pytorch-kito 0.2.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,94 @@
1
+ import torch
2
+
3
+
4
+ def assign_device(device_type: str = "cuda", gpu_id: int = 0) -> torch.device:
5
+ """
6
+ Assign device based on preference and availability.
7
+
8
+ Args:
9
+ device_type: Preferred device ("cuda", "mps", or "cpu")
10
+ gpu_id: GPU ID for CUDA
11
+
12
+ Returns:
13
+ torch.device: Best available device
14
+
15
+ Behavior:
16
+ - "cuda": Use CUDA if available, else CPU (with warning)
17
+ - "mps": Use MPS if available, else CPU (with warning)
18
+ - "cpu": Always CPU (no fallback)
19
+ """
20
+ valid_devices = {"cuda", "mps", "cpu"} # already valitated before, this check might be removed
21
+ device_type_lower = device_type.lower()
22
+
23
+ if device_type_lower not in valid_devices:
24
+ raise ValueError(
25
+ f"Invalid device_type: '{device_type}'. "
26
+ f"Must be one of {valid_devices}."
27
+ )
28
+
29
+ if device_type_lower == "cuda":
30
+ if torch.cuda.is_available():
31
+ return torch.device(f"cuda:{gpu_id}")
32
+ else:
33
+ print("Warning: CUDA requested but not available. Falling back to CPU.")
34
+ return torch.device("cpu")
35
+
36
+ elif device_type_lower == "mps":
37
+ if torch.backends.mps.is_available():
38
+ return torch.device("mps")
39
+ else:
40
+ print("Warning: MPS requested but not available. Falling back to CPU.")
41
+ return torch.device("cpu")
42
+
43
+ elif device_type_lower == "cpu":
44
+ return torch.device("cpu")
45
+
46
+ def get_available_devices() -> dict:
47
+ """
48
+ Get information about all available devices.
49
+
50
+ Returns:
51
+ dict: Dictionary with device availability information
52
+
53
+ Example:
54
+ >>> info = get_available_devices()
55
+ >>> print(info)
56
+ {
57
+ 'cuda': True,
58
+ 'cuda_count': 2,
59
+ 'mps': False,
60
+ 'cpu': True
61
+ }
62
+ """
63
+ return {
64
+ 'cuda': torch.cuda.is_available(),
65
+ 'cuda_count': torch.cuda.device_count() if torch.cuda.is_available() else 0,
66
+ 'mps': torch.backends.mps.is_available(),
67
+ 'cpu': True # CPU is always available
68
+ }
69
+
70
+
71
+ def validate_device_type(device_type: str, raise_error: bool = True) -> bool:
72
+ """
73
+ Validate device_type string.
74
+
75
+ Args:
76
+ device_type: Device type to validate
77
+ raise_error: If True, raise ValueError on invalid type
78
+
79
+ Returns:
80
+ bool: True if valid, False otherwise
81
+
82
+ Raises:
83
+ ValueError: If device_type is invalid and raise_error=True
84
+ """
85
+ valid_devices = {"cuda", "mps", "cpu"}
86
+ is_valid = device_type.lower() in valid_devices
87
+
88
+ if not is_valid and raise_error:
89
+ raise ValueError(
90
+ f"Invalid device_type: '{device_type}'. "
91
+ f"Must be one of {valid_devices}."
