qadence 1.10.2__py3-none-any.whl → 1.10.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -245,7 +245,7 @@ class HorqHamiltonianEvolution(NativeHorqHEvo):
245
245
 
246
246
  self._time_evolution = lambda values: values[self.param_names[0]]
247
247
 
248
- def unitary(self, values: dict[str, Array]) -> Array:
248
+ def _unitary(self, values: dict[str, Array]) -> Array:
249
249
  """The evolved operator given current parameter values for generator and time evolution."""
250
250
  return expm(self._hamiltonian(self, values) * (-1j * self._time_evolution(values)))
251
251
 
@@ -79,6 +79,7 @@ def _fill_identities(
79
79
  torch.Tensor: augmented matrix with dimensions (2**nqubits, 2**nqubits)
80
80
  or a tensor (2**n_qubits) if diag_only
81
81
  """
82
+ full_qubit_support = tuple(sorted(full_qubit_support))
82
83
  qubit_support = tuple(sorted(qubit_support))
83
84
  block_mat = block_mat.to(device)
84
85
  mat = IMAT.to(device) if qubit_support[0] != full_qubit_support[0] else block_mat
@@ -469,14 +470,13 @@ def _block_to_tensor_embedded(
469
470
  )
470
471
 
471
472
  elif isinstance(block, MatrixBlock):
472
- mat = block.matrix.unsqueeze(0)
473
- # FIXME: properly handle identity filling in matrix blocks
474
- # mat = _fill_identities(
475
- # block.matrix.unsqueeze(0),
476
- # block.qubit_support,
477
- # qubit_support,
478
- # endianness=endianness,
479
- # )
473
+ mat = _fill_identities(
474
+ block.matrix.unsqueeze(0),
475
+ block.qubit_support,
476
+ qubit_support,
477
+ endianness=endianness,
478
+ device=device,
479
+ )
480
480
 
481
481
  elif isinstance(block, SWAP):
482
482
  swap_block = _swap_block(block)
qadence/blocks/matrix.py CHANGED
@@ -7,6 +7,8 @@ import numpy as np
7
7
  import torch
8
8
  from torch.linalg import eigvals
9
9
 
10
+ from math import log
11
+
10
12
  from qadence.blocks import PrimitiveBlock
11
13
  from qadence.noise import NoiseHandler
12
14
 
@@ -84,6 +86,8 @@ class MatrixBlock(PrimitiveBlock):
84
86
  if not self.is_unitary(matrix):
85
87
  logger.warning("Provided matrix is not unitary.")
86
88
  self.matrix = matrix.clone()
89
+ if int(log(self.matrix.size(1), 2)) != len(qubit_support):
90
+ raise ValueError("Provided matrix does not match the qubit_support length.")
87
91
  super().__init__(qubit_support, noise)
88
92
 
89
93
  @cached_property
@@ -4,6 +4,7 @@ from .callbacks.saveload import load_checkpoint, load_model, write_checkpoint
4
4
  from .config import AnsatzConfig, FeatureMapConfig, TrainConfig
5
5
  from .constructors import create_ansatz, create_fm_blocks, observable_from_config
6
6
  from .data import DictDataLoader, InfiniteTensorDataset, OptimizeResult, to_dataloader
7
+ from .information import InformationContent
7
8
  from .models import QNN
8
9
  from .optimize_step import optimize_step as default_optimize_step
9
10
  from .parameters import get_parameters, num_parameters, set_parameters
@@ -0,0 +1,3 @@
1
+ from __future__ import annotations
2
+
3
+ from .information_content import InformationContent
@@ -0,0 +1,339 @@
1
+ from __future__ import annotations
2
+
3
+ import functools
4
+ from logging import getLogger
5
+ from math import log, sqrt
6
+ from statistics import NormalDist
7
+ from typing import Any, Callable
8
+
9
+ import torch
10
+ from torch import nn
11
+ from torch.func import functional_call # type: ignore
12
+
13
+ logger = getLogger("ml_tools")
14
+
15
+
16
+ class InformationContent:
17
+ def __init__(
18
+ self,
19
+ model: nn.Module,
20
+ loss_fn: Callable,
21
+ xs: Any,
22
+ epsilons: torch.Tensor,
23
+ variation_multiple: int = 20,
24
+ ) -> None:
25
+ """Information Landscape class.
26
+
27
+ This class handles the study of loss landscape from information theoretic
28
+ perspective and provides methods to get bounds on the norm of the
29
+ gradient from the Information Content of the loss landscape.
30
+
31
+ Args:
32
+ model: The quantum or classical model to analyze.
33
+ loss_fn: Loss function that takes model output and calculates loss
34
+ xs: Input data to evaluate the model on
35
+ epsilons: The thresholds to use for discretization of the finite derivatives
36
+ variation_multiple: The number of sets of variational parameters to generate per each
37
+ variational parameter. The number of variational parameters required for the
38
+ statistical analysis scales linearly with the amount of them present in the
39
+ model. This is that linear factor.
