qadence 1.7.3__py3-none-any.whl → 1.7.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -267,14 +267,14 @@ class FeatureMapConfig:
267
267
 
268
268
  num_repeats: int | dict[str, int] = 0
269
269
  """
270
- Number of feature map layers repeated in the data reuploadig step.
270
+ Number of feature map layers repeated in the data reuploading step.
271
271
 
272
272
  If all are to be repeated the same number of times, then can give a single
273
- `int`. For different number of repeatitions for each feature, provide a dict
273
+ `int`. For different number of repetitions for each feature, provide a dict
274
274
  of (str, int) where the key is the name of the variable and the value is the
275
- number of repeatitions for that feature.
275
+ number of repetitions for that feature.
276
276
  This amounts to the number of additional reuploads. So if `num_repeats` is N,
277
- the data gets uploaded N+1 times. Defaults to no repeatition.
277
+ the data gets uploaded N+1 times. Defaults to no repetition.
278
278
  """
279
279
 
280
280
  operation: Callable[[Parameter | Basic], AnalogBlock] | Type[RX] | None = None
@@ -4,7 +4,6 @@ from logging import getLogger
4
4
  from typing import Any, Callable, Union
5
5
 
6
6
  from matplotlib.figure import Figure
7
- from mlflow.models import infer_signature
8
7
  from torch import Tensor
9
8
  from torch.nn import Module
10
9
  from torch.utils.data import DataLoader
@@ -82,6 +81,7 @@ def plot_mlflow(
82
81
  def log_model_mlflow(
83
82
  writer: Any, model: Module, dataloader: DataLoader | DictDataLoader | None
84
83
  ) -> None:
84
+ signature = None
85
85
  if dataloader is not None:
86
86
  xs: InputData
87
87
  xs, *_ = next(iter(dataloader))
@@ -94,9 +94,17 @@ def log_model_mlflow(
94
94
  xs[key] = val.numpy()
95
95
  for key, val in preds.items():
96
96
  preds[key] = val.detach.numpy()
97
- signature = infer_signature(xs, preds)
98
- else:
99
- signature = None
97
+
98
+ try:
99
+ from mlflow.models import infer_signature
100
+
101
+ signature = infer_signature(xs, preds)
102
+ except ImportError:
103
+ logger.warning(
104
+ "An MLFlow specific function has been called but MLFlow failed to import."
105
+ "Please install MLFlow or adjust your code."
106
+ )
107
+
100
108
  writer.pytorch.log_model(model, artifact_path="model", signature=signature)
101
109
 
