pz-rail-astro-tools 0.1.3__py3-none-any.whl → 0.1.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of pz-rail-astro-tools might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pz-rail-astro-tools
3
- Version: 0.1.3
3
+ Version: 0.1.4
4
4
  Author-email: "LSST Dark Energy Science Collaboration (DESC)" <lsst-desc-rail-admin@slac.stanford.edu>
5
5
  License: MIT License
6
6
 
@@ -65,7 +65,7 @@ in [RAIL](https://github.com/LSSTDESC/RAIL).
65
65
 
66
66
  This code, while public on GitHub, has not yet been released by DESC and is
67
67
  still under active development. Our release of v1.0 will be accompanied by a
68
- journal paper describing the development and validation of RAIL.
68
+ journal paper describing the development and validation of RAIL.
69
69
 
70
70
  If you make use of the ideas or software in RAIL, please cite the repository
71
71
  <https://github.com/LSSTDESC/RAIL>. You are welcome to re-use the code, which
@@ -0,0 +1,21 @@
1
+ rail/astro_tools/__init__.py,sha256=c0yzN5jMhByii01h_mjOWipeProO8vludBsO09dJkmc,377
2
+ rail/astro_tools/_version.py,sha256=9GTNkADgEYZ6fEjCvZZUdKyqxiPIgtskLFZNJz7nq_U,411
3
+ rail/creation/degraders/grid_selection.py,sha256=QCs7ZpLJ_GdJnIIt0WF09mBLeqsrzQ2CiDo0h0Hd3dQ,12438
4
+ rail/creation/degraders/lsst_error_model.py,sha256=WWQxPO3w1S6sALQxl7x7_mUI1f3o1eOGpBk3Yzi-1Q0,1969
5
+ rail/creation/degraders/observing_condition_degrader.py,sha256=jelIfFHzrgmRmRARm5uC36ZohepfMHq5djWT5wGEaZI,19987
6
+ rail/creation/degraders/photometric_errors.py,sha256=HbQaEKHEcSo4ab2J3qZAiVFxlJpLAQFwjGKUnSUmG8U,3927
7
+ rail/creation/degraders/spectroscopic_degraders.py,sha256=zpCxK0jbKTKlU-eqe05pW-BM2O743_ocEQy2TQPP3EA,5038
8
+ rail/creation/degraders/spectroscopic_selections.py,sha256=1nWeWFN3nE5mw1W6fxAcSjp3eWcWbRuY6TsYvDlT7Zc,22182
9
+ rail/creation/engines/gcr_engine.py,sha256=MTzbV-FDRAoWfTpUzKCrdyOGK3hsSJ5atSLpwslBE5Y,2989
10
+ rail/examples_data/creation_data/data/HSC_grid_settings.pkl,sha256=zpJoSR9TSnDyL64DPXivIMam3fn6GOZoyoJoeBj2LAk,141
11
+ rail/examples_data/creation_data/data/hsc_ratios_and_specz.hdf5,sha256=liH54wuuuHxToqjoAwQ_fFmEefk3haNweVThMwdDKN4,13823712
12
+ rail/examples_data/creation_data/data/survey_conditions/DC2-dr6-galcounts-i20-i25.3-nside-128.fits,sha256=jHv3dwoLQSKcGUx29cnN9t9AWef4JlGsqSbITJfZI0o,1581120
13
+ rail/examples_data/creation_data/data/survey_conditions/DC2-mask-neg-nside-128.fits,sha256=79Kg4xRP4WHlOCcS-3SKqf9aP_LZRAq-izIM0DFL6bw,1581120
14
+ rail/examples_data/creation_data/data/survey_conditions/minion_1016_dc2_Median_airmass_i_and_nightlt1825_HEAL.fits,sha256=twvyce70G3h1MQnGGFQJG9wZc8UbuNqXc6mjtiuaL1s,1581120
15
+ rail/examples_data/creation_data/data/survey_conditions/minion_1016_dc2_Median_fiveSigmaDepth_i_and_nightlt1825_HEAL.fits,sha256=RbMMFSVJQxGhZnL4BnISE9VTNljfTZwV6Bax6NxverY,1581120
16
+ rail/tools/photometry_tools.py,sha256=aAIfD_CsYvJappbh6FR2GLt2eeQdMg59N5VuLD5QTjg,18419
17
+ pz_rail_astro_tools-0.1.4.dist-info/LICENSE,sha256=tLMEN21HbzvT-7umOVVvPjaJZbQxCa-2bAeYLwG5Q04,1102
18
+ pz_rail_astro_tools-0.1.4.dist-info/METADATA,sha256=CrJI-XlnSU9JMf941C61rFxUoQjoKstxAkWcRZzevUI,3947
19
+ pz_rail_astro_tools-0.1.4.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
20
+ pz_rail_astro_tools-0.1.4.dist-info/top_level.txt,sha256=6R6sqn-85I8YZTzmB9gv7sqckB2QaOTHbu-QLGTWBRE,5
21
+ pz_rail_astro_tools-0.1.4.dist-info/RECORD,,
@@ -1,8 +1,8 @@
1
1
  from ._version import __version__
2
2
 
