pytorch-ignite 0.6.0.dev20250310__py3-none-any.whl → 0.6.0.dev20260101__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of pytorch-ignite might be problematic. Click here for more details.
- ignite/__init__.py +1 -1
- ignite/contrib/engines/common.py +1 -0
- ignite/contrib/handlers/base_logger.py +1 -1
- ignite/contrib/handlers/clearml_logger.py +1 -1
- ignite/contrib/handlers/lr_finder.py +1 -1
- ignite/contrib/handlers/mlflow_logger.py +1 -1
- ignite/contrib/handlers/neptune_logger.py +1 -1
- ignite/contrib/handlers/param_scheduler.py +1 -1
- ignite/contrib/handlers/polyaxon_logger.py +1 -1
- ignite/contrib/handlers/tensorboard_logger.py +1 -1
- ignite/contrib/handlers/time_profilers.py +1 -1
- ignite/contrib/handlers/tqdm_logger.py +1 -1
- ignite/contrib/handlers/visdom_logger.py +1 -1
- ignite/contrib/handlers/wandb_logger.py +1 -1
- ignite/contrib/metrics/average_precision.py +1 -1
- ignite/contrib/metrics/cohen_kappa.py +1 -1
- ignite/contrib/metrics/gpu_info.py +1 -1
- ignite/contrib/metrics/precision_recall_curve.py +1 -1
- ignite/contrib/metrics/regression/canberra_metric.py +2 -3
- ignite/contrib/metrics/regression/fractional_absolute_error.py +2 -3
- ignite/contrib/metrics/regression/fractional_bias.py +2 -3
- ignite/contrib/metrics/regression/geometric_mean_absolute_error.py +2 -3
- ignite/contrib/metrics/regression/geometric_mean_relative_absolute_error.py +2 -3
- ignite/contrib/metrics/regression/manhattan_distance.py +2 -3
- ignite/contrib/metrics/regression/maximum_absolute_error.py +2 -3
- ignite/contrib/metrics/regression/mean_absolute_relative_error.py +2 -3
- ignite/contrib/metrics/regression/mean_error.py +2 -3
- ignite/contrib/metrics/regression/mean_normalized_bias.py +2 -3
- ignite/contrib/metrics/regression/median_absolute_error.py +2 -3
- ignite/contrib/metrics/regression/median_absolute_percentage_error.py +2 -3
- ignite/contrib/metrics/regression/median_relative_absolute_error.py +2 -3
- ignite/contrib/metrics/regression/r2_score.py +2 -3
- ignite/contrib/metrics/regression/wave_hedges_distance.py +2 -3
- ignite/contrib/metrics/roc_auc.py +1 -1
- ignite/distributed/auto.py +1 -0
- ignite/distributed/comp_models/base.py +7 -0
- ignite/distributed/comp_models/horovod.py +35 -5
- ignite/distributed/comp_models/native.py +8 -4
- ignite/distributed/comp_models/xla.py +5 -0
- ignite/distributed/launcher.py +4 -8
- ignite/distributed/utils.py +12 -4
- ignite/engine/__init__.py +9 -9
- ignite/engine/deterministic.py +1 -1
- ignite/engine/engine.py +38 -14
- ignite/engine/events.py +2 -1
- ignite/handlers/__init__.py +2 -0
- ignite/handlers/base_logger.py +47 -12
- ignite/handlers/checkpoint.py +46 -5
- ignite/handlers/clearml_logger.py +16 -4
- ignite/handlers/fbresearch_logger.py +2 -2
- ignite/handlers/lr_finder.py +9 -9
- ignite/handlers/mlflow_logger.py +43 -0
- ignite/handlers/neptune_logger.py +8 -0
- ignite/handlers/param_scheduler.py +7 -3
- ignite/handlers/polyaxon_logger.py +7 -0
- ignite/handlers/state_param_scheduler.py +8 -2
- ignite/handlers/tensorboard_logger.py +43 -0
- ignite/handlers/time_profilers.py +6 -3
- ignite/handlers/tqdm_logger.py +9 -5
- ignite/handlers/visdom_logger.py +10 -3
- ignite/handlers/wandb_logger.py +16 -9
- ignite/metrics/accuracy.py +2 -0
- ignite/metrics/clustering/calinski_harabasz_score.py +1 -1
- ignite/metrics/clustering/silhouette_score.py +1 -1
- ignite/metrics/fbeta.py +17 -8
- ignite/metrics/gan/fid.py +3 -3
- ignite/metrics/js_divergence.py +1 -1
- ignite/metrics/maximum_mean_discrepancy.py +1 -1
- ignite/metrics/metric.py +3 -0
- ignite/metrics/nlp/bleu.py +8 -6
- ignite/metrics/nlp/rouge.py +9 -6
- ignite/metrics/nlp/utils.py +1 -1
- ignite/metrics/precision_recall_curve.py +5 -5
- ignite/metrics/regression/_base.py +4 -0
- ignite/metrics/regression/fractional_bias.py +1 -1
- ignite/metrics/roc_auc.py +4 -3
- ignite/metrics/ssim.py +63 -21
- ignite/metrics/vision/object_detection_average_precision_recall.py +3 -0
- {pytorch_ignite-0.6.0.dev20250310.dist-info → pytorch_ignite-0.6.0.dev20260101.dist-info}/METADATA +11 -17
- {pytorch_ignite-0.6.0.dev20250310.dist-info → pytorch_ignite-0.6.0.dev20260101.dist-info}/RECORD +82 -83
- {pytorch_ignite-0.6.0.dev20250310.dist-info → pytorch_ignite-0.6.0.dev20260101.dist-info}/WHEEL +1 -2
- pytorch_ignite-0.6.0.dev20250310.dist-info/top_level.txt +0 -1
- {pytorch_ignite-0.6.0.dev20250310.dist-info → pytorch_ignite-0.6.0.dev20260101.dist-info/licenses}/LICENSE +0 -0
|
@@ -30,6 +30,10 @@ def _check_output_types(output: Tuple[torch.Tensor, torch.Tensor]) -> None:
|
|
|
30
30
|
|
|
31
31
|
|
|
32
32
|
def _torch_median(output: torch.Tensor) -> float:
|
|
33
|
+
# torch.kthvalue used later is not supported on MPS
|
|
34
|
+
if output.device.type == "mps":
|
|
35
|
+
output = output.cpu()
|
|
36
|
+
|
|
33
37
|
output = output.view(-1)
|
|
34
38
|
len_ = len(output)
|
|
35
39
|
|
|
@@ -64,7 +64,7 @@ class FractionalBias(_BaseRegression):
|
|
|
64
64
|
|
|
65
65
|
@reinit__is_reduced
|
|
66
66
|
def reset(self) -> None:
|
|
67
|
-
self._sum_of_errors = torch.tensor(0.0, dtype=
|
|
67
|
+
self._sum_of_errors = torch.tensor(0.0, dtype=self._double_dtype, device=self._device)
|
|
68
68
|
self._num_examples = 0
|
|
69
69
|
|
|
70
70
|
def _update(self, output: Tuple[torch.Tensor, torch.Tensor]) -> None:
|
ignite/metrics/roc_auc.py
CHANGED
|
@@ -198,9 +198,9 @@ class RocCurve(EpochMetric):
|
|
|
198
198
|
if idist.get_rank() == 0:
|
|
199
199
|
# Run compute_fn on zero rank only
|
|
200
200
|
fpr, tpr, thresholds = cast(Tuple, self.compute_fn(_prediction_tensor, _target_tensor))
|
|
201
|
-
fpr = torch.tensor(fpr, device=_prediction_tensor.device)
|
|
202
|
-
tpr = torch.tensor(tpr, device=_prediction_tensor.device)
|
|
203
|
-
thresholds = torch.tensor(thresholds, device=_prediction_tensor.device)
|
|
201
|
+
fpr = torch.tensor(fpr, dtype=self._double_dtype, device=_prediction_tensor.device)
|
|
202
|
+
tpr = torch.tensor(tpr, dtype=self._double_dtype, device=_prediction_tensor.device)
|
|
203
|
+
thresholds = torch.tensor(thresholds, dtype=self._double_dtype, device=_prediction_tensor.device)
|
|
204
204
|
else:
|
|
205
205
|
fpr, tpr, thresholds = None, None, None
|
|
206
206
|
|
|
@@ -210,4 +210,5 @@ class RocCurve(EpochMetric):
|
|
|
210
210
|
tpr = idist.broadcast(tpr, src=0, safe_mode=True)
|
|
211
211
|
thresholds = idist.broadcast(thresholds, src=0, safe_mode=True)
|
|
212
212
|
|
|
213
|
+
# pyrefly: ignore [bad-return]
|
|
213
214
|
return fpr, tpr, thresholds
|
ignite/metrics/ssim.py
CHANGED
|
@@ -21,9 +21,9 @@ class SSIM(Metric):
|
|
|
21
21
|
|
|
22
22
|
Args:
|
|
23
23
|
data_range: Range of the image. Typically, ``1.0`` or ``255``.
