pytour 3.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,27 @@
1
+ Metadata-Version: 2.4
2
+ Name: pytour
3
+ Version: 3.0.0
4
+ Home-page: https://github.com/powerfulbean/pytour
5
+ Author: Powerfulbean
6
+ Author-email: powerfulbean@gmail.com
7
+ Classifier: Programming Language :: Python :: 3
8
+ Classifier: License :: OSI Approved :: MIT License
9
+ Classifier: Operating System :: OS Independent
10
+ Description-Content-Type: text/markdown
11
+ License-File: LICENSE
12
+ Requires-Dist: mne
13
+ Requires-Dist: numpy
14
+ Requires-Dist: scipy
15
+ Requires-Dist: matplotlib
16
+ Requires-Dist: h5py
17
+ Dynamic: author
18
+ Dynamic: author-email
19
+ Dynamic: classifier
20
+ Dynamic: description
21
+ Dynamic: description-content-type
22
+ Dynamic: home-page
23
+ Dynamic: license-file
24
+ Dynamic: requires-dist
25
+
26
+ # tour | 托
27
+ A framework for boosting the implementation of stimulus-response research code in the field of cognitive science and neuroscience
@@ -0,0 +1,15 @@
1
+ pytour-3.0.0.dist-info/licenses/LICENSE,sha256=aVxJnzWLBuZmbL7MD59A84A1PGtZV70nAtEzjwwl5fQ,1064
2
+ tour/__init__.py,sha256=EPmgXOdWKks5S__ZMH7Nu6xpAeVrZpfxaFy4pykuyeI,22
3
+ tour/artifacts_removal.py,sha256=2x7EEJm-i8K9bWJnE3_KkpXcemHQrp7NCVX_jA9EymI,3630
4
+ tour/backend.py,sha256=TBPGxoEomAUsHC_sLanUxgxR-Uyq_NtAw0ZXGrMmM1I,739
5
+ tour/package_manage.py,sha256=zRGdiBbybdRkxZ04YL3kh-oCl5NpVdmo_Yr6j-hr_PE,235
6
+ tour/torch_trainer.py,sha256=YA6uT5l_OryxPWl5oB5e4Z0XYBypsCsAUGe5rnW8Wsc,10418
7
+ tour/vis.py,sha256=3Oju73imHh75Wh4CGJkPj41UjyrHp8nGpAinqJf-ogg,5871
8
+ tour/dataclass/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
9
+ tour/dataclass/dataset.py,sha256=gJcnajvAaDNXJ8KFAmvYqxBVzqJbQs5xY85x2Jza1wA,16131
10
+ tour/dataclass/io.py,sha256=To5o3zZ8VA9fAQtRGY6iInTG0egBwBwxXD4eIAZ_HB4,6367
11
+ tour/dataclass/stim.py,sha256=vTMqEiia_1XIZHEhJYpd8mGKx4SRtW0fcsis1CksDF0,996
12
+ pytour-3.0.0.dist-info/METADATA,sha256=MxKlAcJXyBFEoxvPEjAR4-atBxAbslawcWErwNJdGIQ,795
13
+ pytour-3.0.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
14
+ pytour-3.0.0.dist-info/top_level.txt,sha256=wpGbM2T_e0EA01E3oBcboTH5mSDsvn2HFUTwyaU6Br8,5
15
+ pytour-3.0.0.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ Wheel-Version: 1.0
2
+ Generator: setuptools (80.9.0)
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
5
+
@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2018 Jin Dou
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
@@ -0,0 +1 @@
1
+ tour
tour/__init__.py ADDED
@@ -0,0 +1 @@
1
+ __version__ = "3.0.0"
@@ -0,0 +1,122 @@
1
+ # -*- coding: utf-8 -*-
2
+ """
3
+ Created on Thu Jul 8 14:41:55 2021
4
+
5
+ @author: Jin Dou
6
+ """
7
+ import mne
8
+ import numpy as np
9
+ from scipy.stats import zscore
10
+
11
+ def mneWrap_lalorlab_detect_EEG_badChannels(mneraw:mne.io.RawArray, montage = None, nNearest = 10):
12
+ oRaw = mneraw.copy()
13
+ data = oRaw.get_data()
14
+ if montage is None:
15
+ badChansIdx = lalorlab_detect_EEG_badChannels(data,False)
16
+ else:
17
+ badChansIdx = lalorlab_detect_EEG_badChannels_covVarNear(data,montage, nNearest = nNearest)
18
+ oRaw.info['bads'] = [oRaw.info['ch_names'][i] for i in badChansIdx]
19
+ print(f'bad channels: {",".join(oRaw.info["bads"])}')
20
+ return oRaw
21
+
22
+
23
+ def lalorlab_detect_EEG_badChannels(eegarray,verbose = True):
24
+ '''
25
+ we assume the first dimension is channel dimension
26
+
27
+ Parameters
28
+ ----------
29
+ eegarray : TYPE
30
+ DESCRIPTION.
