pytorch-ignite 0.6.0.dev20250310__py3-none-any.whl → 0.6.0.dev20260101__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of pytorch-ignite might be problematic. Click here for more details.

Files changed (83) hide show
  1. ignite/__init__.py +1 -1
  2. ignite/contrib/engines/common.py +1 -0
  3. ignite/contrib/handlers/base_logger.py +1 -1
  4. ignite/contrib/handlers/clearml_logger.py +1 -1
  5. ignite/contrib/handlers/lr_finder.py +1 -1
  6. ignite/contrib/handlers/mlflow_logger.py +1 -1
  7. ignite/contrib/handlers/neptune_logger.py +1 -1
  8. ignite/contrib/handlers/param_scheduler.py +1 -1
  9. ignite/contrib/handlers/polyaxon_logger.py +1 -1
  10. ignite/contrib/handlers/tensorboard_logger.py +1 -1
  11. ignite/contrib/handlers/time_profilers.py +1 -1
  12. ignite/contrib/handlers/tqdm_logger.py +1 -1
  13. ignite/contrib/handlers/visdom_logger.py +1 -1
  14. ignite/contrib/handlers/wandb_logger.py +1 -1
  15. ignite/contrib/metrics/average_precision.py +1 -1
  16. ignite/contrib/metrics/cohen_kappa.py +1 -1
  17. ignite/contrib/metrics/gpu_info.py +1 -1
  18. ignite/contrib/metrics/precision_recall_curve.py +1 -1
  19. ignite/contrib/metrics/regression/canberra_metric.py +2 -3
  20. ignite/contrib/metrics/regression/fractional_absolute_error.py +2 -3
  21. ignite/contrib/metrics/regression/fractional_bias.py +2 -3
  22. ignite/contrib/metrics/regression/geometric_mean_absolute_error.py +2 -3
  23. ignite/contrib/metrics/regression/geometric_mean_relative_absolute_error.py +2 -3
  24. ignite/contrib/metrics/regression/manhattan_distance.py +2 -3
  25. ignite/contrib/metrics/regression/maximum_absolute_error.py +2 -3
  26. ignite/contrib/metrics/regression/mean_absolute_relative_error.py +2 -3
  27. ignite/contrib/metrics/regression/mean_error.py +2 -3
  28. ignite/contrib/metrics/regression/mean_normalized_bias.py +2 -3
  29. ignite/contrib/metrics/regression/median_absolute_error.py +2 -3
  30. ignite/contrib/metrics/regression/median_absolute_percentage_error.py +2 -3
  31. ignite/contrib/metrics/regression/median_relative_absolute_error.py +2 -3
  32. ignite/contrib/metrics/regression/r2_score.py +2 -3
  33. ignite/contrib/metrics/regression/wave_hedges_distance.py +2 -3
  34. ignite/contrib/metrics/roc_auc.py +1 -1
  35. ignite/distributed/auto.py +1 -0
  36. ignite/distributed/comp_models/base.py +7 -0
  37. ignite/distributed/comp_models/horovod.py +35 -5
  38. ignite/distributed/comp_models/native.py +8 -4
  39. ignite/distributed/comp_models/xla.py +5 -0
  40. ignite/distributed/launcher.py +4 -8
  41. ignite/distributed/utils.py +12 -4
  42. ignite/engine/__init__.py +9 -9
  43. ignite/engine/deterministic.py +1 -1
  44. ignite/engine/engine.py +38 -14
  45. ignite/engine/events.py +2 -1
  46. ignite/handlers/__init__.py +2 -0
  47. ignite/handlers/base_logger.py +47 -12
  48. ignite/handlers/checkpoint.py +46 -5
  49. ignite/handlers/clearml_logger.py +16 -4
  50. ignite/handlers/fbresearch_logger.py +2 -2
  51. ignite/handlers/lr_finder.py +9 -9
  52. ignite/handlers/mlflow_logger.py +43 -0
  53. ignite/handlers/neptune_logger.py +8 -0
  54. ignite/handlers/param_scheduler.py +7 -3
  55. ignite/handlers/polyaxon_logger.py +7 -0
  56. ignite/handlers/state_param_scheduler.py +8 -2
  57. ignite/handlers/tensorboard_logger.py +43 -0
  58. ignite/handlers/time_profilers.py +6 -3
  59. ignite/handlers/tqdm_logger.py +9 -5
  60. ignite/handlers/visdom_logger.py +10 -3
  61. ignite/handlers/wandb_logger.py +16 -9
  62. ignite/metrics/accuracy.py +2 -0
  63. ignite/metrics/clustering/calinski_harabasz_score.py +1 -1
  64. ignite/metrics/clustering/silhouette_score.py +1 -1
  65. ignite/metrics/fbeta.py +17 -8
  66. ignite/metrics/gan/fid.py +3 -3
  67. ignite/metrics/js_divergence.py +1 -1
  68. ignite/metrics/maximum_mean_discrepancy.py +1 -1
  69. ignite/metrics/metric.py +3 -0
  70. ignite/metrics/nlp/bleu.py +8 -6
  71. ignite/metrics/nlp/rouge.py +9 -6
  72. ignite/metrics/nlp/utils.py +1 -1
  73. ignite/metrics/precision_recall_curve.py +5 -5
  74. ignite/metrics/regression/_base.py +4 -0
  75. ignite/metrics/regression/fractional_bias.py +1 -1
  76. ignite/metrics/roc_auc.py +4 -3
  77. ignite/metrics/ssim.py +63 -21
  78. ignite/metrics/vision/object_detection_average_precision_recall.py +3 -0
  79. {pytorch_ignite-0.6.0.dev20250310.dist-info → pytorch_ignite-0.6.0.dev20260101.dist-info}/METADATA +11 -17
  80. {pytorch_ignite-0.6.0.dev20250310.dist-info → pytorch_ignite-0.6.0.dev20260101.dist-info}/RECORD +82 -83
  81. {pytorch_ignite-0.6.0.dev20250310.dist-info → pytorch_ignite-0.6.0.dev20260101.dist-info}/WHEEL +1 -2
  82. pytorch_ignite-0.6.0.dev20250310.dist-info/top_level.txt +0 -1
  83. {pytorch_ignite-0.6.0.dev20250310.dist-info → pytorch_ignite-0.6.0.dev20260101.dist-info/licenses}/LICENSE +0 -0
@@ -30,6 +30,10 @@ def _check_output_types(output: Tuple[torch.Tensor, torch.Tensor]) -> None:
30
30
 