|
|
24
|
-
kernel_size: Size of the kernel. Default:
|
|
24
|
+
kernel_size: Size of the kernel. Default: 11
|
|
25
25
|
sigma: Standard deviation of the gaussian kernel.
|
|
26
|
-
Argument is used if ``gaussian=True``. Default:
|
|
26
|
+
Argument is used if ``gaussian=True``. Default: 1.5
|
|
27
27
|
k1: Parameter of SSIM. Default: 0.01
|
|
28
28
|
k2: Parameter of SSIM. Default: 0.03
|
|
29
29
|
gaussian: ``True`` to use gaussian kernel, ``False`` to use uniform kernel
|
|
@@ -36,6 +36,7 @@ class SSIM(Metric):
|
|
|
36
36
|
skip_unrolling: specifies whether output should be unrolled before being fed to update method. Should be
|
|
37
37
|
true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)``
|
|
38
38
|
Alternatively, ``output_transform`` can be used to handle this.
|
|
39
|
+
ndims: Number of dimensions of the input image: 2d or 3d. Accepted values: 2, 3. Default: 2
|
|
39
40
|
|
|
40
41
|
Examples:
|
|
41
42
|
To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine.
|
|
@@ -68,6 +69,8 @@ class SSIM(Metric):
|
|
|
68
69
|
|
|
69
70
|
.. versionchanged:: 0.5.1
|
|
70
71
|
``skip_unrolling`` argument is added.
|
|
72
|
+
.. versionchanged:: 0.5.2
|
|
73
|
+
``ndims`` argument is added.
|
|
71
74
|
"""
|
|
72
75
|
|
|
73
76
|
_state_dict_all_req_keys = ("_sum_of_ssim", "_num_examples", "_kernel")
|
|
@@ -75,28 +78,36 @@ class SSIM(Metric):
|
|
|
75
78
|
def __init__(
|
|
76
79
|
self,
|
|
77
80
|
data_range: Union[int, float],
|
|
78
|
-
kernel_size: Union[int, Sequence[int]] =
|
|
79
|
-
sigma: Union[float, Sequence[float]] =
|
|
81
|
+
kernel_size: Union[int, Sequence[int]] = 11,
|
|
82
|
+
sigma: Union[float, Sequence[float]] = 1.5,
|
|
80
83
|
k1: float = 0.01,
|
|
81
84
|
k2: float = 0.03,
|
|
82
85
|
gaussian: bool = True,
|
|
83
86
|
output_transform: Callable = lambda x: x,
|
|
84
87
|
device: Union[str, torch.device] = torch.device("cpu"),
|
|
85
88
|
skip_unrolling: bool = False,
|
|
89
|
+
ndims: int = 2,
|
|
86
90
|
):
|
|
91
|
+
if ndims not in (2, 3):
|
|
92
|
+
raise ValueError(f"Expected ndims to be 2 or 3. Got {ndims}.")
|
|
93
|
+
|
|
87
94
|
if isinstance(kernel_size, int):
|
|
88
|
-
self.kernel_size: Sequence[int] = [kernel_size
|
|
95
|
+
self.kernel_size: Sequence[int] = [kernel_size for _ in range(ndims)]
|
|
89
96
|
elif isinstance(kernel_size, Sequence):
|
|
97
|
+
if len(kernel_size) != ndims:
|
|
98
|
+
raise ValueError(f"Expected kernel_size to have length of {ndims}. Got {len(kernel_size)}.")
|
|
90
99
|
self.kernel_size = kernel_size
|
|
91
100
|
else:
|
|
92
|
-
raise ValueError("Argument kernel_size should be either int or a sequence of int.")
|
|
101
|
+
raise ValueError(f"Argument kernel_size should be either int or a sequence of int of length {ndims}.")
|
|
93
102
|
|
|
94
103
|
if isinstance(sigma, float):
|
|
95
|
-
self.sigma: Sequence[float] = [sigma
|
|
104
|
+
self.sigma: Sequence[float] = [sigma for _ in range(ndims)]
|
|
96
105
|
elif isinstance(sigma, Sequence):
|
|
106
|
+
if len(sigma) != ndims:
|
|
107
|
+
raise ValueError(f"Expected sigma to have length of {ndims}. Got {len(sigma)}.")
|
|
97
108
|
self.sigma = sigma
|
|
98
109
|
else:
|
|
99
|
-
raise ValueError("Argument sigma should be either float or a sequence of float.")
|
|
110
|
+
raise ValueError(f"Argument sigma should be either float or a sequence of float of length {ndims}.")
|
|
100
111
|
|
|
101
112
|
if any(x % 2 == 0 or x <= 0 for x in self.kernel_size):
|
|
102
113
|
raise ValueError(f"Expected kernel_size to have odd positive number. Got {kernel_size}.")
|
|
@@ -111,7 +122,13 @@ class SSIM(Metric):
|
|
|
111
122
|
self.c2 = (k2 * data_range) ** 2
|
|
112
123
|
self.pad_h = (self.kernel_size[0] - 1) // 2
|
|
113
124
|
self.pad_w = (self.kernel_size[1] - 1) // 2
|
|
114
|
-
self.