92
+ )
93
+
94
+ return is_valid
@@ -0,0 +1,38 @@
1
+ from torch import nn
2
+
3
+ from kito.utils.ssim_utils import ssim_loss
4
+
5
+ _torch_loss_dict = {
6
+ 'mean_squared_error': 'MSELoss',
7
+ 'mean_absolute_error': 'L1Loss',
8
+ 'cross_entropy_loss': 'CrossEntropyLoss',
9
+ 'ctc_loss': 'CTCLoss',
10
+ 'negative_log_likelihood_loss': 'NLLLoss',
11
+ 'negative_log_likelihood_poisson_loss': 'PoissonNLLLoss',
12
+ 'negative_log_likelihood_gaussian_loss': 'GaussianNLLLoss',
13
+ 'kullback_leibler_divergence_loss': 'KLDivLoss',
14
+ 'binary_cross_entropy_loss': 'BCELoss',
15
+ 'binary_cross_entropy_logits_loss': 'BCEWithLogitsLoss',
16
+ 'margin_ranking_loss': 'MarginRankingLoss',
17
+ 'hinge_embedding_loss': 'HingeEmbeddingLoss',
18
+ 'multi_label_margin_loss': 'MultiLabelMarginLoss',
19
+ 'huber_loss': 'HuberLoss',
20
+ 'smooth_l1_loss': 'SmoothL1Loss',
21
+ 'soft_margin_loss': 'SoftMarginLoss',
22
+ 'multi_label_soft_margin_loss': 'MultiLabelSoftMarginLoss',
23
+ 'cosine_embedding_loss': 'CosineEmbeddingLoss',
24
+ 'multi_margin_loss': 'MultiMarginLoss',
25
+ 'triplet_margin_loss': 'TripletMarginLoss',
26
+ 'triplet_margin_distance_loss': 'TripletMarginWithDistanceLoss'
27
+ }
28
+
29
+
30
+ def get_loss(loss: str):
31
+ assert loss != ''
32
+ loss = loss.lower()
33
+ if loss in _torch_loss_dict:
34
+ return getattr(nn, _torch_loss_dict[loss])() # returns the instantiated object
35
+ if loss == 'ssim_loss':
36
+ return ssim_loss # return the signature of the custom loss: /!\ this is not the object
37
+ raise ValueError(
38
+ f"Loss '{loss}' not valid. Supported values are: {', '.join(map(repr, _torch_loss_dict.keys()))}")
@@ -0,0 +1,94 @@
1
+ import torch
2
+ import torch.nn.functional as F
3
+
4
+
5
+ def gaussian_kernel(window_size: int, sigma: float, device, dtype):
6
+ """Create a 2D Gaussian kernel (window_size×window_size)."""
7
+ coords = torch.arange(window_size, device=device, dtype=dtype) - (window_size - 1) / 2.0
8
+ g = torch.exp(-(coords ** 2) / (2 * sigma ** 2))
9
+ g = g / g.sum()
10
+ # outer product to get 2D kernel
11
+ gauss2d = g.unsqueeze(1) @ g.unsqueeze(0)
12
+ return gauss2d
13
+
14
+
15
+ def ssim_2d_single(img1, img2, window_size=11, sigma=1.5, K1=0.01, K2=0.03, L=1.0):
16
+ """
17
+ Compute SSIM over a single 2D windowed image (float range [0, L]).
18
+ img1, img2: shape (1, 1, H, W) (batch=1, channel=1)
19
+ Returns mean SSIM over all pixels in that 2D image.
20
+ """
21
+ # Create Gaussian window
22
+ device, dtype = img1.device, img1.dtype
23
+ kernel = gaussian_kernel(window_size, sigma, device, dtype)
24
+ kernel = kernel.unsqueeze(0).unsqueeze(0) # shape (1,1,win,win)
25
+
26
+ # Convolve to get local means
27
+ mu1 = F.conv2d(img1, kernel, padding=window_size // 2)
28
+ mu2 = F.conv2d(img2, kernel, padding=window_size // 2)
29
+
30
+ mu1_sq = mu1 * mu1
31
+ mu2_sq = mu2 * mu2
32
+ mu1_mu2 = mu1 * mu2
33
+
34
+ # local variances: E[x^2] - (E[x])^2
35
+ sigma1_sq = F.conv2d(img1 * img1, kernel, padding=window_size // 2) - mu1_sq
36
+ sigma2_sq = F.conv2d(img2 * img2, kernel, padding=window_size // 2) - mu2_sq
37
+ sigma12 = F.conv2d(img1 * img2, kernel, padding=window_size // 2) - mu1_mu2
38
+
39
+ sigma1_sq = torch.clamp(sigma1_sq, min=1e-6)
40
+ sigma2_sq = torch.clamp(sigma2_sq, min=1e-6)
41
+
42
+ # SSIM constants
43
+ C1 = (K1 * L) ** 2
44
+ C2 = (K2 * L) ** 2
45
+ C3 = C2 / 2.0
46
+
47
+ # Luminance term
48
+ luminance = (2 * mu1_mu2 + C1) / (mu1_sq + mu2_sq + C1)
49
+ # Contrast term
50
+ contrast = (2 * torch.sqrt(sigma1_sq * sigma2_sq) + C2) / (sigma1_sq + sigma2_sq + C2)
51
+ # Structure term
52
+ structure = (sigma12 + C3) / (torch.sqrt(sigma1_sq * sigma2_sq) + C3)
53
+
54
+ # Full SSIM map
55
+ ssim_map = luminance * contrast * structure
56
+ return ssim_map.mean()
57
+
58
+
59
+ def batch_time_ssim(pred, target, window_size=11, sigma=1.5):
60
+ """
61
+ pred, target: tensors of shape (B, T, H, W, 1), normalized to [0,1].