31
31
 
32
32
  def _torch_median(output: torch.Tensor) -> float:
33
+ # torch.kthvalue used later is not supported on MPS
34
+ if output.device.type == "mps":
35
+ output = output.cpu()
36
+
33
37
  output = output.view(-1)
34
38
  len_ = len(output)
35
39
 
@@ -64,7 +64,7 @@ class FractionalBias(_BaseRegression):
64
64
 
65
65
  @reinit__is_reduced
66
66
  def reset(self) -> None:
67
- self._sum_of_errors = torch.tensor(0.0, dtype=torch.double, device=self._device)
67
+ self._sum_of_errors = torch.tensor(0.0, dtype=self._double_dtype, device=self._device)
68
68
  self._num_examples = 0
69
69
 
70
70
  def _update(self, output: Tuple[torch.Tensor, torch.Tensor]) -> None:
ignite/metrics/roc_auc.py CHANGED
@@ -198,9 +198,9 @@ class RocCurve(EpochMetric):
198
198
  if idist.get_rank() == 0:
199
199
  # Run compute_fn on zero rank only
200
200
  fpr, tpr, thresholds = cast(Tuple, self.compute_fn(_prediction_tensor, _target_tensor))
201
- fpr = torch.tensor(fpr, device=_prediction_tensor.device)
202
- tpr = torch.tensor(tpr, device=_prediction_tensor.device)
203
- thresholds = torch.tensor(thresholds, device=_prediction_tensor.device)
201
+ fpr = torch.tensor(fpr, dtype=self._double_dtype, device=_prediction_tensor.device)
202
+ tpr = torch.tensor(tpr, dtype=self._double_dtype, device=_prediction_tensor.device)
203
+ thresholds = torch.tensor(thresholds, dtype=self._double_dtype, device=_prediction_tensor.device)
204
204
  else:
205
205
  fpr, tpr, thresholds = None, None, None
206
206
 
@@ -210,4 +210,5 @@ class RocCurve(EpochMetric):
210
210
  tpr = idist.broadcast(tpr, src=0, safe_mode=True)
211
211
  thresholds = idist.broadcast(thresholds, src=0, safe_mode=True)
212
212
 