40
+
41
+ Notes:
42
+ This class provides flexibility in terms of what the model, the loss function,
43
+ and the xs are. The only requirement is that the loss_fn takes the model and xs as
44
+ arguments and returns the loss, and another dictionary of other metrics.
45
+
46
+ Thus, assumed structure:
47
+ loss_fn(model, xs) -> (loss, metrics, ...)
48
+
49
+ Example: A Classifier
50
+ ```python
51
+ model = nn.Linear(10, 1)
52
+
53
+ def loss_fn(
54
+ model: nn.Module,
55
+ xs: tuple[torch.Tensor, torch.Tensor]
56
+ ) -> tuple[torch.Tensor, dict[str, float]:
57
+ criterion = nn.MSELoss()
58
+ inputs, labels = xs
59
+ outputs = model(inputs)
60
+ loss = criterion(outputs, labels)
61
+ metrics = {"loss": loss.item()}
62
+ return loss, metrics
63
+
64
+ xs = (torch.randn(10, 10), torch.randn(10, 1))
65
+
66
+ info_landscape = InfoLandscape(model, loss_fn, xs)
67
+ ```
68
+ In this example, the model is a linear classifier, and the `xs` include both the
69
+ inputs and the target labels. The logic for calculation of the loss from this lies
70
+ entirely within the `loss_fn` function. This can then further be used to obtain the
71
+ bounds on the average norm of the gradient of the loss function.
72
+
73
+ Example: A Physics Informed Neural Network
74
+ ```python
75
+ class PhysicsInformedNN(nn.Module):
76
+ // <Initialization Logic>
77
+
78
+ def forward(self, xs: dict[str, torch.Tensor]):
79
+ return {
80
+ "pde_residual": pde_residual(xs["pde"]),
81
+ "boundary_condition": bc_term(xs["bc"]),
82
+ }
83
+
84
+ def loss_fn(
85
+ model: PhysicsInformedNN,
86
+ xs: dict[str, torch.Tensor]
87
+ ) -> tuple[torch.Tensor, dict[str, float]:
88
+ pde_residual, bc_term = model(xs)
89
+ loss = torch.mean(torch.sum(pde_residual**2, dim=1), dim=0)
90
+ + torch.mean(torch.sum(bc_term**2, dim=1), dim=0)
91
+
92
+ return loss, {"pde_residual": pde_residual, "bc_term": bc_term}
93
+
94
+ xs = {
95
+ "pde": torch.linspace(0, 1, 10),
96
+ "bc": torch.tensor([0.0]),
97
+ }
98
+
99
+ info_landscape = InfoLandscape(model, loss_fn, xs)
100
+ ```
101
+
102
+ In this example, the model is a Physics Informed Neural Network, and the `xs`
103
+ are the inputs to the different residual components of the model. The logic
104
+ for calculation of the residuals lies within the PhysicsInformedNN class, and
105
+ the loss function is defined to calculate the loss that is to be optimized
106
+ from these residuals. This can then further be used to obtain the
107
+ bounds on the average norm of the gradient of the loss function.
108
+
109
+ The first value that the `loss_fn` returns is the loss value that is being optimized.
110
+ The function is also expected to return other value(s), often the metrics that are
111
+ used to calculate the loss. These values are ignored for the purpose of this class.
112
+ """
113
+ self.model = model
114
+ self.loss_fn = loss_fn
115
+ self.xs = xs
116
+ self.epsilons = epsilons
117
+ self.device = next(model.parameters()).device
118
+
119
+ self.param_shapes = {}
120
+ self.total_params = 0
121
+
122
+ for name, param in model.named_parameters():
123
+ self.param_shapes[name] = param.shape
124
+ self.total_params += param.numel()
125
+ self.n_variations = variation_multiple * self.total_params
126
+ self.all_variations = torch.empty(
127
+ (self.n_variations, self.total_params), device=self.device
128
+ ).uniform_(0, 2 * torch.pi)
129
+
130
+ def reshape_param_variations(self) -> dict[str, torch.Tensor]:
131
+ """Reshape variations of the model's variational parameters.
132
+
133
+ Returns:
134
+ Dictionary of parameter tensors, each with shape [n_variations, *param_shape]
135
+ """
136
+ param_variations = {}
137
+ start_idx = 0
138
+
139
+ for name, shape in self.param_shapes.items():
140
+ param_size = torch.prod(torch.tensor(shape)).item()
141
+ param_variations[name] = self.all_variations[
142
+ :, start_idx : start_idx + param_size
143
+ ].view(self.n_variations, *shape)
144
+ start_idx += param_size
145
+
146
+ return param_variations
147
+
148
+ def batched_loss(self) -> torch.Tensor:
149
+ """Calculate loss for all parameter variations in a batched manner.
