qadence 1.11.3__py3-none-any.whl → 1.11.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
qadence/states.py CHANGED
@@ -41,6 +41,10 @@ __all__ = [
41
41
  "DensityMatrix",
42
42
  "density_mat",
43
43
  "overlap",
44
+ "partial_trace",
45
+ "von_neumann_entropy",
46
+ "purity",
47
+ "fidelity",
44
48
  ]
45
49
 
46
50
  ATOL_64 = 1e-14 # 64 bit precision
@@ -589,3 +593,128 @@ def equivalent_state(
589
593
  fidelity = overlap(s0, s1)
590
594
  expected = torch.ones_like(fidelity)
591
595
  return torch.allclose(fidelity, expected, rtol=rtol, atol=atol) # type: ignore[no-any-return]
596
+
597
+
598
+ # DensityMatrix utility functions
599
+
600
+
601
+ def partial_trace(rho: DensityMatrix, keep_indices: list[int]) -> DensityMatrix:
602
+ """
603
+ Compute the partial trace of a density matrix for a system of several qubits with batch size.
604
+
605
+ This function also permutes qubits according to the order specified in keep_indices.
606
+
607
+ Args:
608
+ rho (DensityMatrix) : Density matrix of shape [batch_size, 2**n_qubits, 2**n_qubits].
609
+ keep_indices (list[int]): Index of the qubit subsystems to keep.
610
+
611
+ Returns:
612
+ DensityMatrix: Reduced density matrix after the partial trace,
613
+ of shape [batch_size, 2**n_keep, 2**n_keep].
614
+ """
615
+ from pyqtorch.utils import dm_partial_trace
616
+
617
+ return dm_partial_trace(rho.permute((1, 2, 0)), keep_indices).permute((2, 0, 1))
618
+
619
+
620
+ def von_neumann_entropy(rho: DensityMatrix, eps: float = 1e-12) -> torch.Tensor:
621
+ """Calculate the von Neumann entropy of a quantum density matrix.
622
+
623
+ The von Neumann entropy is defined as S(ρ) = -Tr(ρ log₂ ρ) = -∑ᵢ λᵢ log₂ λᵢ,
624
+ where λᵢ are the eigenvalues of ρ.
625
+
626
+ Args:
627
+ rho: Density matrix of shape [batch_size, dim, dim]
628
+ eps: Small value to avoid log(0) for zero eigenvalues
629
+
630
+ Returns:
631
+ Von Neumann entropy for each density matrix in the batch, shape [batch_size]
632
+ """
633
+
634
+ # Compute eigenvalues for each density matrix in the batch
635
+ # For a Hermitian density matrix, eigenvalues should be real and non-negative
636
+ eigenvalues = torch.linalg.eigvalsh(rho)
637
+
638
+ # Normalize eigenvalues to ensure they sum to 1 (trace preservation)
639
+ # This step might be redundant but helps with numerical stability
640
+ eigenvalues = eigenvalues / torch.sum(eigenvalues, dim=1, keepdim=True)
641
+
642
+ # Filter out very small eigenvalues to avoid numerical issues
643
+ valid_eigenvalues = eigenvalues.clone()
644
+ valid_eigenvalues[valid_eigenvalues < eps] = eps
645
+
646
+ # Compute the entropy: -∑ᵢ λᵢ log₂ λᵢ
647
+ # Using natural logarithm and converting to base 2
648
+ log_base_conversion = torch.log(torch.tensor(2.0, device=rho.device))
649
+ entropy = -torch.sum(
650
+ valid_eigenvalues * torch.log(valid_eigenvalues) / log_base_conversion, dim=1
651
+ )
652
+
653
+ return entropy
654
+
655
+
656
+ def purity(rho: DensityMatrix, order: int = 2) -> Tensor:
657
+ """Compute the n-th purity of a density matrix.
658
+
659
+ Args:
660
+ rho (DensityMatrix): Density matrix.
661
+ order (int, optional): Exponent n.
662
+
663
+ Returns:
664
+ Tensor: Tr[rho ** n]
665
+ """
666
+ # Compute eigenvalues
667
+ eigenvalues = torch.linalg.eigvalsh(rho)
668
+
669
+ # Compute the sum of eigenvalues raised to power n
670
+ return torch.sum(eigenvalues**order, dim=1)
671
+
672
+
673
+ def fidelity(rho: DensityMatrix, sigma: DensityMatrix) -> Tensor:
674
+ """Calculate the fidelity between two quantum states represented by density matrices.
