 @@ def expression_to_uuids(block: AbstractBlock) -> dict[Expr, list[str]]:
|
|
263
263
|
return expr_to_uuid
|
264
264
|
|
265
265
|
|
266
|
-
def uuid_to_eigen(
|
266
|
+
def uuid_to_eigen(
|
267
|
+
block: AbstractBlock, rescale_eigenvals_timeevo: bool = False
|
268
|
+
) -> dict[str, Tensor]:
|
267
269
|
"""Creates a mapping between a parametric block's param_id and its' eigenvalues.
|
268
270
|
|
269
271
|
This method is needed for constructing the PSR rules for a given block.
|
270
272
|
|
273
|
+
A PSR shift factor is also added in the mapping for dealing
|
274
|
+
with the time evolution case as it requires rescaling.
|
275
|
+
|
276
|
+
Args:
|
277
|
+
block (AbstractBlock): Block input
|
278
|
+
rescale_eigenvals_timeevo (bool, optional): If True, rescale
|
279
|
+
eigenvalues and shift factor
|
280
|
+
by 2 times spectral gap
|
281
|
+
for the TimeEvolutionBlock case to allow
|
282
|
+
differientiating with Hamevo.
|
283
|
+
Defaults to False.
|
284
|
+
|
285
|
+
Returns:
|
286
|
+
dict[str, Tensor]: Mapping between block's param_id, eigenvalues and
|
287
|
+
PSR shift.
|
288
|
+
|
271
289
|
!!! warn
|
272
290
|
Will ignore eigenvalues of AnalogBlocks that are not yet computed.
|
273
291
|
"""
|
@@ -276,7 +294,23 @@ def uuid_to_eigen(block: AbstractBlock) -> dict[str, Tensor]:
|
|
276
294
|
for uuid, b in uuid_to_block(block).items():
|
277
295
|
if b.eigenvalues_generator is not None:
|
278
296
|
if b.eigenvalues_generator.numel() > 0:
|
279
|
-
|
297
|
+
# GPSR assumes a factor 0.5 for differentiation
|
298
|
+
# so need rescaling
|
299
|
+
if isinstance(b, TimeEvolutionBlock) and rescale_eigenvals_timeevo:
|
300
|
+
if b.eigenvalues_generator.numel() > 1:
|
301
|
+
result[uuid] = (
|
302
|
+
b.eigenvalues_generator * 2.0,
|
303
|
+
0.5,
|
304
|
+
)
|
305
|
+
else:
|
306
|
+
result[uuid] = (
|
307
|
+
b.eigenvalues_generator * 2.0,
|
308
|
+
1.0 / (b.eigenvalues_generator.item() * 2.0)
|
309
|
+
if len(b.eigenvalues_generator) == 1
|
310
|
+
else 1.0,
|
311
|
+
)
|
312
|
+
else:
|
313
|
+
result[uuid] = (b.eigenvalues_generator, 1.0)
|
280
314
|
|
281
315
|
# leave only angle parameter uuid with eigenvals for ConstantAnalogRotation block
|
282
316
|
if isinstance(block, ConstantAnalogRotation):
|
qadence/constructors/utils.py
CHANGED
@@ -7,61 +7,59 @@ import sympy
|
|
7
7
|
from qadence.blocks import KronBlock, kron
|
8
8
|
from qadence.operations import RY
|
9
9
|
from qadence.parameters import FeatureParameter, Parameter
|
10
|
-
from qadence.types import PI
|
10
|
+
from qadence.types import PI, BasisSet, MultivariateStrategy, ReuploadScaling
|
11
11
|
|
12
12
|
|
13
|
-
def generator_prefactor(
|
13
|
+
def generator_prefactor(reupload_scaling: ReuploadScaling, qubit_index: int) -> float | int:
|
14
14
|
"""Converts a spectrum string, e.g. tower or exponential.
|
15
15
|
|
16
16
|
The result is the correct generator prefactor.
|
17
17
|
"""
|
18
|
-
spectrum = spectrum.lower()
|
19
18
|
conversion_dict: dict[str, float | int] = {
|
20
|
-
|
21
|
-
|
22
|
-
|
19
|
+
ReuploadScaling.CONSTANT: 1,
|
20
|
+
ReuploadScaling.TOWER: qubit_index + 1,
|
21
|
+
ReuploadScaling.EXP: 2 * PI / (2 ** (qubit_index + 1)),
|
23
22
|
}
|
24
|
-
return conversion_dict[
|
23
|
+
return conversion_dict[reupload_scaling]
|
25
24
|
|
26
25
|
|
27
|
-
def basis_func(basis:
|
28
|
-
basis = basis.lower()
|
26
|
+
def basis_func(basis: BasisSet, x: Parameter) -> Parameter | sympy.Expr:
|
29
27
|
conversion_dict: dict[str, Parameter | sympy.Expr] = {
|
30
|
-
|
31
|
-
|
28
|
+
BasisSet.FOURIER: x,
|
29
|
+
BasisSet.CHEBYSHEV: 2 * sympy.acos(x),
|
32
30
|
}
|
33
31
|
return conversion_dict[basis]
|
34
32
|
|
35
33
|
|
36
34
|
def build_idx_fms(
|
37
|
-
basis:
|
35
|
+
basis: BasisSet,
|
38
36
|
fm_pauli: Type[RY],
|
39
|
-
|
37
|
+
multivariate_strategy: MultivariateStrategy,
|
40
38
|
n_features: int,
|
41
39
|
n_qubits: int,
|
42
|
-
|
40
|
+
reupload_scaling: ReuploadScaling,
|
43
41
|
) -> list[KronBlock]:
|
44
42
|
"""Builds the index feature maps based on the given parameters.