|
|
125
|
+
self.pad_d = None
|
|
126
|
+
self.ndims = ndims
|
|
127
|
+
if self.ndims == 3:
|
|
128
|
+
self.pad_d = (self.kernel_size[2] - 1) // 2
|
|
129
|
+
self._kernel_nd = self._gaussian_or_uniform_kernel(
|
|
130
|
+
kernel_size=self.kernel_size, sigma=self.sigma, ndims=self.ndims
|
|
131
|
+
)
|
|
115
132
|
self._kernel: Optional[torch.Tensor] = None
|
|
116
133
|
|
|
117
134
|
@reinit__is_reduced
|
|
@@ -128,23 +145,38 @@ class SSIM(Metric):
|
|
|
128
145
|
min_, max_ = -2.5, 2.5
|
|
129
146
|
kernel[start_uniform_index:end_uniform_index] = 1 / (max_ - min_)
|
|
130
147
|
|
|
131
|
-
return kernel
|
|
148
|
+
return kernel # (kernel_size)
|
|
132
149
|
|
|
133
150
|
def _gaussian(self, kernel_size: int, sigma: float) -> torch.Tensor:
|
|
134
151
|
ksize_half = (kernel_size - 1) * 0.5
|
|
135
152
|
kernel = torch.linspace(-ksize_half, ksize_half, steps=kernel_size, device=self._device)
|
|
136
153
|
gauss = torch.exp(-0.5 * (kernel / sigma).pow(2))
|
|
137
|
-
return
|
|
154
|
+
return gauss / gauss.sum() # (kernel_size)
|
|
138
155
|
|
|
139
|
-
def _gaussian_or_uniform_kernel(
|
|
156
|
+
def _gaussian_or_uniform_kernel(
|
|
157
|
+
self, kernel_size: Sequence[int], sigma: Sequence[float], ndims: int
|
|
158
|
+
) -> torch.Tensor:
|
|
140
159
|
if self.gaussian:
|
|
141
160
|
kernel_x = self._gaussian(kernel_size[0], sigma[0])
|
|
142
161
|
kernel_y = self._gaussian(kernel_size[1], sigma[1])
|
|
162
|
+
if ndims == 3:
|
|
163
|
+
kernel_z = self._gaussian(kernel_size[2], sigma[2])
|
|
164
|
+
else:
|
|
165
|
+
kernel_z = None
|
|
143
166
|
else:
|
|
144
167
|
kernel_x = self._uniform(kernel_size[0])
|
|
145
168
|
kernel_y = self._uniform(kernel_size[1])
|
|
146
|
-
|
|
147
|
-
|
|
169
|
+
if ndims == 3:
|
|
170
|
+
kernel_z = self._uniform(kernel_size[2])
|
|
171
|
+
else:
|
|
172
|
+
kernel_z = None
|
|
173
|
+
|
|
174
|
+
result = (
|
|
175
|
+
torch.einsum("i,j->ij", kernel_x, kernel_y)
|
|
176
|
+
if ndims == 2
|
|
177
|
+
else torch.einsum("i,j,k->ijk", kernel_x, kernel_y, kernel_z)
|
|
178
|
+
)
|
|
179
|
+
return result
|
|
148
180
|
|
|
149
181
|
def _check_type_and_shape(self, y_pred: torch.Tensor, y: torch.Tensor) -> None:
|
|
150
182
|
if y_pred.dtype != y.dtype:
|
|
@@ -157,9 +189,11 @@ class SSIM(Metric):
|
|
|
157
189
|
f"Expected y_pred and y to have the same shape. Got y_pred: {y_pred.shape} and y: {y.shape}."
|
|
158
190
|
)
|
|
159
191
|
|
|
160
|
-
|
|
192
|
+
# 2 dimensions are reserved for batch and channel
|
|
193
|
+
if len(y_pred.shape) - 2 != self.ndims or len(y.shape) - 2 != self.ndims:
|
|
161
194
|
raise ValueError(
|
|
162
|
-
|
|
195
|
+
"Expected y_pred and y to have BxCxHxW or BxCxDxHxW shape. "
|
|
196
|
+
f"Got y_pred: {y_pred.shape} and y: {y.shape}."
|
|
163
197
|
)
|
|
164
198
|
|
|
165
199
|
@reinit__is_reduced
|
|
@@ -176,7 +210,7 @@ class SSIM(Metric):
|
|
|
176
210
|
|
|
177
211
|
nb_channel = y_pred.size(1)
|
|
178
212
|
if self._kernel is None or self._kernel.shape[0] != nb_channel:
|
|
179
|
-
self._kernel = self.
|
|
213
|
+
self._kernel = self._kernel_nd.expand(nb_channel, 1, *[-1 for _ in range(self.ndims)])
|
|
180
214
|
|
|
181
215
|
if y_pred.device != self._kernel.device:
|
|
182
216
|
if self._kernel.device == torch.device("cpu"):
|
|
@@ -191,14 +225,19 @@ class SSIM(Metric):
|
|
|
191
225
|
y_pred = y_pred.to(device=self._kernel.device)
|
|
192
226
|
y = y.to(device=self._kernel.device)
|
|
193
227
|
|
|
194
|
-
|
|
195
|
-
|
|
228
|
+
padding_shape = [self.pad_w, self.pad_w, self.pad_h, self.pad_h]
|
|
229
|
+
if self.ndims == 3 and self.pad_d is not None:
|
|
230
|
+
padding_shape.extend([self.pad_d, self.pad_d])
|
|
231
|
+
|
|
232
|
+
y_pred = F.pad(y_pred, padding_shape, mode="reflect")
|
|
233
|
+
y = F.pad(y, padding_shape, mode="reflect")
|
|
196
234
|
|
|
197
235
|
if y_pred.dtype != self._kernel.dtype:
|
|
198
236
|
self._kernel = self._kernel.to(dtype=y_pred.dtype)
|
|
199
237
|
|
|
200
238
|
input_list = [y_pred, y, y_pred * y_pred, y * y, y_pred * y]
|
|
201
|
-
|
|
239
|
+
conv_op = F.conv3d if self.ndims == 3 else F.conv2d
|
|
240
|
+
outputs = conv_op(torch.cat(input_list), self._kernel, groups=nb_channel)
|
|
202
241
|
batch_size = y_pred.size(0)
|
|
203
242
|
output_list = [outputs[x * batch_size : (x + 1) * batch_size] for x in range(len(input_list))]
|
|
204
243
|
|
|
@@ -224,7 +263,10 @@ class SSIM(Metric):
|
|
|
224
263
|
if ssim_idx.device.type == "mps" and self._double_dtype == torch.float64:
|
|
225
264
|
double_dtype = torch.float32
|
|
226
265
|
|
|
227
|
-
|
|
266
|
+
# mean from all dimensions except batch
|
|
267
|
+
self._sum_of_ssim += (
|
|
268
|
+
torch.mean(ssim_idx, list(range(1, 2 + self.ndims)), dtype=double_dtype).sum().to(device=self._device)
|
|
269
|
+
)
|
|
228
270
|
|
|
229
271
|
self._num_examples += y.shape[0]
|
|
230
272
|
|
|
@@ -160,6 +160,9 @@ class ObjectDetectionAvgPrecisionRecall(Metric, _BaseAveragePrecision):
|
|
|
160
160
|
elif self._area_range == "large":
|
|
161
161
|
min_area = 9216
|
|
162
162
|
max_area = 1e10
|
|
163
|
+
else:
|
|
164
|
+
min_area = 0
|
|
165
|
+
max_area = 1e10
|
|
163
166
|
return torch.logical_and(areas >= min_area, areas <= max_area)
|
|
164
167
|
|
|
165
168
|
def _check_matching_input(
|
{pytorch_ignite-0.6.0.dev20250310.dist-info → pytorch_ignite-0.6.0.dev20260101.dist-info}/METADATA
RENAMED
|
@@ -1,23 +1,17 @@
|
|
|
1
|
-
Metadata-Version: 2.
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
2
|
Name: pytorch-ignite
|
|
3
|
-
Version: 0.6.0.
|
|
3
|
+
Version: 0.6.0.dev20260101
|
|
4
4
|
Summary: A lightweight library to help with training neural networks in PyTorch.