102
110
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: qadence
3
- Version: 1.7.3
3
+ Version: 1.7.4
4
4
  Summary: Pasqal interface for circuit-based quantum computing SDKs
5
5
  Author-email: Aleksander Wennersteen <aleksander.wennersteen@pasqal.com>, Gert-Jan Both <gert-jan.both@pasqal.com>, Niklas Heim <niklas.heim@pasqal.com>, Mario Dagrada <mario.dagrada@pasqal.com>, Vincent Elfving <vincent.elfving@pasqal.com>, Dominik Seitz <dominik.seitz@pasqal.com>, Roland Guichard <roland.guichard@pasqal.com>, "Joao P. Moutinho" <joao.moutinho@pasqal.com>, Vytautas Abramavicius <vytautas.abramavicius@pasqal.com>, Gergana Velikova <gergana.velikova@pasqal.com>, Eduardo Maschio <eduardo.maschio@pasqal.com>, Smit Chaudhary <smit.chaudhary@pasqal.com>, Ignacio Fernández Graña <ignacio.fernandez-grana@pasqal.com>, Charles Moussa <charles.moussa@pasqal.com>, Giorgio Tosti Balducci <giorgio.tosti-balducci@pasqal.com>
6
6
  License: Apache 2.0
@@ -104,13 +104,13 @@ qadence/mitigations/analog_zne.py,sha256=g0QkjSdF-N9Dv2N8Oza4sylnjUMid5ea-4NCT9T
104
104
  qadence/mitigations/protocols.py,sha256=Jq9MyLujfTyWmc7XVUGYVRUkJT1MmZw-GgmWpVjmX2Y,1608
105
105
  qadence/mitigations/readout.py,sha256=HPfYmdjRlieUdOBMZTghFK4DRWfveM4KkDkEI0bMI0E,6262
106
106
  qadence/ml_tools/__init__.py,sha256=HP4xjldkUZ9_WbZEDgpl31qoP9st5SBbC-DjI5pkx3k,1054
107
- qadence/ml_tools/config.py,sha256=g-hFaVoG57p0elde0giSEP5_XTvyPquDg49xGOtj6gA,17686
107
+ qadence/ml_tools/config.py,sha256=1TewLylx1yzkjoNkLZremcFvuH2cWXZ8vNAAalhaFeY,17684
108
108
  qadence/ml_tools/constructors.py,sha256=cE510DqCKBe4tImH90qHawEbXU-mlQuW9Wh15lUON6Q,27293
109
109
  qadence/ml_tools/data.py,sha256=8ZUFjhQSp94w7icX7RzM2J39Yo7P_T-AgjcThBc8miI,4283
110
110
  qadence/ml_tools/models.py,sha256=SjwAPbSl9zn9YqfmwqHc2lIXCkIpwG_ysz4jieRh7W0,16996
111
111
  qadence/ml_tools/optimize_step.py,sha256=ATXWmAqybJVK3QmAaDqVXB5mxjTo2MIi_e0a5WSPFpc,1800
112
112
  qadence/ml_tools/parameters.py,sha256=gew2Kq_5-RgRpaTvs8eauVhgo0sTqqDQEV6WHFEiLGM,1301
113
- qadence/ml_tools/printing.py,sha256=aNJdUdh6UkNFIvgOFVFNXpHc_ilJSezPGgl7it4o7Q4,4549
113
+ qadence/ml_tools/printing.py,sha256=2xMhsn2j0nQdO2klLcLWY33GT_7r-Gi83Fv2M2rGQQE,4789
114
114
  qadence/ml_tools/saveload.py,sha256=jeYG7Y1ime0P06SMWOiCgWlci-xHdEPrAARfM-awDH8,5798
115
115
  qadence/ml_tools/tensors.py,sha256=xZ9ZRzOqEaMgLUGWQf1najDmL6iLuN1ojCGVFs1Tm94,1337
116
116
  qadence/ml_tools/train_grad.py,sha256=tf162ZfK07NZeqmTDvA92kkojPxX8s2nwBP_VM2qSvw,12190
@@ -133,7 +133,7 @@ qadence/transpile/digitalize.py,sha256=iWRwYAYQsD2INHj0HNbGJriv_3fRCuBW1nDBrwtKS
133
133
  qadence/transpile/flatten.py,sha256=EdhSG5WyF56nbnxINNLqrHgY84MRM1YFjT3fR4aph5Q,3427
134
134
  qadence/transpile/invert.py,sha256=KAefHTG2AWr39aengVhXrzCtJPhrZC-ZnL6vYvmbnY0,4867
135
135
  qadence/transpile/transpile.py,sha256=6MRRkk1OS279L1fwUQjazA6qlfpbd-T_EJMKT8hAhOU,2721
136
- qadence-1.7.3.dist-info/METADATA,sha256=d3TUjDh_-Ragvuhicd9BWMr4orwEwNgjAXRnGWk_ruQ,9936
137
- qadence-1.7.3.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
138
- qadence-1.7.3.dist-info/licenses/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
139
- qadence-1.7.3.dist-info/RECORD,,
136
+ qadence-1.7.4.dist-info/METADATA,sha256=KN-ADaKsGz3wlzDe7Wx8U0vLGmzTuJCz3BApcnXG_cQ,9936
137
+ qadence-1.7.4.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
138
+ qadence-1.7.4.dist-info/licenses/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
139
+ qadence-1.7.4.dist-info/RECORD,,