31
+
32
+ Returns
33
+ -------
34
+ None.
35
+
36
+ '''
37
+ eegarray = np.array(eegarray)
38
+ assert len(eegarray.shape) == 2
39
+ stdChans = list()
40
+ badChansIdx = list()
41
+ for chan in eegarray:
42
+ stdChans.append(np.std(chan))
43
+
44
+ for idx,chan in enumerate(eegarray):
45
+ if np.std(chan) > 2.5 * np.mean(stdChans):
46
+ badChansIdx.append(idx)
47
+
48
+ stdChans.clear()
49
+
50
+ for idx,chan in enumerate(eegarray):
51
+ if idx not in badChansIdx:
52
+ stdChans.append(np.std(chan))
53
+
54
+ for idx,chan in enumerate(eegarray):
55
+ if np.std(chan) < np.mean(stdChans) / 2.5:
56
+ badChansIdx.append(idx)
57
+
58
+ if verbose:
59
+ print(badChansIdx)
60
+
61
+ return badChansIdx
62
+
63
+ def lalorlab_detect_EEG_badChannels_covVarNear(data, montage, th1 = 2, th2 = 2, nNearest = 6):
64
+ # data: (nChan, nSamples)
65
+ data = np.array(data)
66
+ assert data.ndim == 2
67
+
68
+ ### prepare the nearest channels
69
+ if nNearest > 0:
70
+ chanloc = montage.get_positions()['ch_pos']
71
+ chnames = []
72
+ poses = []
73
+ for n,pos in chanloc.items():
74
+ chnames.append(n)
75
+ poses.append(pos)
76
+
77
+ assert data.shape[0] == len(chnames)
78
+ chanDistMat = np.zeros((len(chanloc), len(chanloc)))
79
+
80
+ fDist = lambda pos1,pos2: np.sqrt(np.sum((pos1 - pos2)**2))
81
+
82
+ for i in range(len(chnames)):
83
+ for j in range(len(chnames)):
84
+ chanDistMat[i,j] = fDist(poses[i], poses[j])
85
+
86
+ nearChanIdx = []
87
+ for i in range(len(chnames)):
88
+ nearChanIdx.append(np.argsort(chanDistMat[i])[1:nNearest+1])
89
+ else:
90
+ nearChanIdx = [None] * data.shape[1]
91
+ ### find the bad channels
92
+ dataz = zscore(data, axis = 1)
93
+ XTX = np.matmul(dataz ,dataz.T)
94
+ stdXTX = np.std(XTX, axis = 1)
95
+ stdEEG = np.std(data, axis = 1)
96
+
97
+ badChans = []
98
+ if nNearest <=0 :
99
+ badChans.append(np.where(stdXTX < np.mean(stdXTX) / th1))
100
+ badChans.append(np.where(stdEEG > np.mean(stdEEG) * th2))
101
+ else:
102
+ for chanIdx in range(data.shape[0]):
103
+ # print(stdXTX[chanIdx],
104
+ # stdEEG[chanIdx],
105
+ # np.mean(stdXTX[nearChanIdx[chanIdx]]) / th1,
106
+ # np.mean(stdEEG[nearChanIdx[chanIdx]]) * th2)
107
+ if stdXTX[chanIdx] < np.mean(stdXTX[nearChanIdx[chanIdx]]) / th1:
108
+ badChans.append(chanIdx)
109
+ if stdEEG[chanIdx] > np.mean(stdEEG[nearChanIdx[chanIdx]]) * th2:
110
+ badChans.append(chanIdx)
111
+
112
+ return list(set(badChans))
113
+
114
+ def plotChanWithNamesAtIdx(montage, idxs):
115
+ chnames = montage.ch_names
116
+ montage.plot(show_names = [chnames[idx] for idx in idxs])
117
+
118
+
119
+ # def
120
+
121
+
122
+
tour/backend.py ADDED
@@ -0,0 +1,34 @@
1
+ import numbers
2
+ from typing import TypeVar
3
+
4
+ try:
5
+ import torch
6
+ except:
7
+ torch = None
8
+
9
+ try:
10
+ import numpy as np
11
+ except:
12
+ np = None
13
+
14
+ Array = TypeVar("Array")
15
+
16
+ def get_numeric_backend(data: Array):
17
+ if isinstance(data, torch.Tensor):
18
+ return torch
19
+ elif isinstance(data, np.ndarray):
20
+ return np
21
+ elif isinstance(data, numbers.Number):
22