675
+
676
+ The fidelity is defined as F(ρ,σ) = Tr[√(√ρ σ √ρ)], or equivalently,
677
+ F(ρ,σ) = ||√ρ·√σ||₁ where ||·||₁ is the trace norm.
678
+
679
+ Args:
680
+ rho: First density matrix of shape [batch_size, dim, dim]
681
+ sigma: Second density matrix of shape [batch_size, dim, dim]
682
+
683
+ Returns:
684
+ Fidelity between each pair of density matrices in the batch, shape [batch_size]
685
+ """
686
+
687
+ # Compute square root of rho
688
+ rho_eigvals, rho_eigvecs = torch.linalg.eigh(rho)
689
+
690
+ # Ensure non-negative eigenvalues
691
+ rho_eigvals = torch.clamp(rho_eigvals, min=0)
692
+
693
+ # Compute square root using eigendecomposition
694
+ sqrt_eigvals = torch.sqrt(rho_eigvals)
695
+
696
+ # Compute √ρ for each batch element
697
+ sqrt_rho = torch.zeros_like(rho)
698
+ for i in range(rho.shape[0]):
699
+ sqrt_rho[i] = torch.mm(
700
+ rho_eigvecs[i],
701
+ torch.mm(
702
+ torch.diag(sqrt_eigvals[i]).to(dtype=rho_eigvecs.dtype), rho_eigvecs[i].t().conj()
703
+ ),
704
+ )
705
+
706
+ # Compute √ρ σ √ρ for each batch element
707
+ inner_product = torch.zeros_like(rho)
708
+ for i in range(rho.shape[0]):
709
+ inner_product[i] = torch.mm(sqrt_rho[i], torch.mm(sigma[i], sqrt_rho[i]))
710
+
711
+ # Compute eigenvalues of inner product
712
+ inner_eigvals = torch.linalg.eigvalsh(inner_product)
713
+
714
+ # Ensure non-negative eigenvalues
715
+ inner_eigvals = torch.clamp(inner_eigvals, min=0)
716
+
717
+ # Compute the fidelity as the sum of the square roots of eigenvalues
718
+ fidelity_values = torch.sum(torch.sqrt(inner_eigvals), dim=1)
719
+
720
+ return fidelity_values
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: qadence
3
- Version: 1.11.3
3
+ Version: 1.11.4
4
4
  Summary: Pasqal interface for circuit-based quantum computing SDKs
5
5
  Author-email: Aleksander Wennersteen <aleksander.wennersteen@pasqal.com>, Gert-Jan Both <gert-jan.both@pasqal.com>, Niklas Heim <niklas.heim@pasqal.com>, Mario Dagrada <mario.dagrada@pasqal.com>, Vincent Elfving <vincent.elfving@pasqal.com>, Dominik Seitz <dominik.seitz@pasqal.com>, Roland Guichard <roland.guichard@pasqal.com>, "Joao P. Moutinho" <joao.moutinho@pasqal.com>, Vytautas Abramavicius <vytautas.abramavicius@pasqal.com>, Gergana Velikova <gergana.velikova@pasqal.com>, Eduardo Maschio <eduardo.maschio@pasqal.com>, Smit Chaudhary <smit.chaudhary@pasqal.com>, Ignacio Fernández Graña <ignacio.fernandez-grana@pasqal.com>, Charles Moussa <charles.moussa@pasqal.com>, Giorgio Tosti Balducci <giorgio.tosti-balducci@pasqal.com>, Daniele Cucurachi <daniele.cucurachi@pasqal.com>, Pim Venderbosch <pim.venderbosch@pasqal.com>, Manu Lahariya <manu.lahariya@pasqal.com>, Sungwoo Ahn <sungwoo.ahn@pasqal.com>
6
6
  License: PASQAL OPEN-SOURCE SOFTWARE LICENSE (MIT-derived)
@@ -24,7 +24,7 @@ Requires-Dist: nevergrad
24
24
  Requires-Dist: numpy
25
25
  Requires-Dist: openfermion
26
26
  Requires-Dist: pasqal-cloud
27
- Requires-Dist: pyqtorch==1.7.6
27
+ Requires-Dist: pyqtorch==1.7.7
28
28
  Requires-Dist: pyyaml
29
29
  Requires-Dist: rich