213
+ # pyrefly: ignore [bad-return]
213
214
  return fpr, tpr, thresholds
ignite/metrics/ssim.py CHANGED
@@ -21,9 +21,9 @@ class SSIM(Metric):
21
21
 
22
22
  Args:
23
23
  data_range: Range of the image. Typically, ``1.0`` or ``255``.
24
- kernel_size: Size of the kernel. Default: (11, 11)
24
+ kernel_size: Size of the kernel. Default: 11
25
25
  sigma: Standard deviation of the gaussian kernel.
26
- Argument is used if ``gaussian=True``. Default: (1.5, 1.5)
26
+ Argument is used if ``gaussian=True``. Default: 1.5
27
27
  k1: Parameter of SSIM. Default: 0.01
28
28
  k2: Parameter of SSIM. Default: 0.03
29
29
  gaussian: ``True`` to use gaussian kernel, ``False`` to use uniform kernel
@@ -36,6 +36,7 @@ class SSIM(Metric):
36
36
  skip_unrolling: specifies whether output should be unrolled before being fed to update method. Should be
37
37
  true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)``
38
38
  Alternatively, ``output_transform`` can be used to handle this.
39
+ ndims: Number of dimensions of the input image: 2d or 3d. Accepted values: 2, 3. Default: 2
39
40
 
40
41
  Examples:
41
42
  To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine.
@@ -68,6 +69,8 @@ class SSIM(Metric):
68
69
 
69
70
  .. versionchanged:: 0.5.1
70
71
  ``skip_unrolling`` argument is added.
72
+ .. versionchanged:: 0.5.2
73
+ ``ndims`` argument is added.
71
74
  """
72
75
 
73
76
  _state_dict_all_req_keys = ("_sum_of_ssim", "_num_examples", "_kernel")
@@ -75,28 +78,36 @@ class SSIM(Metric):
75
78
  def __init__(
76
79
  self,
77
80
  data_range: Union[int, float],
78
- kernel_size: Union[int, Sequence[int]] = (11, 11),
79
- sigma: Union[float, Sequence[float]] = (1.5, 1.5),
81
+ kernel_size: Union[int, Sequence[int]] = 11,
82
+ sigma: Union[float, Sequence[float]] = 1.5,
80
83
  k1: float = 0.01,
81
84
  k2: float = 0.03,
82
85
  gaussian: bool = True,
83
86
  output_transform: Callable = lambda x: x,
84
87
  device: Union[str, torch.device] = torch.device("cpu"),
85
88
  skip_unrolling: bool = False,
89
+ ndims: int = 2,
86
90
  ):
91
+ if ndims not in (2, 3):
92
+ raise ValueError(f"Expected ndims to be 2 or 3. Got {ndims}.")
93
+
87
94
  if isinstance(kernel_size, int):
88
- self.kernel_size: Sequence[int] = [kernel_size, kernel_size]
95
+ self.kernel_size: Sequence[int] = [kernel_size for _ in range(ndims)]
89
96
  elif isinstance(kernel_size, Sequence):
97
+ if len(kernel_size) != ndims:
98
+ raise ValueError(f"Expected kernel_size to have length of {ndims}. Got {len(kernel_size)}.")
90
99
  self.kernel_size = kernel_size
91
100
  else:
92
- raise ValueError("Argument kernel_size should be either int or a sequence of int.")
101
+ raise ValueError(f"Argument kernel_size should be either int or a sequence of int of length {ndims}.")
93
102
 
94
103
  if isinstance(sigma, float):
95
- self.sigma: Sequence[float] = [sigma, sigma]
104
+ self.sigma: Sequence[float] = [sigma for _ in range(ndims)]
96
105
  elif isinstance(sigma, Sequence):
106
+ if len(sigma) != ndims:
107
+ raise ValueError(f"Expected sigma to have length of {ndims}. Got {len(sigma)}.")
97
108
  self.sigma = sigma
98
109
  else:
99
- raise ValueError("Argument sigma should be either float or a sequence of float.")
110
+ raise ValueError(f"Argument sigma should be either float or a sequence of float of length {ndims}.")
100
111
 