+ return np
23
+ else:
24
+ raise ValueError(f"input is not an numeric variable")
25
+
26
+ def is_tensor(data: Array):
27
+ if isinstance(data, torch.Tensor):
28
+ return True
29
+ elif isinstance(data, np.ndarray):
30
+ return False
31
+ elif isinstance(data, numbers.Number):
32
+ return False
33
+ else:
34
+ raise ValueError(f"input is not an numeric variable")
File without changes
@@ -0,0 +1,465 @@
1
+ # -*- coding: utf-8 -*-
2
+ """
3
+ Created on Thu Jan 16 12:44:20 2025
4
+
5
+ @author: jdou3
6
+ """
7
+ import re
8
+ import io
9
+ import copy
10
+ import h5py
11
+ import json
12
+ import itertools
13
+ # import h5py
14
+ from typing import List
15
+ import numpy as np
16
+
17
+ from .io import (
18
+ data_record_from_h5py_group, data_record_to_h5py_group, _validate_stimuli_dict
19
+ )
20
+
21
+ #Note: please don't change the order, it matters for some functions using it
22
+ META_INFO_FORCED_FIELD = ['dataset_name', 'subj_id', 'trial_id']
23
+
24
+
25
+ def flatten_list_of_lists(list_of_lists:List[List]):
26
+ return list(itertools.chain.from_iterable(list_of_lists))
27
+
28
+ def k_folds(n_trials, n_folds):
29
+ id_trials = np.arange(n_trials)
30
+ splits = np.array_split(id_trials, n_folds)
31
+ for split_idx in range(len(splits)):
32
+ # print('cv fold', split_idx)
33
+ idx_val = splits[split_idx]
34
+ idx_train = np.concatenate(splits[:split_idx] + splits[split_idx + 1 :])
35
+ yield idx_train, idx_val
36
+
37
+
38
+ def _validate_meta_info(info:dict):
39
+ assert all([k in info for k in META_INFO_FORCED_FIELD])
40
+ for k, v in info.items():
41
+ if isinstance(v, np.integer):
42
+ info[k] = int(v)
43
+ for k,v in info.items():
44
+ assert isinstance(v, ((str, int, float, np.ndarray))), f"{k},{type(v)}"
45
+ return info
46
+
47
+ def align_data(*arrs):
48
+ arrs = list(arrs)
49
+ #assume arr have shape [nChannel, nSamples]
50
+ minLen = min([arr.shape[1] for arr in arrs])
51
+ for i, arr in enumerate(arrs):
52
+ arrs[i] = arr[:, :minLen]
53
+ return arrs
54
+
55
+ def i_split_kfold(tarList,cur_fold,n_folds, add_dev = True):
56
+ ''' curFold starts from zero '''
57
+ kfList = [i for i in k_folds(len(tarList), n_folds)]
58
+ curTrainDevIdx = kfList[cur_fold][0]
59
+ curTestIdx = kfList[cur_fold][1]
60
+ curDevIdx = kfList[(cur_fold + 1) % n_folds][1]
61
+ if add_dev:
62
+ curTrainIdx = [i for i in curTrainDevIdx if i not in curDevIdx]
63
+ curTrain = [tarList[i] for i in curTrainIdx]
64
+ curDev = [tarList[i] for i in curDevIdx]
65
+ curTest = [tarList[i] for i in curTestIdx]
66
+ return curTrain, curDev, curTest
67
+ else:
68
+ curTrainDev = [tarList[i] for i in curTrainDevIdx]
69
+ curTest = [tarList[i] for i in curTestIdx]
70
+ return curTrainDev, [], curTest
71
+
72
+ def k_fold(dataset:'Dataset', cur_fold, n_folds, split_by = 'trial_id', add_dev = True, if_shuffle = False, seed = 42):
73
+ info_sets = sorted(
74
+ list(set(
75
+ [i.meta_info[split_by] for i in dataset.records]
76
+ )))
77
+ if if_shuffle:
78
+ rng = np.random.default_rng(seed)
79
+ inf_idxs = np.arange(len(info_sets))
80
+ rng.shuffle(inf_idxs)