150
+
151
+ Returns: Tensor of loss values for each parameter variation
152
+ """
153
+ param_variations = self.reshape_param_variations()
154
+ losses = torch.zeros(self.n_variations, device=self.device)
155
+
156
+ for i in range(self.n_variations):
157
+ params = {name: param[i] for name, param in param_variations.items()}
158
+ current_model = lambda x: functional_call(self.model, params, (x,))
159
+ losses[i] = self.loss_fn(current_model, self.xs)[0]
160
+
161
+ return losses
162
+
163
+ def randomized_finite_der(self) -> torch.Tensor:
164
+ """
165
+ Calculate normalized finite difference of loss on doing random walk in the parameter space.
166
+
167
+ This serves as a proxy for the derivative of the loss with respect to parameters.
168
+
169
+ Returns:
170
+ Tensor containing normalized finite differences (approximate directional derivatives)
171
+ between consecutive points in the random walk. Shape: [n_variations - 1]
172
+ """
173
+ losses = self.batched_loss()
174
+
175
+ return (losses[1:] - losses[:-1]) / (
176
+ torch.norm(self.all_variations[1:] - self.all_variations[:-1], dim=1) + 1e-8
177
+ )
178
+
179
+ def discretize_derivatives(self) -> torch.Tensor:
180
+ """
181
+ Convert finite derivatives into discrete values.
182
+
183
+ Returns:
184
+ Tensor containing discretized derivatives with shape [n_epsilons, n_variations-2]
185
+ Each row contains {-1, 0, 1} values for that epsilon
186
+ """
187
+ derivatives = self.randomized_finite_der()
188
+
189
+ derivatives = derivatives.unsqueeze(0)
190
+ epsilons = self.epsilons.unsqueeze(1)
191
+
192
+ discretized = torch.zeros((len(epsilons), len(derivatives[0])), device=self.device)
193
+ discretized[derivatives > epsilons] = 1
194
+ discretized[derivatives < -epsilons] = -1
195
+
196
+ return discretized
197
+
198
+ def calculate_transition_probabilities_batch(self) -> torch.Tensor:
199
+ """
200
+ Calculate transition probabilities for multiple epsilon values.
201
+
202
+ Returns:
203
+ Tensor of shape [n_epsilons, 6] containing probabilities for each transition type
204
+ Columns order: [+1to0, +1to-1, 0to+1, 0to-1, -1to0, -1to+1]
205
+ """
206
+ discretized = self.discretize_derivatives()
207
+
208
+ current = discretized[:, :-1]
209
+ next_val = discretized[:, 1:]
210
+
211
+ transitions = torch.stack(
212
+ [
213
+ ((current == 1) & (next_val == 0)).sum(dim=1),
214
+ ((current == 1) & (next_val == -1)).sum(dim=1),
215
+ ((current == 0) & (next_val == 1)).sum(dim=1),
216
+ ((current == 0) & (next_val == -1)).sum(dim=1),
217
+ ((current == -1) & (next_val == 0)).sum(dim=1),
218
+ ((current == -1) & (next_val == 1)).sum(dim=1),
219
+ ],
220
+ dim=1,
221
+ ).float()
222
+
223
+ total_transitions = current.size(1)
224
+ probabilities = transitions / total_transitions
225
+
226
+ return probabilities
227
+
228
+ @functools.cached_property
229
+ def calculate_IC(self) -> torch.Tensor:
230
+ """
231
+ Calculate Information Content for multiple epsilon values.
232
+
233
+ Returns: Tensor of IC values for each epsilon [n_epsilons]
234
+ """
235
+ probs = self.calculate_transition_probabilities_batch()
236
+
237
+ mask = probs > 1e-4
238
+
239
+ ic_terms = torch.where(mask, -probs * torch.log(probs), torch.zeros_like(probs))
240
+ ic_values = ic_terms.sum(dim=1) / torch.log(torch.tensor(6.0))
241
+
242
+ return ic_values
243
+
244
+ def max_IC(self) -> tuple[float, float]:
245
+ """
246
+ Get the maximum Information Content and its corresponding epsilon.
247
+
248
+ Returns: Tuple of (maximum IC value, optimal epsilon)
249
+ """
250
+ max_ic, max_idx = torch.max(self.calculate_IC, dim=0)
251
+ max_epsilon = self.epsilons[max_idx]
252
+ return max_ic.item(), max_epsilon.item()
253
+
254
+ def sensitivity_IC(self, eta: float) -> float:
255
+ """
256
+ Find the minimum value of epsilon such that the information content is less than eta.
257
+
258
+ Args:
259
+ eta: Threshold value, the sensitivity IC.
260
+
261
+ Returns: The epsilon value that gives IC that is less than the sensitivity IC.
262
+ """
263
+ ic_values = self.calculate_IC
264
+ mask = ic_values < eta
265
+ epsilons = self.epsilons[mask]
266
+ return float(epsilons.min().item())
267
+
268
+ @staticmethod
269
+ @functools.lru_cache
270
+ def q_value(H_value: float) -> float:
271
+ """
272
+ Compute the q value.