|
45
43
|
|
46
44
|
Args:
|
47
|
-
basis (
|
45
|
+
basis (BasisSet): Type of basis chosen for the feature map.
|
48
46
|
fm_pauli (PrimitiveBlock type): The chosen Pauli rotation type.
|
49
|
-
|
50
|
-
|
47
|
+
multivariate_strategy (MultivariateStrategy): The strategy used for encoding
|
48
|
+
the multivariate feature map.
|
51
49
|
n_features (int): The number of features.
|
52
50
|
n_qubits (int): The number of qubits.
|
53
|
-
|
51
|
+
reupload_scaling (ReuploadScaling): The chosen scaling for the reupload.
|
54
52
|
|
55
53
|
Returns:
|
56
54
|
List[KronBlock]: The list of index feature maps.
|
57
55
|
"""
|
58
56
|
idx_fms = []
|
59
57
|
for i in range(n_features):
|
60
|
-
target_qubits = get_fm_qubits(
|
58
|
+
target_qubits = get_fm_qubits(multivariate_strategy, i, n_qubits, n_features)
|
61
59
|
param = FeatureParameter(f"x{i}")
|
62
60
|
block = kron(
|
63
61
|
*[
|
64
|
-
fm_pauli(qubit, generator_prefactor(
|
62
|
+
fm_pauli(qubit, generator_prefactor(reupload_scaling, j) * basis_func(basis, param))
|
65
63
|
for j, qubit in enumerate(target_qubits)
|
66
64
|
]
|
67
65
|
)
|
@@ -70,12 +68,14 @@ def build_idx_fms(
|
|
70
68
|
return idx_fms
|
71
69
|
|
72
70
|
|
73
|
-
def get_fm_qubits(
|
71
|
+
def get_fm_qubits(
|
72
|
+
multivariate_strategy: MultivariateStrategy, i: int, n_qubits: int, n_features: int
|
73
|
+
) -> Iterable:
|
74
74
|
"""Returns the list of target qubits for the given feature map strategy and feature index.
|
75
75
|
|
76
76
|
Args:
|
77
|
-
|
78
|
-
|
77
|
+
multivariate_strategy (MultivariateStrategy): The strategy used for encoding
|
78
|
+
the multivariate feature map.
|
79
79
|
i (int): The feature index.
|
80
80
|
n_qubits (int): The number of qubits.
|
81
81
|
n_features (int): The number of features.
|
@@ -86,11 +86,11 @@ def get_fm_qubits(fm_strategy: str, i: int, n_qubits: int, n_features: int) -> I
|
|
86
86
|
Raises:
|
87
87
|
ValueError: If the feature map strategy is not implemented.
|
88
88
|
"""
|
89
|
-
if
|
89
|
+
if multivariate_strategy == MultivariateStrategy.PARALLEL:
|
90
90
|
n_qubits_per_feature = int(n_qubits / n_features)
|
91
91
|
target_qubits = range(i * n_qubits_per_feature, (i + 1) * n_qubits_per_feature)
|
92
|
-
elif
|
92
|
+
elif multivariate_strategy == MultivariateStrategy.SERIES:
|
93
93
|
target_qubits = range(0, n_qubits)
|
94
94
|
else:
|
95
|
-
raise ValueError(f"
|
95
|
+
raise ValueError(f"Multivariate strategy {multivariate_strategy} not implemented.")
|
96
96
|
return target_qubits
|
@@ -52,7 +52,7 @@ class DifferentiableExpectation:
|
|
52
52
|
return expectation_fn(state, values, psr_params)
|
53
53
|
|
54
54
|
uuid_to_eigs = {
|
55
|
-
k: tensor_to_jnp(v) for k, v in uuid_to_eigen(self.circuit.abstract.block).items()
|
55
|
+
k: tensor_to_jnp(v[0]) for k, v in uuid_to_eigen(self.circuit.abstract.block).items()
|
56
56
|
}
|
57
57
|
self.psr_params = {
|
58
58
|
k: self.param_values[k] for k in uuid_to_eigs.keys()
|