30
30
  Requires-Dist: scipy
@@ -44,7 +44,7 @@ Requires-Dist: nvidia-pyindex; extra == 'dlprof'
44
44
  Provides-Extra: horqrux
45
45
  Requires-Dist: einops; extra == 'horqrux'
46
46
  Requires-Dist: flax; extra == 'horqrux'
47
- Requires-Dist: horqrux==0.8.1; extra == 'horqrux'
47
+ Requires-Dist: horqrux==0.9.0; extra == 'horqrux'
48
48
  Requires-Dist: jax; extra == 'horqrux'
49
49
  Requires-Dist: jaxopt; extra == 'horqrux'
50
50
  Requires-Dist: optax; extra == 'horqrux'
@@ -225,5 +225,15 @@ doi = {10.1109/MS.2025.3536607}
225
225
  }
226
226
  ```
227
227
 
228
+ If you use the approximate Generalized parameter shift rule for your publication, we kindly ask you to cite:
229
+ ```latex
230
+ @misc{2505.18090,
231
+ Author = {Vytautas Abramavicius and Evan Philip and Kaonan Micadei and Charles Moussa and Mario Dagrada and Vincent E. Elfving and Panagiotis Barkoutsos and Roland Guichard},
232
+ Title = {Evaluation of derivatives using approximate generalized parameter shift rule},
233
+ Year = {2025},
234
+ Eprint = {arXiv:2505.18090},
235
+ }
236
+ ```
237
+
228
238
  ## License
229
239
  Qadence is a free and open source software package, released under the PASQAL OPEN-SOURCE SOFTWARE LICENSE (MIT-derived).
@@ -18,7 +18,7 @@ qadence/qubit_support.py,sha256=Nkn1Q01RVViTcggSIom7EFKdWpAuM4TMGwBZ5feCUxA,2120
18
18
  qadence/register.py,sha256=MlI1-L1P_e7ugjelhH-1YdxrfPsgmLmX5m-dueawuWQ,13172
19
19
  qadence/serial_expr_grammar.peg,sha256=z5ytL7do9kO8o4h-V5GrsDuLdso0KsRcMuIYURFfmAY,328
20
20
  qadence/serialization.py,sha256=IB0OgYhtV3F9AmMMMbGcfgNil9vBzs92j5G3yj4KPhg,15616
21
- qadence/states.py,sha256=Aj28aNHGWkZrFw_mKpHrxCA1bDXlkFhw18D70tg0RF0,15953
21
+ qadence/states.py,sha256=GosmwMN0oK9N3hNnSgfb8qDsOGVEHZqOSNERvGgscpw,20408
22
22
  qadence/types.py,sha256=HtOKf6xi-kTtncqctRWK0Wpxut7KEXHdqoQVqfx0vxo,11927
23
23
  qadence/utils.py,sha256=fChJDz7OelWNGLPjoBBcmleWGluWhR36Mf0LnqCx8FA,12376
24
24
  qadence/analog/__init__.py,sha256=BCyS9R4KUjzUXN0Ax3b0eMo8ZAuSkGoJQVtZ4_pvAFs,279
@@ -146,7 +146,7 @@ qadence/transpile/flatten.py,sha256=k4HAfVzvDV40HyfaukiEHyJtAtvFRIcyDbAWiCL8tf0,
146
146
  qadence/transpile/invert.py,sha256=IeyidgBwECCKB0i7Ym0KkLyfcx42LyT2mbqkfbK1H8M,4843
147
147
  qadence/transpile/noise.py,sha256=LDcDJtQGkgUPkL2t69gg6AScTb-p3J3SxCDZbYOu1L8,1668
148
148
  qadence/transpile/transpile.py,sha256=xnzkHA6Qdb-Y5Fv9Latrolrpw44N6_OKc7_QGt70f0I,2713
149
- qadence-1.11.3.dist-info/METADATA,sha256=KnEzhBVUnxeEgo778rmcj9l5R_otThJo6lUH6sKyuMI,10752
150
- qadence-1.11.3.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
151
- qadence-1.11.3.dist-info/licenses/LICENSE,sha256=IfA3wQpmMOjCnDZ0P8Od2Bxb39rND9s5zfGHp1vMTbQ,2359
152
- qadence-1.11.3.dist-info/RECORD,,
149
+ qadence-1.11.4.dist-info/METADATA,sha256=ZwNKFGc0Uk0TLXhCrADAMtvB-_FXsRTeE6MZazMDfhQ,11202
150
+ qadence-1.11.4.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
151
+ qadence-1.11.4.dist-info/licenses/LICENSE,sha256=IfA3wQpmMOjCnDZ0P8Od2Bxb39rND9s5zfGHp1vMTbQ,2359
152
+ qadence-1.11.4.dist-info/RECORD,,