273
+
274
+ q is the solution to the equation:
275
+ H(x) = 4h(x) + 2h(1/2 - 2x)
276
+
277
+ It is the value of the probability of 4 of the 6 transitions such that
278
+ the IC is the same as the IC of our system.
279
+
280
+ This quantity is useful in calculating the bounds on the norms of the gradients.
281
+
282
+ Args:
283
+ H_value (float): The information content.
284
+
285
+ Returns:
286
+ float: The q value
287
+ """
288
+
289
+ x = torch.linspace(0.001, 0.16667, 10000)
290
+
291
+ H = -4 * x * torch.log(x) / torch.log(torch.tensor(6)) - 2 * (0.5 - 2 * x) * torch.log(
292
+ 0.5 - 2 * x
293
+ ) / torch.log(torch.tensor(6))
294
+ err = torch.abs(H - H_value)
295
+ idx = torch.argmin(err)
296
+ return float(x[idx].item())
297
+
298
+ def get_grad_norm_bounds_max_IC(self) -> tuple[float, float]:
299
+ """
300
+ Compute the bounds on the average norm of the gradient.
301
+
302
+ Returns:
303
+ tuple[Tensor, Tensor]: The lower and upper bounds.
304
+ """
305
+ max_IC, epsilon_m = self.max_IC()
306
+ lower_bound = (
307
+ epsilon_m
308
+ * sqrt(self.total_params)
309
+ / (NormalDist().inv_cdf(1 - 2 * self.q_value(max_IC)))
310
+ )
311
+ upper_bound = (
312
+ epsilon_m
313
+ * sqrt(self.total_params)
314
+ / (NormalDist().inv_cdf(0.5 * (1 + 2 * self.q_value(max_IC))))
315
+ )
316
+
317
+ if max_IC < log(2, 6):
318
+ logger.warning(
319
+ "Warning: The maximum IC is less than the required value. The bounds may be"
320
+ + " inaccurate."
321
+ )
322
+
323
+ return lower_bound, upper_bound
324
+
325
+ def get_grad_norm_bounds_sensitivity_IC(self, eta: float) -> float:
326
+ """
327
+ Compute the bounds on the average norm of the gradient.
328
+
329
+ Args:
330
+ eta (float): The sensitivity IC.
331
+
332
+ Returns:
333
+ Tensor: The lower bound.
334
+ """
335
+ epsilon_sensitivity = self.sensitivity_IC(eta)
336
+ upper_bound = (
337
+ epsilon_sensitivity * sqrt(self.total_params) / (NormalDist().inv_cdf(1 - 3 * eta / 2))
338
+ )
339
+ return upper_bound
@@ -14,7 +14,8 @@ from torch import dtype as torch_dtype
14
14
  from torch.utils.data import DataLoader
15
15
 
16
16
  from qadence.ml_tools.config import TrainConfig
17
- from qadence.ml_tools.data import DictDataLoader, OptimizeResult
17
+ from qadence.ml_tools.data import DictDataLoader, OptimizeResult, data_to_device
18
+ from qadence.ml_tools.information import InformationContent
18
19
  from qadence.ml_tools.optimize_step import optimize_step, update_ng_parameters
19
20
  from qadence.ml_tools.stages import TrainingStage
20
21
 
@@ -711,3 +712,107 @@ class Trainer(BaseTrainer):
711
712
  self.opt_result = OptimizeResult(
712
713
  self.current_epoch, self.model_old, self.optimizer_old, loss, metrics
713
714
  )
715
+
716
+ def get_ic_grad_bounds(
717
+ self,
718
+ eta: float,
719
+ epsilons: torch.Tensor,
720
+ variation_multiple: int = 20,
721
+ dataloader: DataLoader | DictDataLoader | None = None,
722
+ ) -> tuple[float, float, float]:
723
+ """
724
+ Calculate the bounds on the gradient norm of the loss using Information Content.
725
+
726
+ Args:
727
+ eta (float): The sensitivity IC.
728
+ epsilons (torch.Tensor): The epsilons to use for thresholds to for discretization of the
729
+ finite derivatives.
730
+ variation_multiple (int): The number of sets of variational parameters to generate per
731
+ each variational parameter. The number of variational parameters required for the
732
+ statisctiacal analysis scales linearly with the amount of them present in the
733
+ model. This is that linear factor.
734
+ dataloader (DataLoader | DictDataLoader | None): The dataloader for training data. A
735
+ new dataloader can be provided, or the dataloader provided in the trinaer will be
736
+ used. In case no dataloaders are provided at either places, it assumes that the
737
+ model does not require any input data.
738
+
739
+ Returns:
740
+ tuple[float, float, float]: The max IC lower bound, max IC upper bound, and sensitivity
741
+ IC upper bound.