81
+ info_sets = [info_sets[idx_] for idx_ in inf_idxs]
82
+ info_train_list, info_dev_list, info_test_list = i_split_kfold(
83
+ info_sets, cur_fold, n_folds, add_dev)
84
+ print(info_train_list, info_dev_list, info_test_list)
85
+ output = {}
86
+ output['train'] = dataset.subset_by_info({split_by:info_train_list})
87
+ if len(info_dev_list) > 0:
88
+ output['dev'] = dataset.subset_by_info({split_by:info_dev_list})
89
+ output['test'] = dataset.subset_by_info({split_by:info_test_list})
90
+ return output
91
+
92
+
93
+ def dump_dict_contains_nparray(state_dict):
94
+ output = {}
95
+ for key, value in state_dict.items():
96
+ if isinstance(value, np.ndarray):
97
+ buffer = io.BytesIO()
98
+ np.save(buffer, value)
99
+ t_value = buffer.getvalue()
100
+ elif isinstance(value, dict):
101
+ # print(key)
102
+ t_value = dump_dict_contains_nparray(value)
103
+ else:
104
+ t_value = value
105
+ output[key] = t_value
106
+ return output
107
+
108
+ def load_dict_contains_nparray(state_dict):
109
+ new_state = {}
110
+ for k,v in state_dict.items():
111
+ if isinstance(v, bytes):
112
+ buffer = io.BytesIO(v)
113
+ new_state[k] = np.load(buffer)
114
+ # new_state[k] = np.frombuffer(v)
115
+ elif isinstance(v, dict):
116
+ # print(k)
117
+ new_state[k] = load_dict_contains_nparray(v)
118
+ else:
119
+ new_state[k] = v
120
+ return new_state
121
+
122
+ def encode_record_key(meta_info:dict):
123
+ return "-".join(
124
+ [str(meta_info[k]) for k in META_INFO_FORCED_FIELD]
125
+ )
126
+
127
+ def decode_record_key(record_key:str):
128
+ strs = record_key.split('-')
129
+ return {
130
+ k:v for k,v in zip(META_INFO_FORCED_FIELD, strs)
131
+ }
132
+
133
+ class DataRecord:
134
+
135
+ def __init__(self, data, stim_id, meta_info:dict, srate:int):
136
+ self.srate = srate
137
+ self.data = data
138
+ self.stim_id = stim_id
139
+ self.meta_info = _validate_meta_info(meta_info)
140
+
141
+ def dump_to_dict(self):
142
+ return dump_dict_contains_nparray(self.__dict__)
143
+
144
+ def dump(self):
145
+ record_key = encode_record_key(self.meta_info)
146
+ return dict(
147
+ key = record_key,
148
+ data = self.data,
149
+ stim_id = self.stim_id,
150
+ meta_info = self.meta_info,
151
+ srate = self.srate,
152
+ )
153
+
154
+ @classmethod
155
+ def load(cls, new_state:dict):
156
+ obj = cls(**new_state)
157
+ return obj
158
+
159
+ @classmethod
160
+ def load_from_dict(cls, state:dict):
161
+ new_state = load_dict_contains_nparray(state)
162
+ obj = cls(**new_state)
163
+ # for key in state:
164
+ # obj.__dict__[key] = state[key]
165
+ return obj
166
+
167
+ def copy(self):
168
+ new = DataRecord(
169
+ self.data.copy(),
170
+ self.stim_id,
171
+ copy.deepcopy(self.meta_info),
172
+ self.srate
173
+ )
174
+ return new
175
+
176
+ class Dataset:
177
+
178
+ # data and stim have the shape (nChannels, nSamples)
179
+ # stim_id_cond: used when stimuli contains multiple conditions
180
+
181
+ def __init__(self, name:str, srate:int):
182
+ self.name = name
183
+ self.srate = srate
184
+ self.stim_feat_filter:list = []
185