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
Author-email: contact@pytorch-ignite.ai
|
|
8
|
-
License: BSD
|
|
9
|
-
Description-Content-Type: text/markdown
|
|
5
|
+
Project-URL: Homepage, https://pytorch-ignite.ai
|
|
6
|
+
Project-URL: Repository, https://github.com/pytorch/ignite
|
|
7
|
+
Author-email: PyTorch-Ignite Team <contact@pytorch-ignite.ai>
|
|
8
|
+
License-Expression: BSD-3-Clause
|
|
10
9
|
License-File: LICENSE
|
|
11
|
-
|
|
10
|
+
Classifier: Programming Language :: Python :: 3
|
|
11
|
+
Requires-Python: <=3.13,>=3.9
|
|
12
12
|
Requires-Dist: packaging
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
Dynamic: description
|
|
16
|
-
Dynamic: description-content-type
|
|
17
|
-
Dynamic: home-page
|
|
18
|
-
Dynamic: license
|
|
19
|
-
Dynamic: requires-dist
|
|
20
|
-
Dynamic: summary
|
|
13
|
+
Requires-Dist: torch<3,>=1.10
|
|
14
|
+
Description-Content-Type: text/markdown
|
|
21
15
|
|
|
22
16
|
<div align="center">
|
|
23
17
|
|
|
@@ -418,7 +412,7 @@ Few pointers to get you started:
|
|
|
418
412
|
- [](https://colab.research.google.com/github/pytorch/ignite/blob/master/examples/notebooks/FastaiLRFinder_MNIST.ipynb) [Basic example of LR finder on
|
|
419
413
|
MNIST](https://github.com/pytorch/ignite/blob/master/examples/notebooks/FastaiLRFinder_MNIST.ipynb)
|
|
420
414
|
- [](https://colab.research.google.com/github/pytorch/ignite/blob/master/examples/notebooks/Cifar100_bench_amp.ipynb) [Benchmark mixed precision training on Cifar100:
|
|
421
|
-
torch.
|
|
415
|
+
torch.amp vs nvidia/apex](https://github.com/pytorch/ignite/blob/master/examples/notebooks/Cifar100_bench_amp.ipynb)
|
|
422
416
|
- [](https://colab.research.google.com/github/pytorch/ignite/blob/master/examples/notebooks/MNIST_on_TPU.ipynb) [MNIST training on a single
|
|
423
417
|
TPU](https://github.com/pytorch/ignite/blob/master/examples/notebooks/MNIST_on_TPU.ipynb)
|
|
424
418
|
- [](https://colab.research.google.com/drive/1E9zJrptnLJ_PKhmaP5Vhb6DTVRvyrKHx) [CIFAR10 Training on multiple TPUs](https://github.com/pytorch/ignite/tree/master/examples/cifar10)
|
{pytorch_ignite-0.6.0.dev20250310.dist-info → pytorch_ignite-0.6.0.dev20260101.dist-info}/RECORD
RENAMED
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
ignite/__init__.py,sha256=
|
|
1
|
+
ignite/__init__.py,sha256=voD5WqO84J8muX3Xb2J5pA6NCtmtdNPL3YjnJyt58iI,194
|
|
2
2
|
ignite/_utils.py,sha256=XDPpUDJ8ykLXWMV2AYTqGSj8XCfApsyzsQ3Vij_OB4M,182
|
|
3
3
|
ignite/exceptions.py,sha256=5ZWCVLPC9rgoW8t84D-VeEleqz5O7XpAGPpCdU8rKd0,150
|
|
4
4
|
ignite/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
@@ -7,84 +7,84 @@ ignite/base/__init__.py,sha256=y2g9egjuVCYRtaj-4ge081y-8cjIXsw_ZgZ6BRguHi0,44
|
|
|
7
7
|
ignite/base/mixins.py,sha256=Ip1SHCQCsvNUnLJKJwX9L-hqpfcZAlTad87-PaVgCBI,991
|
|
8
8
|
ignite/contrib/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
9
9
|
ignite/contrib/engines/__init__.py,sha256=BxmXYIYEtEB1niMWITL8pgyKufCIpXR61rSzPQOhA0g,87
|
|
10
|
-
ignite/contrib/engines/common.py,sha256=
|
|
10
|
+
ignite/contrib/engines/common.py,sha256=8WyVV6pqVHKnBfcdZoBPbOUXqqwSOTUI2OKUyMqvOks,28483
|
|
11
11
|
ignite/contrib/engines/tbptt.py,sha256=FSmF5SnoZn7mWNZWRZ-ohWUCfucET78GQu3lvVRNItk,4507
|
|
12
12
|
ignite/contrib/handlers/__init__.py,sha256=rZszZnCbzncE2jqsvx9KP1iS3WZ0I-CnrV3Jh3Xl8_o,1073
|
|
13
|
-
ignite/contrib/handlers/base_logger.py,sha256=
|
|
14
|
-
ignite/contrib/handlers/clearml_logger.py,sha256=
|
|
15
|
-
ignite/contrib/handlers/lr_finder.py,sha256=
|
|
16
|
-
ignite/contrib/handlers/mlflow_logger.py,sha256=
|
|
17
|
-
ignite/contrib/handlers/neptune_logger.py,sha256=
|
|
18
|
-
ignite/contrib/handlers/param_scheduler.py,sha256=
|
|
19
|
-
ignite/contrib/handlers/polyaxon_logger.py,sha256=
|
|
20
|
-
ignite/contrib/handlers/tensorboard_logger.py,sha256=
|
|
21
|
-
ignite/contrib/handlers/time_profilers.py,sha256=
|
|
22
|
-
ignite/contrib/handlers/tqdm_logger.py,sha256=
|
|
23
|
-
ignite/contrib/handlers/visdom_logger.py,sha256=
|
|
24
|
-
ignite/contrib/handlers/wandb_logger.py,sha256=
|
|
13
|
+
ignite/contrib/handlers/base_logger.py,sha256=gHVTkVvYMRUXI793rNq8564mMyJaL_HCuoCu8xiKxFY,1158
|
|
14
|
+
ignite/contrib/handlers/clearml_logger.py,sha256=4CRD38jrif-8MeKYiEu5RbF5B-PhEkPnUGfielvt5s8,1385
|
|
15
|
+
ignite/contrib/handlers/lr_finder.py,sha256=ef9rdoPriBo8wGBfk4hfyRz6JUaQVXJmSxeNQOnznjE,678
|
|
16
|
+
ignite/contrib/handlers/mlflow_logger.py,sha256=fIfYVqydhQNVXnAzAKhhBKv1t-KWDzvZo-zs291zcy4,916
|
|
17
|
+
ignite/contrib/handlers/neptune_logger.py,sha256=gOkdMGoKZVqEnCAF-EVfHL-wk0OLXxGwcoXya2O_NIE,1295