742
+
743
+ Examples:
744
+ ```python
745
+ import torch
746
+ from torch.optim.adam import Adam
747
+
748
+ from qadence.constructors import ObservableConfig
749
+ from qadence.ml_tools.config import AnsatzConfig, FeatureMapConfig, TrainConfig
750
+ from qadence.ml_tools.data import to_dataloader
751
+ from qadence.ml_tools.models import QNN
752
+ from qadence.ml_tools.optimize_step import optimize_step
753
+ from qadence.ml_tools.trainer import Trainer
754
+ from qadence.operations.primitive import Z
755
+
756
+ fm_config = FeatureMapConfig(num_features=1)
757
+ ansatz_config = AnsatzConfig(depth=4)
758
+ obs_config = ObservableConfig(detuning=Z)
759
+
760
+ qnn = QNN.from_configs(
761
+ register=4,
762
+ obs_config=obs_config,
763
+ fm_config=fm_config,
764
+ ansatz_config=ansatz_config,
765
+ )
766
+
767
+ optimizer = Adam(qnn.parameters(), lr=0.001)
768
+
769
+ batch_size = 25
770
+ x = torch.linspace(0, 1, 32).reshape(-1, 1)
771
+ y = torch.sin(x)
772
+ train_loader = to_dataloader(x, y, batch_size=batch_size, infinite=True)
773
+
774
+ train_config = TrainConfig(max_iter=100)
775
+
776
+ trainer = Trainer(
777
+ model=qnn,
778
+ optimizer=optimizer,
779
+ config=train_config,
780
+ loss_fn="mse",
781
+ train_dataloader=train_loader,
782
+ optimize_step=optimize_step,
783
+ )
784
+
785
+ # Perform exploratory landscape analysis with Information Content
786
+ ic_sensitivity_threshold = 1e-4
787
+ epsilons = torch.logspace(-2, 2, 10)
788
+
789
+ max_ic_lower_bound, max_ic_upper_bound, sensitivity_ic_upper_bound = (
790
+ trainer.get_ic_grad_bounds(
791
+ eta=ic_sensitivity_threshold,
792
+ epsilons=epsilons,
793
+ )
794
+ )
795
+
796
+ # Resume training as usual...
797
+
798
+ trainer.fit(train_loader)
799
+ ```
800
+ """
801
+ if not self._use_grad:
802
+ logger.warning(
803
+ "Gradient norm bounds are only relevant when using a gradient based optimizer. \
804
+ Currently the trainer is set to use a gradient-free optimizer."
805
+ )
806
+
807
+ dataloader = dataloader if dataloader is not None else self.train_dataloader
808
+
809
+ batch = next(iter(self._batch_iter(dataloader, num_batches=1)))
810
+
811
+ xs = data_to_device(batch, device=self.device, dtype=self.data_dtype)
812
+
813
+ ic = InformationContent(self.model, self.loss_fn, xs, epsilons)
814
+
815
+ max_ic_lower_bound, max_ic_upper_bound = ic.get_grad_norm_bounds_max_IC()
816
+ sensitivity_ic_upper_bound = ic.get_grad_norm_bounds_sensitivity_IC(eta)
817
+
818
+ return max_ic_lower_bound, max_ic_upper_bound, sensitivity_ic_upper_bound
@@ -376,10 +376,6 @@ class SWAP(PrimitiveBlock):
376
376
  def eigenvalues(self) -> Tensor:
377
377
  return torch.tensor([-1, 1, 1, 1], dtype=cdouble)
378
378
 
379
- @property
380
- def n_qubits(self) -> int:
381
- return 2
382
-
383
379
  @property
384
380
  def _block_title(self) -> str:
385
381
  c, t = self.qubit_support
@@ -1,8 +1,8 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: qadence
3
- Version: 1.10.2
3
+ Version: 1.10.3
4
4
  Summary: Pasqal interface for circuit-based quantum computing SDKs
5