101
112
  if any(x % 2 == 0 or x <= 0 for x in self.kernel_size):
102
113
  raise ValueError(f"Expected kernel_size to have odd positive number. Got {kernel_size}.")
@@ -111,7 +122,13 @@ class SSIM(Metric):
111
122
  self.c2 = (k2 * data_range) ** 2
112
123
  self.pad_h = (self.kernel_size[0] - 1) // 2
113
124
  self.pad_w = (self.kernel_size[1] - 1) // 2
114
- self._kernel_2d = self._gaussian_or_uniform_kernel(kernel_size=self.kernel_size, sigma=self.sigma)
125
+ self.pad_d = None
126
+ self.ndims = ndims
127
+ if self.ndims == 3:
128
+ self.pad_d = (self.kernel_size[2] - 1) // 2
129
+ self._kernel_nd = self._gaussian_or_uniform_kernel(
130
+ kernel_size=self.kernel_size, sigma=self.sigma, ndims=self.ndims
131
+ )
115
132
  self._kernel: Optional[torch.Tensor] = None
116
133
 
117
134
  @reinit__is_reduced
@@ -128,23 +145,38 @@ class SSIM(Metric):
128
145
  min_, max_ = -2.5, 2.5
129
146
  kernel[start_uniform_index:end_uniform_index] = 1 / (max_ - min_)
130
147
 
131
- return kernel.unsqueeze(dim=0) # (1, kernel_size)
148
+ return kernel # (kernel_size)
132
149
 
133
150
  def _gaussian(self, kernel_size: int, sigma: float) -> torch.Tensor:
134
151
  ksize_half = (kernel_size - 1) * 0.5
135
152
  kernel = torch.linspace(-ksize_half, ksize_half, steps=kernel_size, device=self._device)
136
153
  gauss = torch.exp(-0.5 * (kernel / sigma).pow(2))
137
- return (gauss / gauss.sum()).unsqueeze(dim=0) # (1, kernel_size)
154
+ return gauss / gauss.sum() # (kernel_size)
138
155
 
139
- def _gaussian_or_uniform_kernel(self, kernel_size: Sequence[int], sigma: Sequence[float]) -> torch.Tensor:
156
+ def _gaussian_or_uniform_kernel(
157
+ self, kernel_size: Sequence[int], sigma: Sequence[float], ndims: int
158
+ ) -> torch.Tensor:
140
159
  if self.gaussian:
141
160
  kernel_x = self._gaussian(kernel_size[0], sigma[0])
142
161
  kernel_y = self._gaussian(kernel_size[1], sigma[1])
162
+ if ndims == 3:
163
+ kernel_z = self._gaussian(kernel_size[2], sigma[2])
164
+ else:
165
+ kernel_z = None
143
166
  else:
144
167
  kernel_x = self._uniform(kernel_size[0])
145
168
  kernel_y = self._uniform(kernel_size[1])
146
-
147
- return torch.matmul(kernel_x.t(), kernel_y) # (kernel_size, 1) * (1, kernel_size)
169
+ if ndims == 3:
170
+ kernel_z = self._uniform(kernel_size[2])
171
+ else:
172
+ kernel_z = None
173
+
174
+ result = (
175
+ torch.einsum("i,j->ij", kernel_x, kernel_y)
176
+ if ndims == 2
177
+ else torch.einsum("i,j,k->ijk", kernel_x, kernel_y, kernel_z)
178
+ )
179
+ return result
148
180
 
149
181
  def _check_type_and_shape(self, y_pred: torch.Tensor, y: torch.Tensor) -> None:
150
182
  if y_pred.dtype != y.dtype:
@@ -157,9 +189,11 @@ class SSIM(Metric):
157
189
  f"Expected y_pred and y to have the same shape. Got y_pred: {y_pred.shape} and y: {y.shape}."
158
190
  )
159
191
 
160
- if len(y_pred.shape) != 4 or len(y.shape) != 4:
192
+ # 2 dimensions are reserved for batch and channel
193
+ if len(y_pred.shape) - 2 != self.ndims or len(y.shape) - 2 != self.ndims:
161
194
  raise ValueError(
162
- f"Expected y_pred and y to have BxCxHxW shape. Got y_pred: {y_pred.shape} and y: {y.shape}."
195
+ "Expected y_pred and y to have BxCxHxW or BxCxDxHxW shape. "
196
+ f"Got y_pred: {y_pred.shape} and y: {y.shape}."
163
197
  )
164
198
 