3
- from rail.creation.degradation.grid_selection import *
4
- from rail.creation.degradation.observing_condition_degrader import *
5
- from rail.creation.degradation.spectroscopic_degraders import *
6
- from rail.creation.degradation.spectroscopic_selections import *
7
- from rail.creation.degradation.lsst_error_model import *
8
- from rail.tools.util_photometry import *
3
+ from rail.creation.degraders.grid_selection import *
4
+ from rail.creation.degraders.observing_condition_degrader import *
5
+ from rail.creation.degraders.spectroscopic_degraders import *
6
+ from rail.creation.degraders.spectroscopic_selections import *
7
+ from rail.creation.degraders.lsst_error_model import *
8
+ from rail.tools.photometry_tools import *
@@ -12,5 +12,5 @@ __version__: str
12
12
  __version_tuple__: VERSION_TUPLE
13
13
  version_tuple: VERSION_TUPLE
14
14
 
15
- __version__ = version = '0.1.3'
16
- __version_tuple__ = version_tuple = (0, 1, 3)
15
+ __version__ = version = '0.1.4'
16
+ __version_tuple__ = version_tuple = (0, 1, 4)
@@ -6,7 +6,7 @@ import pandas as pd
6
6
  import pickle
7
7
  import tables_io
8
8
  from rail.creation.selector import Selector
9
- from rail.core.utils import find_rail_file
9
+ from rail.utils.path_utils import find_rail_file
10
10
  from ceci.config import StageParameter as Param
11
11
 
12
12
 
@@ -6,7 +6,7 @@ import numpy as np
6
6
  from ceci.config import StageParameter as Param
7
7
  from rail.creation.selector import Selector
8
8
  from scipy.interpolate import interp1d
9
- from rail.core.utils import RAILDIR
9
+ from rail.utils.path_utils import RAILDIR
10
10
 
11
11
 
12
12
  class SpecSelection(Selector):
@@ -68,7 +68,7 @@ def _compute_flux_error(flux, magnitude_error):
68
68
  return flux_error
69
69
 
70
70
 
71
- class PhotormetryManipulator(RailStage, ABC):
71
+ class PhotometryManipulator(RailStage, ABC):
72
72
  """
73
73
  Base class to perform opertations on magnitudes. A table with input magnitudes and errors is
74
74
  processed and transformed into an output table with new magnitudes and errors.
@@ -76,7 +76,7 @@ class PhotormetryManipulator(RailStage, ABC):
76
76
  Subclasses must implement the run() and compute() method.
77
77
  """
78
78
 
79
- name = 'PhotormetryManipulator'
79
+ name = 'PhotometryManipulator'
80
80
  config_options = RailStage.config_options.copy()
81
81
  config_options.update(
82
82
  value_columns=Param(
@@ -171,7 +171,7 @@ class PhotormetryManipulator(RailStage, ABC):
171
171
  return self.get_handle('output')
172
172
 