- Author-email: Aleksander Wennersteen <aleksander.wennersteen@pasqal.com>, Gert-Jan Both <gert-jan.both@pasqal.com>, Niklas Heim <niklas.heim@pasqal.com>, Mario Dagrada <mario.dagrada@pasqal.com>, Vincent Elfving <vincent.elfving@pasqal.com>, Dominik Seitz <dominik.seitz@pasqal.com>, Roland Guichard <roland.guichard@pasqal.com>, "Joao P. Moutinho" <joao.moutinho@pasqal.com>, Vytautas Abramavicius <vytautas.abramavicius@pasqal.com>, Gergana Velikova <gergana.velikova@pasqal.com>, Eduardo Maschio <eduardo.maschio@pasqal.com>, Smit Chaudhary <smit.chaudhary@pasqal.com>, Ignacio Fernández Graña <ignacio.fernandez-grana@pasqal.com>, Charles Moussa <charles.moussa@pasqal.com>, Giorgio Tosti Balducci <giorgio.tosti-balducci@pasqal.com>, Daniele Cucurachi <daniele.cucurachi@pasqal.com>, Pim Venderbosch <pim.venderbosch@pasqal.com>
5
+ Author-email: Aleksander Wennersteen <aleksander.wennersteen@pasqal.com>, Gert-Jan Both <gert-jan.both@pasqal.com>, Niklas Heim <niklas.heim@pasqal.com>, Mario Dagrada <mario.dagrada@pasqal.com>, Vincent Elfving <vincent.elfving@pasqal.com>, Dominik Seitz <dominik.seitz@pasqal.com>, Roland Guichard <roland.guichard@pasqal.com>, "Joao P. Moutinho" <joao.moutinho@pasqal.com>, Vytautas Abramavicius <vytautas.abramavicius@pasqal.com>, Gergana Velikova <gergana.velikova@pasqal.com>, Eduardo Maschio <eduardo.maschio@pasqal.com>, Smit Chaudhary <smit.chaudhary@pasqal.com>, Ignacio Fernández Graña <ignacio.fernandez-grana@pasqal.com>, Charles Moussa <charles.moussa@pasqal.com>, Giorgio Tosti Balducci <giorgio.tosti-balducci@pasqal.com>, Daniele Cucurachi <daniele.cucurachi@pasqal.com>, Pim Venderbosch <pim.venderbosch@pasqal.com>, Manu Lahariya <manu.lahariya@pasqal.com>
6
6
  License: Apache 2.0
7
7
  License-File: LICENSE
8
8
  Classifier: License :: OSI Approved :: Apache Software License
@@ -43,7 +43,7 @@ Requires-Dist: nvidia-pyindex; extra == 'dlprof'
43
43
  Provides-Extra: horqrux
44
44
  Requires-Dist: einops; extra == 'horqrux'
45
45
  Requires-Dist: flax; extra == 'horqrux'
46
- Requires-Dist: horqrux==0.6.2; extra == 'horqrux'
46
+ Requires-Dist: horqrux==0.7.0; extra == 'horqrux'
47
47
  Requires-Dist: jax; extra == 'horqrux'
48
48
  Requires-Dist: jaxopt; extra == 'horqrux'
49
49
  Requires-Dist: optax; extra == 'horqrux'
@@ -56,8 +56,8 @@ Provides-Extra: protocols
56
56
  Requires-Dist: qadence-protocols; extra == 'protocols'
57
57
  Provides-Extra: pulser
58
58
  Requires-Dist: pasqal-cloud==0.12.7; extra == 'pulser'
59
- Requires-Dist: pulser-core==1.2.1; extra == 'pulser'
60
- Requires-Dist: pulser-simulation==1.2.1; extra == 'pulser'
59
+ Requires-Dist: pulser-core==1.2.2; extra == 'pulser'
60
+ Requires-Dist: pulser-simulation==1.2.2; extra == 'pulser'
61
61
  Provides-Extra: visualization
62
62
  Requires-Dist: graphviz; extra == 'visualization'
63
63
  Description-Content-Type: text/markdown
@@ -35,7 +35,7 @@ qadence/backends/utils.py,sha256=SSiMxZjaFS8e8sB6ZBLXPKuJNQGl93pRMy9hnI4oDrw,910
35
35
  qadence/backends/horqrux/__init__.py,sha256=0OdVy6cq0oQggV48LO1WXdaZuSkDkz7OYNEPIkNAmfk,140
36
36
  qadence/backends/horqrux/backend.py,sha256=KNFFGN9dsgB9QKtNXiP3LyMY9DQ-7W7ScyE6k29fHJY,8842
37
37