|
|
18
|
+
ignite/contrib/handlers/param_scheduler.py,sha256=Z651F0MBJrmgFz5TQMh_BlbXhxr-mh6rs4ZMY5naqQ0,1493
|
|
19
|
+
ignite/contrib/handlers/polyaxon_logger.py,sha256=WZDKx86S_AqGiRnaEZmCP4BoB5c6G7Sd1b0MregAFJI,938
|
|
20
|
+
ignite/contrib/handlers/tensorboard_logger.py,sha256=DwjicfzeW9108k2lxmeZ21e4hcPIcddzbqUQpG9g2NU,1364
|
|
21
|
+
ignite/contrib/handlers/time_profilers.py,sha256=n5QKwor0xdrNmjfgH6q3TZFFk3GBVEdnbkGtvSqFnVc,822
|
|
22
|
+
ignite/contrib/handlers/tqdm_logger.py,sha256=bcqx7YwWCx5pjhIkKwcpU4jMwLBVfTrvxp_2rau5GZM,679
|
|
23
|
+
ignite/contrib/handlers/visdom_logger.py,sha256=uTs9kE4-e2YRrZgkZJGHpjmE19WYGC8Mj3Ke1FpUrGU,1188
|
|
24
|
+
ignite/contrib/handlers/wandb_logger.py,sha256=QUAsXlVq7b9NcXoc1-99jfoghYrxC2izAL-ZIknVNRo,905
|
|
25
25
|
ignite/contrib/metrics/__init__.py,sha256=Hh_hYZol4iAZ5nH_WEFIaiuqgw7UqkJrxj0mb-Oaj9A,414
|
|
26
|
-
ignite/contrib/metrics/average_precision.py,sha256=
|
|
27
|
-
ignite/contrib/metrics/cohen_kappa.py,sha256=
|
|
28
|
-
ignite/contrib/metrics/gpu_info.py,sha256=
|
|
29
|
-
ignite/contrib/metrics/precision_recall_curve.py,sha256=
|
|
30
|
-
ignite/contrib/metrics/roc_auc.py,sha256=
|
|
26
|
+
ignite/contrib/metrics/average_precision.py,sha256=QBMwk8qVxiLXtIKnLPjspXUKvsQE7H0Xxq3CLFciwdA,735
|
|
27
|
+
ignite/contrib/metrics/cohen_kappa.py,sha256=GoxJkBgIB21E5Nl_UqIe5oLqEHrGeQePpPcZot6-rJ8,668
|
|
28
|
+
ignite/contrib/metrics/gpu_info.py,sha256=s7KWhvoLzy7_AT5r4624ivSqHJ7Nc2D0s6XLgv7xsCo,635
|
|
29
|
+
ignite/contrib/metrics/precision_recall_curve.py,sha256=_Y6Ra6JdBP5Qng0Lx7_qy35BeLpRz77SHN-HN-B5S88,932
|
|
30
|
+
ignite/contrib/metrics/roc_auc.py,sha256=tI5yXSWCt6W4JDSnAEcuN5gyV7u6JhOJwB-DnEiXKyw,663
|
|
31
31
|
ignite/contrib/metrics/regression/__init__.py,sha256=pyDDt7-eG_xaii_2Noy3DkHh6E437Aqx8XfgRhGGiew,2581
|
|
32
32
|
ignite/contrib/metrics/regression/_base.py,sha256=z3HI4L5ezfmvHcJziTsDtNNNQqQX2QxdR80CwWmXaTs,2268
|
|
33
|
-
ignite/contrib/metrics/regression/canberra_metric.py,sha256=
|
|
34
|
-
ignite/contrib/metrics/regression/fractional_absolute_error.py,sha256=
|
|
35
|
-
ignite/contrib/metrics/regression/fractional_bias.py,sha256=
|
|
36
|
-
ignite/contrib/metrics/regression/geometric_mean_absolute_error.py,sha256=
|
|
37
|
-
ignite/contrib/metrics/regression/geometric_mean_relative_absolute_error.py,sha256=
|
|
38
|
-
ignite/contrib/metrics/regression/manhattan_distance.py,sha256=
|
|
39
|
-
ignite/contrib/metrics/regression/maximum_absolute_error.py,sha256=
|
|
40
|
-
ignite/contrib/metrics/regression/mean_absolute_relative_error.py,sha256=
|
|
41
|
-
ignite/contrib/metrics/regression/mean_error.py,sha256=
|
|
42
|
-
ignite/contrib/metrics/regression/mean_normalized_bias.py,sha256=
|
|
43
|
-
ignite/contrib/metrics/regression/median_absolute_error.py,sha256=
|
|
44
|
-
ignite/contrib/metrics/regression/median_absolute_percentage_error.py,sha256=
|
|
45
|
-
ignite/contrib/metrics/regression/median_relative_absolute_error.py,sha256=
|
|
46
|
-
ignite/contrib/metrics/regression/r2_score.py,sha256=
|
|
47
|
-
ignite/contrib/metrics/regression/wave_hedges_distance.py,sha256=
|
|
33
|
+
ignite/contrib/metrics/regression/canberra_metric.py,sha256=J9wHIM19uooMyFT95B01y3L9xH2fQDSct3nwq0HtFlo,796
|
|
34
|
+
ignite/contrib/metrics/regression/fractional_absolute_error.py,sha256=t1jqwbMtN4JUPgz3WzTQhX2kSdli172lgiAiShfqK-M,902
|
|
35
|
+
ignite/contrib/metrics/regression/fractional_bias.py,sha256=qlRPtzDEkZ_rTO0_0F-2hPxsEPvGweQ61wCzJd82psE,796
|
|
36
|
+
ignite/contrib/metrics/regression/geometric_mean_absolute_error.py,sha256=LPmjhPCp_o5cXFLVMYm6eEC0RNINovftuC53JEBtmwo,942
|
|
37
|
+
ignite/contrib/metrics/regression/geometric_mean_relative_absolute_error.py,sha256=n_dc0IAk2qnxeGyteSaEyejTeWMMcB2mDPQLR7Dj6EY,1037
|
|
38
|
+
ignite/contrib/metrics/regression/manhattan_distance.py,sha256=Cuzj8gJABN59jxLg3B13iUXzzC9nGoVX8trNDBs_N14,829
|
|
39
|
+
ignite/contrib/metrics/regression/maximum_absolute_error.py,sha256=J3JFZp5nMdmjtyGkcS1Wo4sIeHzxKhx02RK8Ro0f8Rs,869
|
|
40
|
+
ignite/contrib/metrics/regression/mean_absolute_relative_error.py,sha256=CYr02QTeKubrgsGKuvt1i83Yjxa6CWWjgEa7uHVX8HU,931
|
|
41
|
+
ignite/contrib/metrics/regression/mean_error.py,sha256=rNJuoCDYzTS7sbHG-2gap3nzsq--GYG_brHAV0gac14,741
|
|
42
|
+
ignite/contrib/metrics/regression/mean_normalized_bias.py,sha256=bO4HdG4W-WNjuSMYUU-MrVfHQKHI__3NdiuFMbd4HOs,847
|
|
43
|
+
ignite/contrib/metrics/regression/median_absolute_error.py,sha256=z3xesUZUmjtSXUDQ29r2E6x8BiDNWjec7_KLRUFCv_o,858
|
|
44
|
+