173
173
 
174
- class HyperbolicSmoothing(PhotormetryManipulator):
174
+ class HyperbolicSmoothing(PhotometryManipulator):
175
175
  """
176
176
  Initial stage to compute hyperbolic magnitudes (Lupton et al. 1999). Estimates the smoothing
177
177
  parameter b that is used by the second stage (`HyperbolicMagnitudes`) to convert classical to
@@ -179,7 +179,7 @@ class HyperbolicSmoothing(PhotormetryManipulator):
179
179
  """
180
180
 
181
181
  name = 'HyperbolicSmoothing'
182
- config_options = PhotormetryManipulator.config_options.copy()
182
+ config_options = PhotometryManipulator.config_options.copy()
183
183
  inputs = [('input', PqHandle)]
184
184
  outputs = [('parameters', PqHandle)]
185
185
 
@@ -240,7 +240,7 @@ class HyperbolicSmoothing(PhotormetryManipulator):
240
240
  return self.get_handle('parameters')
241
241
 
242
242
 
243
- class HyperbolicMagnitudes(PhotormetryManipulator):
243
+ class HyperbolicMagnitudes(PhotometryManipulator):
244
244
  """
245
245
  Convert a set of classical magnitudes to hyperbolic magnitudes (Lupton et al. 1999). Requires
246
246
  input from the initial stage (`HyperbolicSmoothing`) to supply optimal values for the smoothing
@@ -248,7 +248,7 @@ class HyperbolicMagnitudes(PhotormetryManipulator):
248
248
  """
249
249
 