62
+ Returns SSIM per (batch, time) as a tensor (B, T), and also a mean per-batch if desired.
63
+ """
64
+ B, T, H, W, C = pred.shape
65
+ assert C == 1, "SSIM code below assumes single channel"
66
+ ssim_scores = torch.zeros((B, T), device=pred.device, dtype=pred.dtype)
67
+
68
+ for b in range(B):
69
+ for t in range(T):
70
+ im1 = target[b, t, ..., :].permute(2, 0, 1).unsqueeze(0) # shape (1,1,H,W)
71
+ im2 = pred[b, t, ..., :].permute(2, 0, 1).unsqueeze(0) # shape (1,1,H,W)
72
+ ssim_scores[b, t] = ssim_2d_single(im1, im2, window_size, sigma)
73
+ return ssim_scores # shape (B, T)
74
+
75
+
76
+ def minmax_normalize_sample(x):
77
+ # x: (T, H, W, 1)
78
+ mn = x.min(dim=0, keepdim=True)[0].min(dim=1, keepdim=True)[0].min(dim=2, keepdim=True)[0]
79
+ mx = x.max(dim=0, keepdim=True)[0].max(dim=1, keepdim=True)[0].max(dim=2, keepdim=True)[0]
80
+ denom = (mx - mn).clamp(min=1e-6)
81
+ return (x - mn) / denom
82
+
83
+ def ssim_loss(target, predicted):
84
+ no_disp_mask = (target.sum(dim=tuple(range(1, target.dim()))) == 0)
85
+ valid_regress_targets = target[~no_disp_mask]
86
+ valid_regress_outputs = predicted[~no_disp_mask]
87
+ B = len(valid_regress_targets)
88
+ pred = torch.stack([minmax_normalize_sample(valid_regress_outputs[b]) for b in range(B)], dim=0)
89
+ target = torch.stack([minmax_normalize_sample(valid_regress_targets[b]) for b in range(B)], dim=0)
90
+
91
+ ssim_bt = batch_time_ssim(pred, target, window_size=11, sigma=1.5) # shape (B, T)
92
+ ssim_per_sample = ssim_bt.mean(dim=1) # average SSIM over time for each batch
93
+ loss_ssim = (1.0 - ssim_per_sample).mean()
94
+ return loss_ssim
@@ -0,0 +1,328 @@
1
+ Metadata-Version: 2.4
2
+ Name: pytorch-kito
3
+ Version: 0.2.0
4
+ Summary: Effortless PyTorch training - define your model, Kito handles the rest
5
+ Author-email: Giuseppe Costantino <giuseppe.costantino95@gmail.com>
6
+ License: MIT License
7
+
8
+ Copyright (c) 2026 Giuseppe Costantino
9
+
10
+ Permission is hereby granted, free of charge, to any person obtaining a copy
11
+ of this software and associated documentation files (the "Software"), to deal
12
+ in the Software without restriction, including without limitation the rights
13
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14
+ copies of the Software, and to permit persons to whom the Software is
15
+ furnished to do so, subject to the following conditions:
16
+
17
+ The above copyright notice and this permission notice shall be included in all
18
+ copies or substantial portions of the Software.
19
+
20
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
23
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
26
+ SOFTWARE.