ignite/contrib/metrics/regression/median_absolute_percentage_error.py,sha256=ogc_WJFF9NWjzSogSOaAtmZAadM74jv_eDo_69QoiXo,975
|
|
45
|
+
ignite/contrib/metrics/regression/median_relative_absolute_error.py,sha256=lqzsNL-TIGPv97xlOwV2aNlZJM_vQXgl5pKnvAOAI4Y,953
|
|
46
|
+
ignite/contrib/metrics/regression/r2_score.py,sha256=1Mwo3Ft2PkYL8xq-CcbKqidJP5jeaWe1ba5sVESsTaU,719
|
|
47
|
+
ignite/contrib/metrics/regression/wave_hedges_distance.py,sha256=1uSqAUZX5aBzw0UJNla6bRYhHM3uPdVPuEzNJa4dixk,847
|
|
48
48
|
ignite/distributed/__init__.py,sha256=qC28ok9XHWJawZfQR2MqWf6ctggS4rUY9PiTJjOCNvI,181
|
|
49
|
-
ignite/distributed/auto.py,sha256=
|
|
50
|
-
ignite/distributed/launcher.py,sha256=
|
|
51
|
-
ignite/distributed/utils.py,sha256=
|
|
49
|
+
ignite/distributed/auto.py,sha256=9nk9ArklntyzTaHx-odUTtKtX7bch-qQf1HQE7Y6YQE,15443
|
|
50
|
+
ignite/distributed/launcher.py,sha256=lEzoLqfVQDDXoPJ0ELUNs7090o1I6cDBFKuq3lTLPs4,13298
|
|
51
|
+
ignite/distributed/utils.py,sha256=D97JwWgL9RKP8rTfDRf1zMmfRUeJizr7XfLZ8LAScOI,24999
|
|
52
52
|
ignite/distributed/comp_models/__init__.py,sha256=S2WHl463U7BvpcUe9-JaGtuCi3G1cMHFW5QFBQ6fv20,1357
|
|
53
|
-
ignite/distributed/comp_models/base.py,sha256=
|
|
54
|
-
ignite/distributed/comp_models/horovod.py,sha256=
|
|
55
|
-
ignite/distributed/comp_models/native.py,sha256=
|
|
56
|
-
ignite/distributed/comp_models/xla.py,sha256=
|
|
57
|
-
ignite/engine/__init__.py,sha256=
|
|
58
|
-
ignite/engine/deterministic.py,sha256=
|
|
59
|
-
ignite/engine/engine.py,sha256=
|
|
60
|
-
ignite/engine/events.py,sha256=
|
|
53
|
+
ignite/distributed/comp_models/base.py,sha256=pTIylP1h2g6NWopBEponfXC6UefqS1l2lEdzTUTNXFc,14185
|
|
54
|
+
ignite/distributed/comp_models/horovod.py,sha256=pGrcHQcwjuuMWJufBR4RyT5YR6RHT8wtk4-Bz_ir3_w,9353
|
|
55
|
+
ignite/distributed/comp_models/native.py,sha256=k2ADEkHNTRDyWfBE1JP7AvTQTjjPtW8a2pyNLkeV6AQ,28139
|
|
56
|
+
ignite/distributed/comp_models/xla.py,sha256=XhKFeo7kNu4mTe9yyzLoEzxS8cDbTFJKAYY9m_dDHIk,6367
|
|
57
|
+
ignite/engine/__init__.py,sha256=MRFj6yywKhVkov4ccPkrw4dX1O8PfqceiJkngrcFb7A,36094
|
|
58
|
+
ignite/engine/deterministic.py,sha256=uXn5VfxN_AgcEzZwBk_zdPWlSdKH2tl8Md1lcx1mvJ4,11643
|
|
59
|
+
ignite/engine/engine.py,sha256=R0cDvh_MxFWOucmVuxrjiH3_xcybNDo9c4BkHUk2CEI,60713
|
|
60
|
+
ignite/engine/events.py,sha256=FrcvnvjNZEzzohMQU6ZxL8ezrUQshUuM917Rsyxf8v0,21833
|
|
61
61
|
ignite/engine/utils.py,sha256=QG5mkdg4OipspqgpNQcJuoHTYdr2Sx5LS16kfjOHDdI,1073
|
|
62
|
-
ignite/handlers/__init__.py,sha256=
|
|
63
|
-
ignite/handlers/base_logger.py,sha256=
|
|
64
|
-
ignite/handlers/checkpoint.py,sha256=
|
|
65
|
-
ignite/handlers/clearml_logger.py,sha256=
|
|
62
|
+
ignite/handlers/__init__.py,sha256=Qq85YTtHPcii6UAfMOoCPg9RwigH96iqxOJKIlRfDqw,2728
|
|
63
|
+
ignite/handlers/base_logger.py,sha256=wPiGn9iCh5ung1GaRUf_qAlqe63h1NpUUQ0XK709p2k,13011
|
|
64
|
+
ignite/handlers/checkpoint.py,sha256=u6cFUDxAoSSBKCBprmDud2LEZGDEYHvyCoLUmtG3Xd4,46309
|
|
65
|
+
ignite/handlers/clearml_logger.py,sha256=0-57RYznIz-EgTsKtkKFPdGGFQXJIhq146H_qiE8hVc,37897
|
|
66
66
|
ignite/handlers/early_stopping.py,sha256=UA6TiKho5CbD085R-16H8w3r0BYPQcWQjhEXg8aITSw,4139
|
|
67
67
|
ignite/handlers/ema_handler.py,sha256=SmUyyWIFPZW3yMvjD_sSk5m_LfnMFl9R-uQdbXNFfY0,11854
|
|
68
|
-
ignite/handlers/fbresearch_logger.py,sha256=
|
|
69
|
-
ignite/handlers/lr_finder.py,sha256=
|
|
70
|
-
ignite/handlers/mlflow_logger.py,sha256=
|
|
71
|
-
ignite/handlers/neptune_logger.py,sha256=
|
|
72
|
-
ignite/handlers/param_scheduler.py,sha256=
|
|
73
|
-
ignite/handlers/polyaxon_logger.py,sha256=
|
|
74
|
-
ignite/handlers/state_param_scheduler.py,sha256=
|
|
68
|
+
ignite/handlers/fbresearch_logger.py,sha256=MfQeiBIXBYLEwZoDIld2oCceMeTAsz8rc5cd7fLtpJs,11133
|
|
69
|
+
ignite/handlers/lr_finder.py,sha256=EMcQR3NDPOuh2s85a5Zu5Bqt0I4pg1cACJpjSa5cO4A,22100
|
|
70
|
+
ignite/handlers/mlflow_logger.py,sha256=M5Mggrnr2wMsms8wbEaHqNtTk5L1zNs1MlPWD0ZCpDQ,13894
|
|
71
|
+
ignite/handlers/neptune_logger.py,sha256=Rv-O_i0zGZC2Ozzeetxv7rtD7iP3IeWEcbY-U28Mkzg,27348
|
|
72
|
+
ignite/handlers/param_scheduler.py,sha256=Tn4o27YBrp5JsuadHobIrsHfmvB_cR1IrV_oV1Eo7us,68373
|
|
73
|
+
ignite/handlers/polyaxon_logger.py,sha256=5b7Zxhksne8Ufg_SBTG-rlf_9CPSjkBQOJR4-ynoZnQ,12354
|
|
74
|
+
ignite/handlers/state_param_scheduler.py,sha256=B89YKZyj9DXLXQyr3amDNMslUOWNHZDis2DXIwW0q10,20841
|
|
75
75
|
ignite/handlers/stores.py,sha256=8XM_Qqsitfu0WtOOE-K2FMtv51vD90r3GgQlCzRABYc,2616
|
|
76
|
-
ignite/handlers/tensorboard_logger.py,sha256=
|
|
76
|
+
ignite/handlers/tensorboard_logger.py,sha256=q3YxXkbIFayBggI_kcHyl-upttVVjjnqFOLgyjj2cRo,27967
|
|
77
77
|