  qadence/backends/horqrux/config.py,sha256=xz7JlUcwW_4JAbvProbSI9hA1SXZRRAN0Hr2bvmLzfg,892
38
- qadence/backends/horqrux/convert_ops.py,sha256=LTT8xptZ6DfhgEvFaACtal-qY2doy_Jj3dvV6HXE1Q8,8646
38
+ qadence/backends/horqrux/convert_ops.py,sha256=lUQ3faf3Y4MvIzWzczHLVLs9f9iPij0Dy8JgSHx9ufo,8647
39
39
  qadence/backends/pulser/__init__.py,sha256=capQ-eHqwtOeLf4mWsI0BIseAHhiLGie5cFD4-iVhUo,116
40
40
  qadence/backends/pulser/backend.py,sha256=cI4IgijPpItNdDmLpKkJFas0X02wMiZd_XmVas41gEI,14846
41
41
  qadence/backends/pulser/channels.py,sha256=ZF0yEXUFHAmi3IdeXjzdTNGR5NzaRRFTiUpUGVg2sO4,329
@@ -52,11 +52,11 @@ qadence/backends/pyqtorch/convert_ops.py,sha256=qG26-HmtUDaZO0KDnw2sbT3CRx_poS7e
52
52
  qadence/blocks/__init__.py,sha256=H6jEA_CptkE-eoB4UfSbUiDszbxxhZwECV_TgoZWXoU,960
53
53
  qadence/blocks/abstract.py,sha256=DSQUE71rMyRBwAP--4Tx1WQC_LCXaNlftjd7goGyrpQ,12027
54
54
  qadence/blocks/analog.py,sha256=ymnnlSVoW1XL05ZvnnHCqRTHuOXIEY_7E9M0PNKJZy4,10812
55
- qadence/blocks/block_to_tensor.py,sha256=Sg7YGKUoPUUHKvyB8Khztrk7UYnV5SD451_3I00n84w,17367
55
+ qadence/blocks/block_to_tensor.py,sha256=CG4KUeBhbfCr6o7JCN6CN-herDUXA8tcC4shi06uUmk,17338
56
56
  qadence/blocks/composite.py,sha256=f9D8L3u5Ktu_-xDBWsWiPlY8I-YW5YFgU18BtqwFHK0,8937
57
57
  qadence/blocks/embedding.py,sha256=MI-gTPEe1e56AiHJr6MJwMAHdA7ZYmTo0b0VmFfyISQ,7029
58
58
  qadence/blocks/manipulate.py,sha256=kPmzej7mnWFoqTJA2CkGulT7hcPha0GGPARC8rjZltg,2387
59
- qadence/blocks/matrix.py,sha256=unE8mVWBTTcmSLX4le2fHqHFu4fbGeMTK8MrGoPsVRY,4036
59
+ qadence/blocks/matrix.py,sha256=JgzFLWoWDytaE0MEYe-Di7tbwb4jSmMF8tsOF04RIRo,4214
60
60
  qadence/blocks/primitive.py,sha256=GLruKpiFBStWVd_M9mzLr3MqDNPbyaMUzEVB6xV3cPQ,17657
61
61
  qadence/blocks/utils.py,sha256=_V43qD7kQNK8JS3gxfpkRn56ZIF_GGrhAnARn1hq2hk,17772
62
62
  qadence/constructors/__init__.py,sha256=kFAMJMZbEUQlNZBAJi2XOaPFMh-ynb2_A1lI85la4y0,1027
@@ -101,7 +101,7 @@ qadence/mitigations/__init__.py,sha256=RzaxYJftePFMloGhBVSixZ8fSe-ps_Jc-EyPm6xz-
101
101
  qadence/mitigations/analog_zne.py,sha256=5n1ffjGM1I5sd9TATsB90pKdDh32UTFJ-ZyOHKdM5z0,7821
102
102
  qadence/mitigations/protocols.py,sha256=0TeHvlGTN8_88XNEwrjA97C5BUlrh34wYmx0w6-5Tyw,1622
103
103
  qadence/mitigations/readout.py,sha256=nI-voV5N0R7630Cn8t8x9EdV9iB76P0LDkRosy1s0Ec,6631
104
- qadence/ml_tools/__init__.py,sha256=a52dLBtUh5rTJ0ks_LREv-txtQ8pQZZhnQaIg28fSOw,936
104
+ qadence/ml_tools/__init__.py,sha256=AsZyk_i3EKR12m038o4cAdEfRje8RaCNW6CgmyZ9I94,980
105
105
  qadence/ml_tools/config.py,sha256=r78n5tHDuMBPnItWP9FYaDPxneTEAtbUJb5yLZBs64A,20163
106
106
  qadence/ml_tools/constructors.py,sha256=MT37r2OZ9uqlf0J7jBGNzMlnaZjfhF6rmll0sIWyaAg,29700
107
107
  qadence/ml_tools/data.py,sha256=5sAqG9rUtGZPzFlzEDhMjSeOXF8Z0BmszJ_FRzYAy2A,5311
@@ -110,13 +110,15 @@ qadence/ml_tools/optimize_step.py,sha256=wUnxfWy0c9rEKe41-26On1bPFBwmSYBF4WCGn76
110
110
  qadence/ml_tools/parameters.py,sha256=gew2Kq_5-RgRpaTvs8eauVhgo0sTqqDQEV6WHFEiLGM,1301
111
111
  qadence/ml_tools/stages.py,sha256=qW2phMIvQBLM3tn2UoGN-ePiBnZoNq5k844eHVnnn8Y,1407
112
112
  qadence/ml_tools/tensors.py,sha256=xZ9ZRzOqEaMgLUGWQf1najDmL6iLuN1ojCGVFs1Tm94,1337
113
- qadence/ml_tools/trainer.py,sha256=xU7qffXzWZDfJLlcYebGt4cGXnI8PPls_WdVrGQE31M,27026