27
+ Project-URL: Homepage, https://github.com/gcostantino/kito
28
+ Project-URL: Documentation, https://kito.readthedocs.io
29
+ Project-URL: Repository, https://github.com/gcostantino/kito
30
+ Project-URL: Bug Tracker, https://github.com/gcostantino/kito/issues
31
+ Keywords: pytorch,deep-learning,machine-learning,training,automation
32
+ Classifier: Development Status :: 3 - Alpha
33
+ Classifier: Intended Audience :: Science/Research
34
+ Classifier: Intended Audience :: Developers
35
+ Classifier: License :: OSI Approved :: MIT License
36
+ Classifier: Programming Language :: Python :: 3
37
+ Classifier: Programming Language :: Python :: 3.9
38
+ Classifier: Programming Language :: Python :: 3.10
39
+ Classifier: Programming Language :: Python :: 3.11
40
+ Classifier: Topic :: Scientific/Engineering
41
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
42
+ Requires-Python: >=3.9
43
+ Description-Content-Type: text/markdown
44
+ License-File: LICENSE
45
+ Requires-Dist: torch>=2.0.0
46
+ Requires-Dist: numpy>=1.20.0
47
+ Requires-Dist: h5py>=3.0.0
48
+ Requires-Dist: torchsummary>=1.5.1
49
+ Requires-Dist: packaging>=20.0
50
+ Requires-Dist: tensorboard>=2.10.0
51
+ Requires-Dist: pkbar>=0.5
52
+ Provides-Extra: dev
53
+ Requires-Dist: pytest>=7.0; extra == "dev"
54
+ Requires-Dist: pytest-cov>=4.0; extra == "dev"
55
+ Requires-Dist: pytest-mock>=3.10; extra == "dev"
56
+ Requires-Dist: black>=23.0; extra == "dev"
57
+ Requires-Dist: ruff>=0.1.0; extra == "dev"
58
+ Provides-Extra: tensorboard
59
+ Requires-Dist: tensorboard>=2.10.0; extra == "tensorboard"
60
+ Provides-Extra: docs
61
+ Requires-Dist: sphinx>=5.0; extra == "docs"
62
+ Requires-Dist: sphinx-rtd-theme>=1.0; extra == "docs"
63
+ Provides-Extra: all
64
+ Requires-Dist: tensorboard>=2.10.0; extra == "all"
65
+ Requires-Dist: pytest>=7.0; extra == "all"
66
+ Requires-Dist: pytest-cov>=4.0; extra == "all"
67
+ Requires-Dist: pytest-mock>=3.10; extra == "all"
68
+ Requires-Dist: black>=23.0; extra == "all"
69
+ Requires-Dist: ruff>=0.1.0; extra == "all"
70
+ Requires-Dist: sphinx>=5.0; extra == "all"
71
+ Requires-Dist: sphinx-rtd-theme>=1.0; extra == "all"
72
+ Dynamic: license-file
73
+
74
+ # Kito
75
+
76
+ **Effortless PyTorch training - define your model, Kito handles the rest.**
77
+
78
+ [![Tests](https://github.com/gcostantino/kito/actions/workflows/tests.yml/badge.svg)](https://github.com/gcostantino/kito/actions)
79
+ [![PyPI version](https://img.shields.io/pypi/v/pytorch-kito)](https://pypi.org/project/pytorch-kito/)
80
+ [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
81
+ [![Python 3.9+](https://img.shields.io/badge/python-3.9+-blue.svg)](https://www.python.org/downloads/)
82
+ [![Downloads](https://img.shields.io/pypi/dm/pytorch-kito)](https://pypi.org/project/pytorch-kito/)
83
+
84
+ Kito is a lightweight PyTorch training library that eliminates boilerplate code. Define your model architecture and loss function - Kito automatically handles training loops, optimization, callbacks, distributed training, and more.