ignite/handlers/terminate_on_nan.py,sha256=RFSKd3Oqn9Me2xLCos4lSE-hnY7fYWWjE9blioeMlIs,2103
|
|
78
78
|
ignite/handlers/time_limit.py,sha256=heTuS-ReBbOUCm1NcNJGhzxI080Hanc4hOLB2Y4GeZk,1567
|
|
79
|
-
ignite/handlers/time_profilers.py,sha256=
|
|
79
|
+
ignite/handlers/time_profilers.py,sha256=8iCcBYPxv0vKFSO_ujFV0ST54a9PD9ezFLvYTIu9lFI,30482
|
|
80
80
|
ignite/handlers/timing.py,sha256=nHeBHvPwYdPRMAx-jk_8MjZit4a7rmsmIWkUrajAG-s,4705
|
|
81
|
-
ignite/handlers/tqdm_logger.py,sha256=
|
|
81
|
+
ignite/handlers/tqdm_logger.py,sha256=3kxH39vM0LCDVwIZl9HQRaWM2Pr6bYC_l9oydFJmdM4,13093
|
|
82
82
|
ignite/handlers/utils.py,sha256=X4LRqo1kqGsbmX0pEuZKYR6K4C8sZudAqxCLriiXtCg,872
|
|
83
|
-
ignite/handlers/visdom_logger.py,sha256=
|
|
84
|
-
ignite/handlers/wandb_logger.py,sha256=
|
|
83
|
+
ignite/handlers/visdom_logger.py,sha256=RY5ss3NAPad7d3xFFnqczCtuO6RgmWq9ROz-sFf6imI,21862
|
|
84
|
+
ignite/handlers/wandb_logger.py,sha256=vGok3gADQmTNkc6KkfFBreYoHAO8EneuU65xjBpT5-Q,14837
|
|
85
85
|
ignite/metrics/__init__.py,sha256=m-8F8J17r-aEwsO6Ww-8AqDRN59WFfYBwCDKwqGDSmI,3627
|
|
86
86
|
ignite/metrics/accumulation.py,sha256=xWdsm9u6JfsfODX_GUKzQc_omrdFDJ4yELBR-xXgc4s,12448
|
|
87
|
-
ignite/metrics/accuracy.py,sha256=
|
|
87
|
+
ignite/metrics/accuracy.py,sha256=W8mO4W11VzryMXKy8G7W_g4A9PH9RYpejW_tQ-T_Txw,10245
|
|
88
88
|
ignite/metrics/average_precision.py,sha256=AL4fvWCUL6zMNq_u2vQRnAdmdByB8S8x8jSE-MoFVjY,3694
|
|
89
89
|
ignite/metrics/classification_report.py,sha256=zjGlaMnRz2__op6hrZq74OusO0W_5B1AIe8KzYGFilM,5988
|
|
90
90
|
ignite/metrics/cohen_kappa.py,sha256=Qwcd4P2kN12CVCFC-kVdzn_2XV7kGzP6LlWkK209JJ8,3815
|
|
@@ -92,50 +92,50 @@ ignite/metrics/confusion_matrix.py,sha256=dZDuK3vxrrbiQh6VfyV5aWFpuTJWsfnZ30Mxt6
|
|
|
92
92
|
ignite/metrics/cosine_similarity.py,sha256=myq1iGFBBUgEhyOg_ZxkOqUQpS6FYAc3PAcnObc3Dp4,4429
|
|
93
93
|
ignite/metrics/entropy.py,sha256=gJZkR5Sl1ZdIzJ9pFkydf1186bZU8OnkOLvOtKz6Wrs,4511
|
|
94
94
|
ignite/metrics/epoch_metric.py,sha256=H4PVsDtcqk53l47Ehc3kliKT4QtyZUf600ut-8rRP8M,7050
|
|
95
|
-
ignite/metrics/fbeta.py,sha256=
|
|
95
|
+
ignite/metrics/fbeta.py,sha256=2oDsRM7XXJ8LPVrn7iwLdRy75RLJELijmshtMQO3mJM,6870
|
|
96
96
|
ignite/metrics/frequency.py,sha256=NW01rPgWnW1chVOSNAPCcPBu2CvjyXkoyFDAmjOK9A4,4037
|
|
97
97
|
ignite/metrics/gpu_info.py,sha256=kcDIifr9js_P-32LddizEggvvL6eqFLYCHYeFDR4GL0,4301
|
|
98
98
|
ignite/metrics/hsic.py,sha256=am-gor2mXY3H3u2vVNQGPJtkx_5W5JNZeukl2uYqajE,7099
|
|
99
|
-
ignite/metrics/js_divergence.py,sha256=
|
|
99
|
+
ignite/metrics/js_divergence.py,sha256=HAgj12JwL9bT33cCSAX7g4EKSfqFNNehkgwZfJuncfw,4828
|
|
100
100
|
ignite/metrics/kl_divergence.py,sha256=FdC5BT-nd8nmYqT95Xozw-hW0hZC6dtTklkpJdwWJ6o,5152
|
|
101
101
|
ignite/metrics/loss.py,sha256=mB-zYptymtcyIys0OlbVgUOAqL2WHT2dCPMFda-Klpo,4818
|
|
102
|
-
ignite/metrics/maximum_mean_discrepancy.py,sha256=
|
|
102
|
+
ignite/metrics/maximum_mean_discrepancy.py,sha256=AcrlYW6seQn3ZQKcnPIrLzYK2Ho0riGjuRsJmTNtCms,6444
|
|
103
103
|
ignite/metrics/mean_absolute_error.py,sha256=gfbzoXNdyj9GCEzSxHXn0359TNNjnKBYshSnCBQk7i4,3695
|
|
104
104
|
ignite/metrics/mean_average_precision.py,sha256=cXP9pYidQnAazGXBrhC80WoI4eK4lb3avNO5d70TLd4,19136
|
|
105
105
|
ignite/metrics/mean_pairwise_distance.py,sha256=Ys6Rns6s-USS_tyP6Pa3bWZSI7f_hP5-lZM64UGJGjo,4104
|
|
106
106
|
ignite/metrics/mean_squared_error.py,sha256=QdxXMYzxltfciMMRxxK5JhdlKXsdHe370EzwvIbwSmA,3679
|
|
107
|
-
ignite/metrics/metric.py,sha256=
|
|
107
|
+
ignite/metrics/metric.py,sha256=T3IiFIGTv_UOScd8ei4H9SraHfTJ09OM8I6hRfzr_sA,35141
|
|
108
108
|
ignite/metrics/metric_group.py,sha256=UE7WrMbpKlO9_DPqxQdlmFAWveWoT1knKwRlHDl9YIU,2544
|
|
109
109
|
ignite/metrics/metrics_lambda.py,sha256=NwKZ1J-KzFFbSw7YUaNJozdfKZLVqrkjQvFKT6ixnkg,7309
|
|
110
110
|
ignite/metrics/multilabel_confusion_matrix.py,sha256=1pjLNPGTDJWAkN_BHdBPekcish6Ra0uRUeEbdj3Dm6Y,7377
|
|
111
111
|
ignite/metrics/mutual_information.py,sha256=lu1ucVfkx01tGQfELyXzS9woCPOMVImFHfrbIXCvPe8,4692
|
|
112
112
|
ignite/metrics/precision.py,sha256=xe8_e13cPMaC1Mfw-RTlmkag6pdcHCIbi70ASI1IahY,18622
|
|
113
|
-
ignite/metrics/precision_recall_curve.py,sha256=
|
|
113
|
+
ignite/metrics/precision_recall_curve.py,sha256=rcmG2W7dDuA_8fyekHNk4ronecewolMprW4rxUB8xsc,6228
|
|
114
114
|
ignite/metrics/psnr.py,sha256=G994inwIczTWC5JfwECr0LSAtgquRGCs0283GylPR8c,5558
|
|
115
115
|
ignite/metrics/recall.py,sha256=MaywS5E8ioaHZvTPGhQaYPQV-xDmptYuv8kDRe_-BEY,9867
|
|
116
|
-
ignite/metrics/roc_auc.py,sha256=
|
|
116
|
+
ignite/metrics/roc_auc.py,sha256=U97y_JApK2vU1OmZKUJqolHQOZ1qemCSHdxcsLOO2Jg,9246
|
|