250
250
  name = 'HyperbolicMagnitudes'
251
- config_options = PhotormetryManipulator.config_options.copy()
251
+ config_options = PhotometryManipulator.config_options.copy()
252
252
  inputs = [('input', PqHandle),
253
253
  ('parameters', PqHandle)]
254
254
  outputs = [('output', PqHandle)]
@@ -1,22 +0,0 @@
1
- rail/astro_tools/__init__.py,sha256=CwIb_-fmJ0DTHnnxVNTwXYvof69yPcBxp6RiHGx6f4M,386
2
- rail/astro_tools/_version.py,sha256=L5DCMp1QAlSqy-8bW7d51bLubTxNjZGYc5fMQkb752U,411
3
- rail/creation/degradation/grid_selection.py,sha256=zUT75TuFLUzyPg9loSkGEO1HM35a5OtpbXRYSk1W9w8,12432
4
- rail/creation/degradation/lsst_error_model.py,sha256=WWQxPO3w1S6sALQxl7x7_mUI1f3o1eOGpBk3Yzi-1Q0,1969
5
- rail/creation/degradation/observing_condition_degrader.py,sha256=jelIfFHzrgmRmRARm5uC36ZohepfMHq5djWT5wGEaZI,19987
6
- rail/creation/degradation/photerr_demo.ipynb,sha256=ZT_CX2v88Qqxq8OS8MEk2BT8qiZRXJ2xNB2EDYrf9cA,6650
7
- rail/creation/degradation/photometric_errors.py,sha256=HbQaEKHEcSo4ab2J3qZAiVFxlJpLAQFwjGKUnSUmG8U,3927
8
- rail/creation/degradation/spectroscopic_degraders.py,sha256=zpCxK0jbKTKlU-eqe05pW-BM2O743_ocEQy2TQPP3EA,5038
9
- rail/creation/degradation/spectroscopic_selections.py,sha256=nzn8KSOEsQRX-FORu0VEUa303TpR6i4VvGf9vb3ip8Q,22176
10
- rail/creation/engines/gcr_engine.py,sha256=MTzbV-FDRAoWfTpUzKCrdyOGK3hsSJ5atSLpwslBE5Y,2989
11
- rail/examples_data/creation_data/data/HSC_grid_settings.pkl,sha256=zpJoSR9TSnDyL64DPXivIMam3fn6GOZoyoJoeBj2LAk,141
12
- rail/examples_data/creation_data/data/hsc_ratios_and_specz.hdf5,sha256=liH54wuuuHxToqjoAwQ_fFmEefk3haNweVThMwdDKN4,13823712
13
- rail/examples_data/creation_data/data/survey_conditions/DC2-dr6-galcounts-i20-i25.3-nside-128.fits,sha256=jHv3dwoLQSKcGUx29cnN9t9AWef4JlGsqSbITJfZI0o,1581120
14
- rail/examples_data/creation_data/data/survey_conditions/DC2-mask-neg-nside-128.fits,sha256=79Kg4xRP4WHlOCcS-3SKqf9aP_LZRAq-izIM0DFL6bw,1581120
15
- rail/examples_data/creation_data/data/survey_conditions/minion_1016_dc2_Median_airmass_i_and_nightlt1825_HEAL.fits,sha256=twvyce70G3h1MQnGGFQJG9wZc8UbuNqXc6mjtiuaL1s,1581120
16
- rail/examples_data/creation_data/data/survey_conditions/minion_1016_dc2_Median_fiveSigmaDepth_i_and_nightlt1825_HEAL.fits,sha256=RbMMFSVJQxGhZnL4BnISE9VTNljfTZwV6Bax6NxverY,1581120
17
- rail/tools/util_photometry.py,sha256=canY8t7rxX7ng_PfPEtfCsF1SCnv-BwGBRSGel97aPw,18425
18
- pz_rail_astro_tools-0.1.3.dist-info/LICENSE,sha256=tLMEN21HbzvT-7umOVVvPjaJZbQxCa-2bAeYLwG5Q04,1102
19
- pz_rail_astro_tools-0.1.3.dist-info/METADATA,sha256=1LT110NObmr7eEDKUiznHSuAtrP6pzQsobBTKedFY0M,3946
20
- pz_rail_astro_tools-0.1.3.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
21
- pz_rail_astro_tools-0.1.3.dist-info/top_level.txt,sha256=6R6sqn-85I8YZTzmB9gv7sqckB2QaOTHbu-QLGTWBRE,5
22
- pz_rail_astro_tools-0.1.3.dist-info/RECORD,,
@@ -1,238 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "markdown",
5
- "id": "2610a0f0-0c71-4401-896f-734442bcd66d",
6
- "metadata": {},
7
- "source": [
8
- "## Photometric error stage demo\n",
9
- "\n",
10
- "author: Tianqing Zhang, John-Franklin Crenshaw\n",
11
- "\n",
12
- "This notebook demonstrate the use of `rail.creation.degradation.photometric_errors`, which adds column for the photometric noise to the catalog based on the package PhotErr developed by John-Franklin Crenshaw. The RAIL stage PhotoErrorModel inherit from the Noisifier base classes, and the LSST, Roman, Euclid child classes inherit from the PhotoErrorModel"