85
+
86
+ ## ✨ Key Features
87
+
88
+ - **Zero Boilerplate** - No training loops, no optimizer setup, no device management
89
+ - **Auto-Everything** - Automatic model building, optimizer binding, and device assignment
90
+ - **Built-in DDP** - Distributed training works out of the box
91
+ - **Smart Callbacks** - TensorBoard, checkpointing, logging, and custom callbacks
92
+ - **Flexible** - Simple for beginners, powerful for experts
93
+ - **Lightweight** - Minimal dependencies, pure PyTorch under the hood
94
+
95
+ ## Quick Start
96
+
97
+ ### Installation
98
+
99
+ ```bash
100
+ pip install pytorch-kito
101
+ ```
102
+
103
+ ### Your First Model in 3 Steps
104
+
105
+ ```python
106
+ import torch.nn as nn
107
+ from kito import Engine, KitoModule
108
+
109
+ # 1. Define your model
110
+ class MyModel(KitoModule):
111
+ def build_inner_model(self):
112
+ self.model = nn.Sequential(
113
+ nn.Linear(784, 128),
114
+ nn.ReLU(),
115
+ nn.Linear(128, 10)
116
+ )
117
+ self.model_input_size = (784,)
118
+
119
+ def bind_optimizer(self):
120
+ self.optimizer = torch.optim.Adam(
121
+ self.model.parameters(),
122
+ lr=self.learning_rate
123
+ )
124
+
125
+ # 2. Initialize
126
+ model = MyModel('MyModel', device, config)
127
+ engine = Engine(model, config)
128
+
129
+ # 3. Train! (That's it - everything else is automatic)
130
+ engine.fit(train_loader, val_loader, max_epochs=10)
131
+ ```
132
+
133
+ ## Philosophy
134
+
135
+ Kito follows a **"define once, train anywhere"** philosophy:
136
+
137
+ 1. **You focus on**: Model architecture and research ideas
138
+ 2. **Kito handles**: Training loops, optimization, distributed training, callbacks
139
+
140
+ Perfect for researchers who want to iterate quickly without rewriting training code.
141
+
142
+ ## Core Concepts
143
+
144
+ ### KitoModule
145
+
146
+ Your model inherits from `KitoModule` and implements two methods:
147
+
148
+ ```python
149
+ class MyModel(KitoModule):
150
+ def build_inner_model(self):
151
+ # Define your architecture
152
+ self.model = nn.Sequential(...)
153
+ self.model_input_size = (C, H, W) # Input shape
154
+
155
+ def bind_optimizer(self):
156
+ # Choose your optimizer
157
+ self.optimizer = torch.optim.Adam(
158
+ self.model.parameters(),
159
+ lr=self.learning_rate
160
+ )
161
+ ```
162
+
163
+ ### Engine
164
+
165
+ The `Engine` orchestrates everything:
166
+
167
+ ```python
168
+ engine = Engine(module, config)
169
+
170
+ # Training
171
+ engine.fit(train_loader, val_loader, max_epochs=100)
172
+
173
+ # Inference
174
+ predictions = engine.predict(test_loader)
175
+ ```
176
+
177
+ ### Data Pipeline
178
+
179
+ Kito provides a clean data pipeline with preprocessing:
180
+
181
+ ```python
182
+ from kito.data import H5Dataset, GenericDataPipeline
183
+ from kito.data.preprocessing import Pipeline, Normalize, ToTensor
184
+
185
+ # Create dataset
186
+ dataset = H5Dataset('data.h5')
187
+
188
+ # Add preprocessing
189
+ preprocessing = Pipeline([
190
+ Normalize(min_val=0.0, max_val=1.0),
191
+ ToTensor()
192
+ ])
193
+
194
+ # Setup data pipeline
195
+ pipeline = GenericDataPipeline(
196
+ config=config,
197
+ dataset=dataset,
198
+ preprocessing=preprocessing
199
+ )
200
+ pipeline.setup()
201
+
202
+ # Get dataloaders
203
+ train_loader = pipeline.train_dataloader()
204
+ val_loader = pipeline.val_dataloader()
205
+ ```
206
+
207
+ ### Callbacks
208
+
209
+ Kito includes powerful callbacks for common tasks:
210
+
211
+ ```python
212
+ from kito.callbacks import ModelCheckpoint, EarlyStopping, CSVLogger
213
+
214
+ callbacks = [
215
+ ModelCheckpoint('best_model.pt', monitor='val_loss', mode='min'),
216
+ EarlyStopping(patience=10, monitor='val_loss'),
217
+ CSVLogger('training.csv')
218
+ ]
219
+
220
+ engine.fit(train_loader, val_loader, callbacks=callbacks)
221
+ ```
222
+
223
+ Or create custom callbacks:
224
+
225
+ ```python
226
+ from kito.callbacks import Callback
227
+
228
+ class MyCallback(Callback):
229
+ def on_epoch_end(self, epoch, logs, **kwargs):
230
+ print(f"Epoch {epoch}: loss={logs['train_loss']:.4f}")
231
+ ```
232
+
233
+ ## Advanced Features
234
+
235
+ ### Distributed Training (DDP)
236
+
237
+ Enable distributed training with one config change:
238
+
239
+ ```python
240
+ config.training.distributed_training = True
241
+
242
+ # Everything else stays the same!