+ self.resp_chan_filter:list = []
186
+ self.stim_id_cond:str|None = None
187
+ self.meta_info_filter:dict = {}
188
+ self._stimuli_dict:dict = {}
189
+ self._records:List[DataRecord] = []
190
+ self._preprocess_config = {}
191
+
192
+ def copy(self):
193
+ new_dataset = Dataset(
194
+ self.name,
195
+ self.srate
196
+ )
197
+ new_dataset.stim_feat_filter = copy.deepcopy(self.stim_feat_filter)
198
+ new_dataset.resp_chan_filter = copy.deepcopy(self.resp_chan_filter)
199
+ new_dataset.stim_id_cond = copy.deepcopy(self.stim_id_cond)
200
+ new_dataset.meta_info_filter = copy.deepcopy(self.meta_info_filter)
201
+ new_dataset._stimuli_dict = self._stimuli_dict
202
+ new_dataset._records = [r_.copy() for r_ in self._records]
203
+ return new_dataset
204
+
205
+ @property
206
+ def stimuli_dict(self):
207
+ return self._stimuli_dict
208
+
209
+ @stimuli_dict.setter
210
+ def stimuli_dict(self, x):
211
+ self._stimuli_dict = _validate_stimuli_dict(x)
212
+
213
+ @property
214
+ def records(self) -> List[DataRecord]:
215
+ if len(self.meta_info_filter) == 0:
216
+ return self._records
217
+ else:
218
+ return self._filter_records_by_info(self._records, self.meta_info_filter)
219
+
220
+ def _filter_records_by_info(self, records, meta_info_filter:dict):
221
+ output = list()
222
+ for record in records:
223
+ if all(
224
+ [
225
+ record.meta_info[k] == v if np.isscalar(v)
226
+ else record.meta_info[k] in v
227
+ for k,v in meta_info_filter.items()
228
+ ]
229
+ ):
230
+ output.append(record)
231
+ return output
232
+
233
+ def append(self, record:DataRecord):
234
+ assert record.srate == self.srate
235
+ self._records.append(record)
236
+
237
+ def _filter_stim_feat(self, stim_feat):
238
+ new_stim_feat = {}
239
+ if len(self.stim_feat_filter) == 0:
240
+ stim_feat_filter = stim_feat.keys()
241
+ else:
242
+ stim_feat_filter = self.stim_feat_filter
243
+ for i in stim_feat_filter:
244
+ new_stim_feat[i] = stim_feat[i]
245
+ return new_stim_feat
246
+
247
+ def _filter_resp_chan(self, resp):
248
+ if len(self.resp_chan_filter) > 0:
249
+ idxArr = np.array(self.resp_chan_filter)
250
+ output = resp[idxArr,:]
251
+ else:
252
+ output = resp
253
+ return output
254
+
255
+ def __getitem__(self, idx):
256
+ record:DataRecord = self.records[idx]
257
+ return self._unpack_record(record)
258
+
259
+ def _unpack_record(self, record:DataRecord):
260
+ stim_id, data = record.stim_id, record.data
261
+ if isinstance(stim_id, dict):
262
+ assert self.stim_id_cond is not None
263
+ stim_id = stim_id[self.stim_id_cond]
264
+ stim_feat = self._filter_stim_feat(self.stimuli_dict[stim_id])
265
+ data = self._filter_resp_chan(data)
266
+ return stim_feat, data, record.meta_info
267
+
268
+ def __len__(self):
269
+ return len(self.records)
270
+
271
+ def __iter__(self):
272
+ self.n = 0
273
+ return self
274
+
275
+ def __next__(self):
276
+ if self.n < len(self.records):
277
+ self.n += 1
278
+ return self.__getitem__(self.n-1)#self.records[self.n-1]
279
+ else:
280
+ raise StopIteration
281
+
282
+ def to_pairs(self, ifT = True):
283