13
- ]
14
- },
15
- {
16
- "cell_type": "code",
17
- "execution_count": null,
18
- "id": "f7a6adc3-68e8-4a1d-842f-bfb0960a1c4a",
19
- "metadata": {},
20
- "outputs": [],
21
- "source": [
22
- "\n",
23
- "from rail.creation.degradation.photometric_errors import LSSTErrorModel\n",
24
- "from rail.creation.degradation.photometric_errors import RomanErrorModel\n",
25
- "from rail.creation.degradation.photometric_errors import EuclidErrorModel\n",
26
- "\n",
27
- "from rail.core.data import PqHandle\n",
28
- "from rail.core.stage import RailStage\n",
29
- "\n",
30
- "import matplotlib.pyplot as plt\n",
31
- "import pandas as pd\n",
32
- "import numpy as np\n",
33
- "\n"
34
- ]
35
- },
36
- {
37
- "cell_type": "code",
38
- "execution_count": null,
39
- "id": "6912a740-31ea-4987-b06d-81ff17cd895a",
40
- "metadata": {},
41
- "outputs": [],
42
- "source": [
43
- "DS = RailStage.data_store\n",
44
- "DS.__class__.allow_overwrite = True\n"
45
- ]
46
- },
47
- {
48
- "cell_type": "markdown",
49
- "id": "a282c2ed-141b-4507-8254-dc8fbc9864dc",
50
- "metadata": {},
51
- "source": [
52
- "### Create a random catalog with ugrizy+YJHF bands as the the true input"
53
- ]
54
- },
55
- {
56
- "cell_type": "code",
57
- "execution_count": null,
58
- "id": "1078bc2a-fc54-41c3-bd30-6c447bb971d4",
59
- "metadata": {},
60
- "outputs": [],
61
- "source": [
62
- "data = np.random.normal(23, 3, size = (1000,10))\n",
63
- "\n",
64
- "data_df = pd.DataFrame(data=data, # values\n",
65
- " columns=['u', 'g', 'r', 'i', 'z', 'y', 'Y', 'J', 'H', 'F'])\n",
66
- "data_truth = PqHandle('input')\n",
67
- "data_truth.set_data(data_df)"
68
- ]
69
- },
70
- {
71
- "cell_type": "markdown",
72
- "id": "1da27deb-d167-4f38-8c59-f270184d6ab3",
73
- "metadata": {},
74
- "source": [
75
- "### The LSST error model adds noise to the optical bands"
76
- ]
77
- },
78
- {
79
- "cell_type": "code",
80
- "execution_count": null,
81
- "id": "e5f4862a-0621-46d4-8901-7e84b461c424",
82
- "metadata": {},
83
- "outputs": [],
84
- "source": [
85
- "errorModel_lsst = LSSTErrorModel.make_stage(name=\"error_model\")\n",
86
- "\n",
87
- "samples_w_errs = errorModel_lsst(data_truth)\n",
88
- "samples_w_errs()\n"
89
- ]
90
- },
91
- {
92
- "cell_type": "code",
93
- "execution_count": null,
94
- "id": "6282c42e-1a6f-480a-aa2b-817bd30d372f",
95
- "metadata": {},
96
- "outputs": [],
97
- "source": [
98
- "fig, ax = plt.subplots(figsize=(5, 4), dpi=100)\n",
99
- "\n",
100
- "for band in \"ugrizy\":\n",
101
- " # pull out the magnitudes and errors\n",
102
- " mags = samples_w_errs.data[band].to_numpy()\n",
103
- " errs = samples_w_errs.data[band + \"_err\"].to_numpy()\n",
104
- "\n",
105
- " # sort them by magnitude\n",
106
- " mags, errs = mags[mags.argsort()], errs[mags.argsort()]\n",
107
- "\n",
108
- " # plot errs vs mags\n",
109
- " ax.plot(mags, errs, label=band)\n",
110
- "\n",
111
- "ax.legend()\n",
112
- "ax.set(xlabel=\"Magnitude (AB)\", ylabel=\"Error (mags)\")\n",
113
- "plt.show()\n"
114
- ]
115
- },
116
- {
117
- "cell_type": "markdown",
118
- "id": "50927ccb-4492-4bdd-a29b-0907704b2c59",
119
- "metadata": {},
120
- "source": [
121
- "### The Roman error model adds noise to the infrared bands"