243
+ engine.fit(train_loader, val_loader, max_epochs=100)
244
+ ```
245
+
246
+ ### Custom Training Logic
247
+
248
+ Override `training_step` for custom behavior:
249
+
250
+ ```python
251
+ class MyModel(KitoModule):
252
+ def training_step(self, batch, pbar_handler=None):
253
+ inputs, targets = batch
254
+
255
+ # Custom forward pass
256
+ outputs = self.model(inputs)
257
+ loss = self.compute_loss((inputs, targets), outputs)
258
+
259
+ # Custom backward (e.g., gradient clipping)
260
+ self.optimizer.zero_grad()
261
+ loss.backward()
262
+ torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=1.0)
263
+ self.optimizer.step()
264
+
265
+ return {'loss': loss}
266
+ ```
267
+
268
+ ### Multiple Datasets
269
+
270
+ Kito supports HDF5 and in-memory datasets out of the box:
271
+
272
+ ```python
273
+ from kito.data import H5Dataset, MemDataset
274
+
275
+ # HDF5 dataset (lazy loading)
276
+ dataset = H5Dataset('large_data.h5')
277
+
278
+ # In-memory dataset (fast)
279
+ dataset = MemDataset(x_train, y_train)
280
+ ```
281
+
282
+ Register custom datasets easily:
283
+
284
+ ```python
285
+ from kito.data.registry import DATASETS
286
+
287
+ @DATASETS.register('my_custom_dataset')
288
+ class MyDataset(KitoDataset):
289
+ def _load_sample(self, index):
290
+ return data, labels
291
+ ```
292
+
293
+ ## 📦 Installation Options
294
+
295
+ ```bash
296
+ # Basic installation
297
+ pip install pytorch-kito
298
+
299
+ # With TensorBoard support
300
+ pip install pytorch-kito[tensorboard]
301
+
302
+ # Development installation
303
+ pip install pytorch-kito[dev]
304
+
305
+ # Everything
306
+ pip install pytorch-kito[all]
307
+ ```
308
+
309
+ ## 🤝 Contributing
310
+
311
+ Contributions are very welcome! Please check out our [Contributing Guide](CONTRIBUTING.md).
312
+
313
+ ## 📄 License
314
+
315
+ MIT License - see [LICENSE](LICENSE) file for details.
316
+
317
+ ## 🙏 Acknowledgments
318
+
319
+ Kito is inspired by PyTorch Lightning and Keras, aiming to bring similar ease-of-use to pure PyTorch workflows for researchers.
320
+
321
+ ## Contact
322
+
323
+ - **GitHub Issues**: [Report bugs or request features](https://github.com/gcostantino/kito/issues)
324
+ - **GitHub Discussions**: [Ask questions](https://github.com/gcostantino/kito/discussions)
325
+
326
+ ---
327
+
328
+ **Made with ❤️ for the PyTorch community**
@@ -0,0 +1,34 @@
1
+ kito/__init__.py,sha256=j5He-bAp7SZYkaisFKyxHtByt-5t4x8tZ2uThTwFrTc,938
2
+ kito/engine.py,sha256=bmuDndaWIXy4gOdsTVyvGjQxKiHrZczzlI09ozfBRwI,30617
3
+ kito/module.py,sha256=Zc3doiqXfAIXNdS6ZYQqdudgRO_bXT2VaABVUbkRvVY,13931
4
+ kito/callbacks/__init__.py,sha256=Yt9BBCepsgnGCbwTsrwLkBjqIbDdsCxrbHERBbQ-748,624
5
+ kito/callbacks/callback_base.py,sha256=AW_h-PEHuOJJA7kEcv7eSl_Gq7k8dLgqdNQX4XvUBjs,3661
6