+ allSubj = set([i.meta_info['subj_id'] for i in self.records])
284
+ filterKey = lambda x: x.meta_info['subj_id']
285
+ sortKey = lambda x : (
286
+ x.meta_info['dataset_name'],
287
+ x.meta_info['subj_id'],
288
+ x.meta_info['trial_id'],
289
+ )
290
+
291
+ records = sorted(self.records, key = sortKey)
292
+
293
+ transpose = lambda *arrs: [arr.T for arr in arrs]
294
+ def catstimarr(stim:dict):
295
+ keys = stim.keys()
296
+ # print(keys)
297
+ assert all([stim[k].shape[0] < stim[k].shape[1] for k in keys if isinstance(stim[k], np.ndarray)])
298
+ stim = [stim[k] for k in keys if isinstance(stim[k], np.ndarray)]
299
+ stim = align_data(*stim)
300
+ stim = np.concatenate(stim, axis = 0)
301
+ # print(stim.shape)
302
+ return stim
303
+
304
+ stims_subj = []
305
+ resps_subj = []
306
+ infoss = []
307
+ ks = []
308
+ for k, grp in itertools.groupby(records, filterKey):
309
+ stims, resps, infos = list(zip(*[self._unpack_record(g) for g in grp]))
310
+ # print(infos)
311
+ stims = list(map(catstimarr, stims))
312
+ stims, resps = list(zip(*map(align_data, stims, resps)))
313
+ if ifT:
314
+ stims, resps = list(zip(*map(transpose, stims, resps)))
315
+ stims_subj.append(stims)
316
+ resps_subj.append(resps)
317
+ infoss.append(infos)
318
+ ks.append(k)
319
+
320
+ return stims_subj, resps_subj, ks, infoss
321
+
322
+ def to_pairs_iter(self,sortKey = None):
323
+ allSubj = set([i.meta_info['subj_id'] for i in self.records])
324
+
325
+ filterKey = lambda x: x.meta_info['subj_id']
326
+ if sortKey is None:
327
+ sortKey = lambda x : (
328
+ x.meta_info['dataset_name'],
329
+ x.meta_info['subj_id'],
330
+ x.meta_info['trial_id'],
331
+ )
332
+
333
+ records = sorted(self.records, key = sortKey)
334
+
335
+ for k, grp in itertools.groupby(records, filterKey):
336
+ stims, resps, infos = list(zip(*[self._unpack_record(g) for g in grp]))
337
+ yield stims, resps, infos, k
338
+
339
+
340
+
341
+ def k_fold(self, cur_fold, n_folds, split_by, add_dev = True, if_shuffle = False):
342
+ return k_fold(self, cur_fold, n_folds, split_by, add_dev=add_dev, if_shuffle = if_shuffle)
343
+
344
+ def subset_by_info(self,meta_info_filter):
345
+ records = self._filter_records_by_info(
346
+ self._records, meta_info_filter)
347
+ state_dict = self.dump()
348
+ state_dict['_records'] = [l.dump() for l in records]
349
+ return self.__class__.load(state_dict)
350
+
351
+ def dump_record(self, file_path, record:DataRecord):
352
+ with h5py.File(file_path, "a") as f:
353
+ data_record_to_h5py_group(
354
+ f = f,
355
+ **record.dump(),
356
+ )
357
+
358
+ def dump_attr(self, file_path):
359
+ with h5py.File(file_path, "a") as f:
360
+ f.attrs["name"] = self.name
361
+ f.attrs["srate"] = self.srate
362
+ preprocess_config = json.dumps(self._preprocess_config)
363
+ f.attrs["preprocess_config_str"] = preprocess_config
364
+
365
+ def dump(self, file_path):
366
+ with h5py.File(file_path, "w") as f:
367
+ f.attrs["name"] = self.name
368
+ f.attrs["srate"] = self.srate
369
+ preprocess_config = json.dumps(self._preprocess_config)
370