113
+ qadence/ml_tools/trainer.py,sha256=XOwupRd6lWihNCZCoX3X6S8pzTBqyEvPaWGJ7HYnl98,31317
114
114
  qadence/ml_tools/utils.py,sha256=PW8FyoV0mG_DtN1U8njTDV5qxZ0EK4mnFwMAsLBArfk,1410
115
115
  qadence/ml_tools/callbacks/__init__.py,sha256=pTdfjulDGNKca--9BgrdmMyvJSah_0spp929Th6RzC8,913
116
116
  qadence/ml_tools/callbacks/callback.py,sha256=XoqTS1uLOkbh4FtKpDSXbUA5_LzjOAoVMaa2jYcYB3w,28800
117
117
  qadence/ml_tools/callbacks/callbackmanager.py,sha256=HwxgbqJi1GWYg2lgUqEyw9Y6a71YG_m5DmhpaeB6kLs,8007
118
118
  qadence/ml_tools/callbacks/saveload.py,sha256=2z8v1A3qIIPZuusEcSNqgYTnKGKkDj71KvY_atJvKnM,6015
119
119
  qadence/ml_tools/callbacks/writer_registry.py,sha256=_lPb4VvDHiiRNh2EaEKxOSslnJgBAImGw5SoVReg-Rs,15351
120
+ qadence/ml_tools/information/__init__.py,sha256=ShyaFJtSRmahI8dIRgDlfjp8XobJ23GTd7X3kU-5F34,88
121
+ qadence/ml_tools/information/information_content.py,sha256=Uv6e831Pi4udhnvEBBALqbkScuDfez-mGM5XTdZyo_w,12750
120
122
  qadence/ml_tools/loss/__init__.py,sha256=d_0FlisdmgLY0qL1PeaabbcWX1B42RBdm7220cfzSN4,247
121
123
  qadence/ml_tools/loss/loss.py,sha256=Bditg8nelMEpG4Yt0aopcAQz84xIc6O-AGUO2M0nqbM,2982
122
124
  qadence/ml_tools/train_utils/__init__.py,sha256=1A2FlFg7kn68R1fdRC73S8DzA9gkBW7whdNHjzH5UTA,235
@@ -129,7 +131,7 @@ qadence/operations/analog.py,sha256=v11DSrg-XUbwIAWAWM43y3VQbYKsx2ynx-HimUoC-x0,
129
131
  qadence/operations/control_ops.py,sha256=fPSwOxJaVtJNbwri1UdD20W1JXQlB-inPTCJG3Fk4hI,10187
130
132
  qadence/operations/ham_evo.py,sha256=brJ11tlwj6UPYkUcnId-BKlzNStsZd0vp9FKHCFTjlM,10642
131
133
  qadence/operations/parametric.py,sha256=kV5d-diaQAoRlqKqoo0CGCbPej6eAxHQXniqfFKff3g,5394
132
- qadence/operations/primitive.py,sha256=hDuwWndfPWqchM_98mOMf40qpkuPuwh39DIwHAbzGRo,9944
134
+ qadence/operations/primitive.py,sha256=hPJMDgWaEEdSYDZsr__hAcwy-QJEtzbM4qtFDcLmNBg,9881
133
135
  qadence/transpile/__init__.py,sha256=JrrQ4Osc4nNRWWjRGmVn57fWc8WwF92MokhKLRZ1vVA,499
134
136
  qadence/transpile/apply_fn.py,sha256=glZo2_wMOjw7_KgWKYbqg8j-9SDs-RefWIfxWgdQK8I,1336
135
137
  qadence/transpile/block.py,sha256=jV-EyatrwwdL2ahjF3wyEhC3PKMBPLaL5sQN1VNFc_w,11582
@@ -139,7 +141,7 @@ qadence/transpile/flatten.py,sha256=k4HAfVzvDV40HyfaukiEHyJtAtvFRIcyDbAWiCL8tf0,
139
141
  qadence/transpile/invert.py,sha256=IeyidgBwECCKB0i7Ym0KkLyfcx42LyT2mbqkfbK1H8M,4843
140
142
  qadence/transpile/noise.py,sha256=LDcDJtQGkgUPkL2t69gg6AScTb-p3J3SxCDZbYOu1L8,1668
141
143
  qadence/transpile/transpile.py,sha256=xnzkHA6Qdb-Y5Fv9Latrolrpw44N6_OKc7_QGt70f0I,2713
142
- qadence-1.10.2.dist-info/METADATA,sha256=nvxqPfkWiJhQZYUqC-m5izWbIYAswfaT4grepXhMYP0,10149
143
- qadence-1.10.2.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
144
- qadence-1.10.2.dist-info/licenses/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
145
- qadence-1.10.2.dist-info/RECORD,,
144
+ qadence-1.10.3.dist-info/METADATA,sha256=fytA26nk5vWG6gnLJZHXngs9fKcLuVpafBiLZH2yQCQ,10191
145
+ qadence-1.10.3.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
146
+ qadence-1.10.3.dist-info/licenses/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
147
+ qadence-1.10.3.dist-info/RECORD,,