+ kito/callbacks/csv_logger.py,sha256=8vfUt7NO_XyUoqBNIlpC7tGEnAhbRjGJsXwErFdspH0,1850
7
+ kito/callbacks/ddp_aware_callback.py,sha256=nty5N86jE9Ha26FBbUQpaNrZ5i8ex9lPg_l6bgI6IIQ,2124
8
+ kito/callbacks/early_stopping_callback.py,sha256=lqrV_FDy0xFbPAkfq64eQcDS-yWbJpgfKA7e0hqJaGA,1372
9
+ kito/callbacks/modelcheckpoint.py,sha256=_HFrgdz2fjKsUIq_wj6I_eHbbUViVdgJF3Se48FCB9Q,2376
10
+ kito/callbacks/tensorboard_callback_images.py,sha256=Vpx-63wXfHHy5MJbibJQtuqAkOBITtjKmmJZXfjn9Sk,9210
11
+ kito/callbacks/tensorboard_callbacks.py,sha256=xguPSogXX_U1tyOsolryNcazqCdTBHDWun5FoSrl4Tk,3701
12
+ kito/callbacks/txt_logger.py,sha256=dNDMrwEcbC5coUua4R8rJqiIb5xYY7lyIh9maamE48o,1687
13
+ kito/config/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
14
+ kito/config/moduleconfig.py,sha256=qY49kA-zFA4OUuE9lCrJh9cGwf6UjuAoI1k04lsNer0,5631
15
+ kito/data/__init__.py,sha256=h9HIKEHtC3CYD3aWsAUh_dcWYiQ6fmiTOcsXhnuhYGE,723
16
+ kito/data/datapipeline.py,sha256=CgYAtjTN_URPjXi1VvS6GY7nLCa5n3ow-F406St78jI,8292
17
+ kito/data/datasets.py,sha256=L3ClAw9rCkCuXavgaEtSUC6mVr-WLVv6DYhOpeOvIUE,4833
18
+ kito/data/preprocessed_dataset.py,sha256=hiLdMvyvjNWpgAylV07bnifAPAhTeN6eOaeBmIePRRA,1733
19
+ kito/data/preprocessing.py,sha256=VawgS0Kci5gvuvPwurWE-Dj3vV2s0s5jsCdz0FuepMQ,8325
20
+ kito/data/registry.py,sha256=rU8qXlGavSVbwJWEG_1_rbh3imiNpYgPuCz8bqY8_VQ,2279
21
+ kito/strategies/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
22
+ kito/strategies/logger_strategy.py,sha256=76mxBKs1ZlYoZ7MHjfujH9driye3Q_w8wW0BqVX15oE,1269
23
+ kito/strategies/progress_bar_strategy.py,sha256=z2GzKnrXyDiCJahhdNTZobS-lTb2YuOoeYVSx5ybUHU,1791
24
+ kito/strategies/readiness_validator.py,sha256=YUV201JsKtaMgKOV93OVpBzGJjbm9sYrb2SsBCnx_jw,2684
25
+ kito/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
26
+ kito/utils/decorators.py,sha256=p0gWNNL4F0v1zafxI7BDxUVNZugda1Vw8d4lMDIFt_g,1650
27
+ kito/utils/gpu_utils.py,sha256=MLsOWBLmu92E71amanSc95NSJ38448QBFBaajYh1eCM,2747
28
+ kito/utils/loss_utils.py,sha256=u5rWWBJB1e9pGLSSQARHAe5fI9ZOuLzZqu_22VDebKY,1555
29
+ kito/utils/ssim_utils.py,sha256=gBNCWi6X1KzWofQkJXuzJ6qkXx4Ja8faCKGyWSmJj-k,3771
30
+ pytorch_kito-0.2.0.dist-info/licenses/LICENSE,sha256=yeTd9I65vu2Fo9VOKMHVhFt9UlTbRAAGxhR7OO9Dvbs,1075
31
+ pytorch_kito-0.2.0.dist-info/METADATA,sha256=loEohuioKK1FLmMqWnGCGsAzJQv7s-ILdDl8xI8OQcw,9977
32
+ pytorch_kito-0.2.0.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
33
+ pytorch_kito-0.2.0.dist-info/top_level.txt,sha256=hDmlE0Vyhj0KWg8m24LOrJKBeDOIqL8b6-Pr5kwQRGM,5
34
+ pytorch_kito-0.2.0.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ Wheel-Version: 1.0
2
+ Generator: setuptools (80.10.2)
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
5
+
@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2026 Giuseppe Costantino
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
@@ -0,0 +1 @@
1
+ kito