+ f.attrs["preprocess_config_str"] = preprocess_config
371
+ for record in self._records:
372
+ data_record_to_h5py_group(
373
+ f = f,
374
+ **record.dump(),
375
+ )
376
+
377
+ @classmethod
378
+ def load(cls, file_path):
379
+ new_dataset = None
380
+ with h5py.File(file_path, "r") as f:
381
+ new_dataset = cls(
382
+ name = str(f.attrs['name']),
383
+ srate = int(f.attrs['srate']),
384
+ )
385
+ for k, grp in f['records'].items():
386
+ record_dict = data_record_from_h5py_group(grp)
387
+ new_record = DataRecord(**record_dict)
388
+ new_dataset.append(new_record)
389
+ return new_dataset
390
+
391
+ def dump_to_dict(self):
392
+ output = {}
393
+ output['_records'] = [l.dump() for l in self._records]
394
+ for k,v in self.__dict__.items():
395
+ if k != '_records':
396
+ if isinstance(v, dict):
397
+ output[k] = dump_dict_contains_nparray(v)
398
+ else:
399
+ output[k] = v
400
+ return output
401
+
402
+ @classmethod
403
+ def load_from_dict(cls, state):
404
+ output = cls(name = state['name'], srate = state['srate'])
405
+ for k,v in state.items():
406
+ if k == '_records':
407
+ output.__dict__['_records'] = [DataRecord.load(l) for l in state[k]]
408
+ else:
409
+ if isinstance(v, dict):
410
+ output.__dict__[k] = load_dict_contains_nparray(v)
411
+ else:
412
+ output.__dict__[k] = state[k]
413
+ return output
414
+
415
+ @classmethod
416
+ def load_subject(cls, file_path, subject_id):
417
+ with h5py.File(file_path, "r") as f:
418
+ all_keys = list(f['records'].keys())
419
+ all_keys = sorted(all_keys, key = lambda x: [decode_record_key(x)[k] for k in META_INFO_FORCED_FIELD])
420
+ cnter = 1
421
+ new_dataset = cls(
422
+ name = str(f.attrs['name']),
423
+ srate = int(f.attrs['srate']),
424
+ )
425
+ for key_idx, key in enumerate(all_keys):
426
+ if decode_record_key(key)['subj_id'] == subject_id:
427
+ record_dict = data_record_from_h5py_group(f['records'][key])
428
+ new_record = DataRecord(**record_dict)
429
+ new_dataset.append(new_record)
430
+ return new_dataset
431
+
432
+ @classmethod
433
+ def iter_load(cls, file_path, n_subjs = 10):
434
+ with h5py.File(file_path, "r") as f:
435
+ all_keys = list(f['records'].keys())
436
+ all_keys = sorted(all_keys, key = lambda x: [decode_record_key(x)[k] for k in META_INFO_FORCED_FIELD])
437
+ # print(all_keys)
438
+ cnter = 1
439
+ new_dataset = cls(
440
+ name = str(f.attrs['name']),
441
+ srate = int(f.attrs['srate']),
442
+ )
443
+ for key_idx, key in enumerate(all_keys):
444
+
445
+ record_dict = data_record_from_h5py_group(f['records'][key])
446
+ new_record = DataRecord(**record_dict)
447
+ new_dataset.append(new_record)
448
+
449
+
450
+ if key_idx == len(all_keys)-1:
451
+ yield new_dataset
452
+ else:
453
+ current_subj_id = decode_record_key(key)['subj_id']
454
+ next_subj_id = decode_record_key(all_keys[key_idx+1])['subj_id']
455
+
456
+ if current_subj_id != next_subj_id:
457
+ if cnter >= n_subjs:
458
+ yield new_dataset
459
+ new_dataset = cls(
460
+ name = str(f.attrs['name']),
461
+ srate = int(f.attrs['srate']),
462
+ )
463
+ cnter = 1
464
+ else:
465
+ cnter += 1