122
- ]
123
- },
124
- {
125
- "cell_type": "code",
126
- "execution_count": null,
127
- "id": "d484a34b-cf10-45bd-8571-b78dc1818180",
128
- "metadata": {},
129
- "outputs": [],
130
- "source": [
131
- "errorModel_Roman = RomanErrorModel.make_stage(name=\"error_model\")\n",
132
- "\n",
133
- "samples_w_errs_roman = errorModel_Roman(data_truth)\n",
134
- "samples_w_errs_roman()"
135
- ]
136
- },
137
- {
138
- "cell_type": "code",
139
- "execution_count": null,
140
- "id": "a12362dc-0689-43f3-b990-edff734010bb",
141
- "metadata": {},
142
- "outputs": [],
143
- "source": [
144
- "fig, ax = plt.subplots(figsize=(5, 4), dpi=100)\n",
145
- "\n",
146
- "for band in \"YJHF\":\n",
147
- " # pull out the magnitudes and errors\n",
148
- " mags = samples_w_errs_roman.data[band].to_numpy()\n",
149
- " errs = samples_w_errs_roman.data[band + \"_err\"].to_numpy()\n",
150
- "\n",
151
- " # sort them by magnitude\n",
152
- " mags, errs = mags[mags.argsort()], errs[mags.argsort()]\n",
153
- "\n",
154
- " # plot errs vs mags\n",
155
- " ax.plot(mags, errs, label=band)\n",
156
- "\n",
157
- "ax.legend()\n",
158
- "ax.set(xlabel=\"Magnitude (AB)\", ylabel=\"Error (mags)\")\n",
159
- "plt.show()\n"
160
- ]
161
- },
162
- {
163
- "cell_type": "markdown",
164
- "id": "359de4ad-a47c-4dc5-8c81-53aeb92bdf42",
165
- "metadata": {},
166
- "source": [
167
- "### The Euclid error model adds noise to YJH bands"
168
- ]
169
- },
170
- {
171
- "cell_type": "code",
172
- "execution_count": null,
173
- "id": "775d0a23-7435-4b01-83db-2234c3d24f57",
174
- "metadata": {},
175
- "outputs": [],
176
- "source": [
177
- "errorModel_Euclid = EuclidErrorModel.make_stage(name=\"error_model\")\n",
178
- "\n",
179
- "samples_w_errs_Euclid = errorModel_Euclid(data_truth)\n",
180
- "samples_w_errs_Euclid()"
181
- ]
182
- },
183
- {
184
- "cell_type": "code",
185
- "execution_count": null,
186
- "id": "7fcfe07a-5571-4dd3-8ad0-358964c1d493",
187
- "metadata": {},
188
- "outputs": [],
189
- "source": [
190
- "fig, ax = plt.subplots(figsize=(5, 4), dpi=100)\n",
191
- "\n",
192
- "for band in \"YJH\":\n",
193
- " # pull out the magnitudes and errors\n",
194
- " mags = samples_w_errs_Euclid.data[band].to_numpy()\n",
195
- " errs = samples_w_errs_Euclid.data[band + \"_err\"].to_numpy()\n",
196
- "\n",
197
- " # sort them by magnitude\n",
198
- " mags, errs = mags[mags.argsort()], errs[mags.argsort()]\n",
199
- "\n",
200
- " # plot errs vs mags\n",
201
- " ax.plot(mags, errs, label=band)\n",
202
- "\n",
203
- "ax.legend()\n",
204
- "ax.set(xlabel=\"Magnitude (AB)\", ylabel=\"Error (mags)\")\n",
205
- "plt.show()\n"
206
- ]
207
- },
208
- {
209
- "cell_type": "code",
210
- "execution_count": null,
211
- "id": "268b3d37-b7fd-4ac1-8457-2104a87c9e6d",
212
- "metadata": {},
213
- "outputs": [],
214
- "source": []
215
- }
216
- ],
217
- "metadata": {
218
- "kernelspec": {
219
- "display_name": "rail_env",
220
- "language": "python",
221
- "name": "rail_env"
222
- },
223
- "language_info": {
224
- "codemirror_mode": {
225
- "name": "ipython",
226
- "version": 3
227
- },
228
- "file_extension": ".py",
229
- "mimetype": "text/x-python",
230
- "name": "python",
231
- "nbconvert_exporter": "python",
232
- "pygments_lexer": "ipython3",
233
- "version": "3.11.4"
234
- }
235
- },
236
- "nbformat": 4,
237
- "nbformat_minor": 5
238
- }