117
117
|
ignite/metrics/root_mean_squared_error.py,sha256=yiOn5AQeg-RL2wM1MAng5Q98FHJc21chXU65tITT0Wo,2903
|
|
118
118
|
ignite/metrics/running_average.py,sha256=vcC_LtsrJxEMea05TmBFzFqCK6nZd8hHavsfIlf2C6c,11333
|
|
119
|
-
ignite/metrics/ssim.py,sha256=
|
|
119
|
+
ignite/metrics/ssim.py,sha256=yU877i4wXcHA7vr5qAU9p0LmehEJdKQTFzd2L4Lwm3Q,11866
|
|
120
120
|
ignite/metrics/top_k_categorical_accuracy.py,sha256=pqsArVTSxnwt49S3lZFVqOkCXbzx-WPxfQnhtQ390RM,4706
|
|
121
121
|
ignite/metrics/clustering/__init__.py,sha256=QljKwToBY-0fHblKbj1GsmP7rE5tlzHkrtw98MYEX44,233
|
|
122
122
|
ignite/metrics/clustering/_base.py,sha256=lpQwtR54oTUrif7vQ7EE3ch8PJ91ECnzLov8z34gf5E,1526
|
|
123
|
-
ignite/metrics/clustering/calinski_harabasz_score.py,sha256=
|
|
123
|
+
ignite/metrics/clustering/calinski_harabasz_score.py,sha256=jePNE7u72jh8RYL8Sew9rDn3BX6ydYq5Z2FPst4pqB0,4663
|
|
124
124
|
ignite/metrics/clustering/davies_bouldin_score.py,sha256=VGC0jA3_gh9s4v3bm7Cw-5IV1ZUbqssYmU3s-rmnl_8,4646
|
|
125
|
-
ignite/metrics/clustering/silhouette_score.py,sha256=
|
|
125
|
+
ignite/metrics/clustering/silhouette_score.py,sha256=Q9mMcyoR9woHwjxwrAPecFPhKA9bkptoKhhe5-mBfLA,5159
|
|
126
126
|
ignite/metrics/gan/__init__.py,sha256=mBZQNI5uBd72iMyJs6GpbSBLEMm1-Lu1KtgmDAoH_4I,149
|
|
127
|
-
ignite/metrics/gan/fid.py,sha256=
|
|
127
|
+
ignite/metrics/gan/fid.py,sha256=rqITDukGd7CgQAMY8GRVPSLVrkF3MjjFR8bxE6M1kpg,10058
|
|
128
128
|
ignite/metrics/gan/inception_score.py,sha256=78_qrECWb_KsbLbo1lvDnvFJ9FsWPsbUi1aKWyvp8kg,5601
|
|
129
129
|
ignite/metrics/gan/utils.py,sha256=3nihbBrcM9MRcu6r0p3x5SgZQ5V4aag20ZppM7j_HiM,3993
|
|
130
130
|
ignite/metrics/nlp/__init__.py,sha256=TiDKRhw7lhZeoL2Cn4s306cKIuBbXl2fizN1ZepMhwI,168
|
|
131
|
-
ignite/metrics/nlp/bleu.py,sha256=
|
|
132
|
-
ignite/metrics/nlp/rouge.py,sha256=
|
|
133
|
-
ignite/metrics/nlp/utils.py,sha256=
|
|
131
|
+
ignite/metrics/nlp/bleu.py,sha256=NyQZ3CQB1xUnH_KWer5QtxkM_S_aiO3ok86UMxHaQ_w,11539
|
|
132
|
+
ignite/metrics/nlp/rouge.py,sha256=siAxJzGE3KjH23u-F3DCUPke--ls-1XMygncGhTYJp4,15313
|
|
133
|
+
ignite/metrics/nlp/utils.py,sha256=CA0MRMk9l97QockFYYhU6k0-hLhP3GwW36ONZ7TRqmc,2341
|
|
134
134
|
ignite/metrics/regression/__init__.py,sha256=I594yB38ypWi9IDi9rrdshdXeBnSRcST09tnLRjN0yk,1472
|
|
135
|
-
ignite/metrics/regression/_base.py,sha256=
|
|
135
|
+
ignite/metrics/regression/_base.py,sha256=5V6GkkaBYRuW9J3yDXucyTZp1XJ2uIG7F4w2XcBsd3w,2365
|
|
136
136
|
ignite/metrics/regression/canberra_metric.py,sha256=HqQe-0lfwMMO5e_8hBIaAPS6PyKrIEtBKfRBNJV941Q,3077
|
|
137
137
|
ignite/metrics/regression/fractional_absolute_error.py,sha256=ANQFQoadcg17ksTj_k0dY1M9E2OO8eboQCzjpRS-FNE,3259
|
|
138
|
-
ignite/metrics/regression/fractional_bias.py,sha256=
|
|
138
|
+
ignite/metrics/regression/fractional_bias.py,sha256=IafPS6cJxhDL_OdJe2SsCtOkiwE-DVt7B2RLkY_SHpM,3178
|
|
139
139
|
ignite/metrics/regression/geometric_mean_absolute_error.py,sha256=4KWSqONfKK1au4oLZDwWLJw3ENJE7rDGVNYRQYLxj1E,3195
|
|
140
140
|
ignite/metrics/regression/geometric_mean_relative_absolute_error.py,sha256=vzvnt2sSqBHFaKRu0NqwzGHKwXpamhzv4YqJ4RN8CFA,4265
|
|
141
141
|
ignite/metrics/regression/kendall_correlation.py,sha256=XVeqnhru0CQSXRz5wezbfWtdIqw9T20xGk_QOf8CztM,5280
|
|
@@ -152,9 +152,8 @@ ignite/metrics/regression/r2_score.py,sha256=mTW5ldE05UtPdBGjo_LQF96fbS5jjQbM9gL
|
|
|
152
152
|
ignite/metrics/regression/spearman_correlation.py,sha256=IzmN4WIe7C4cTUU3BOkBmaw4gW6LTYJUFVhWeblvDVA,4603
|
|
153
153
|
ignite/metrics/regression/wave_hedges_distance.py,sha256=Ji_NRUgnZ3lJgi5fyNFLRjbHO648z4dBmqVDQU9ImKA,2792
|
|
154
154
|
ignite/metrics/vision/__init__.py,sha256=lPBAEq1idc6Q17poFm1SjttE27irHF1-uNeiwrxnLrU,159
|
|
155
|
-
ignite/metrics/vision/object_detection_average_precision_recall.py,sha256=
|
|
156
|
-
pytorch_ignite-0.6.0.
|
|
157
|
-
pytorch_ignite-0.6.0.
|
|
158
|
-
pytorch_ignite-0.6.0.
|
|
159
|
-
pytorch_ignite-0.6.0.
|
|
160
|
-
pytorch_ignite-0.6.0.dev20250310.dist-info/RECORD,,
|
|
155
|
+
ignite/metrics/vision/object_detection_average_precision_recall.py,sha256=4wwiNVd658ynIpIbQlffTA-ehvyJ2EzmJ5pBSBuA8XQ,25091
|
|
156
|
+
pytorch_ignite-0.6.0.dev20260101.dist-info/METADATA,sha256=6vBV8oMvN0VS5TQGjUYKlNFa3wch_dlo73SJcji7xqw,27979
|
|
157
|
+
pytorch_ignite-0.6.0.dev20260101.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
|
|
158
|
+
pytorch_ignite-0.6.0.dev20260101.dist-info/licenses/LICENSE,sha256=SwJvaRmy1ql-k9_nL4WnER4_ODTMF9fWoP9HXkoicgw,1527
|
|
159
|
+
pytorch_ignite-0.6.0.dev20260101.dist-info/RECORD,,
|
|
@@ -1 +0,0 @@
|
|
|
1
|
-
ignite
|
|
File without changes
|