165
199
  @reinit__is_reduced
@@ -176,7 +210,7 @@ class SSIM(Metric):
176
210
 
177
211
  nb_channel = y_pred.size(1)
178
212
  if self._kernel is None or self._kernel.shape[0] != nb_channel:
179
- self._kernel = self._kernel_2d.expand(nb_channel, 1, -1, -1)
213
+ self._kernel = self._kernel_nd.expand(nb_channel, 1, *[-1 for _ in range(self.ndims)])
180
214
 
181
215
  if y_pred.device != self._kernel.device:
182
216
  if self._kernel.device == torch.device("cpu"):
@@ -191,14 +225,19 @@ class SSIM(Metric):
191
225
  y_pred = y_pred.to(device=self._kernel.device)
192
226
  y = y.to(device=self._kernel.device)
193
227
 
194
- y_pred = F.pad(y_pred, [self.pad_w, self.pad_w, self.pad_h, self.pad_h], mode="reflect")
195
- y = F.pad(y, [self.pad_w, self.pad_w, self.pad_h, self.pad_h], mode="reflect")
228
+ padding_shape = [self.pad_w, self.pad_w, self.pad_h, self.pad_h]
229
+ if self.ndims == 3 and self.pad_d is not None:
230
+ padding_shape.extend([self.pad_d, self.pad_d])
231
+
232
+ y_pred = F.pad(y_pred, padding_shape, mode="reflect")
233
+ y = F.pad(y, padding_shape, mode="reflect")
196
234
 
197
235
  if y_pred.dtype != self._kernel.dtype:
198
236
  self._kernel = self._kernel.to(dtype=y_pred.dtype)
199
237
 
200
238
  input_list = [y_pred, y, y_pred * y_pred, y * y, y_pred * y]
201
- outputs = F.conv2d(torch.cat(input_list), self._kernel, groups=nb_channel)
239
+ conv_op = F.conv3d if self.ndims == 3 else F.conv2d
240
+ outputs = conv_op(torch.cat(input_list), self._kernel, groups=nb_channel)
202
241
  batch_size = y_pred.size(0)
203
242
  output_list = [outputs[x * batch_size : (x + 1) * batch_size] for x in range(len(input_list))]
204
243
 
@@ -224,7 +263,10 @@ class SSIM(Metric):
224
263
  if ssim_idx.device.type == "mps" and self._double_dtype == torch.float64:
225
264
  double_dtype = torch.float32
226
265
 
227
- self._sum_of_ssim += torch.mean(ssim_idx, (1, 2, 3), dtype=double_dtype).sum().to(device=self._device)
266
+ # mean from all dimensions except batch
267
+ self._sum_of_ssim += (
268
+ torch.mean(ssim_idx, list(range(1, 2 + self.ndims)), dtype=double_dtype).sum().to(device=self._device)
269
+ )
228
270
 
229
271
  self._num_examples += y.shape[0]
230
272
 
@@ -160,6 +160,9 @@ class ObjectDetectionAvgPrecisionRecall(Metric, _BaseAveragePrecision):
160
160
  elif self._area_range == "large":
161
161
  min_area = 9216
162
162
  max_area = 1e10
163
+ else:
164
+ min_area = 0
165
+ max_area = 1e10
163
166
  return torch.logical_and(areas >= min_area, areas <= max_area)
164
167
 
165
168
  def _check_matching_input(
@@ -1,23 +1,17 @@
1
- Metadata-Version: 2.2
1
+ Metadata-Version: 2.4
2
2
  Name: pytorch-ignite
3
- Version: 0.6.0.dev20250310
3
+ Version: 0.6.0.dev20260101
4
4
  Summary: A lightweight library to help with training neural networks in PyTorch.
5
- Home-page: https://github.com/pytorch/ignite
6
- Author: PyTorch-Ignite Team
7
- Author-email: contact@pytorch-ignite.ai
8
- License: BSD
9
- Description-Content-Type: text/markdown
5
+ Project-URL: Homepage, https://pytorch-ignite.ai
6
+ Project-URL: Repository, https://github.com/pytorch/ignite
7
+ Author-email: PyTorch-Ignite Team <contact@pytorch-ignite.ai>
8
+ License-Expression: BSD-3-Clause
10
9
  License-File: LICENSE
11
- Requires-Dist: torch<3,>=1.3
10
+ Classifier: Programming Language :: Python :: 3
11
+ Requires-Python: <=3.13,>=3.9
12
12
  Requires-Dist: packaging
13
- Dynamic: author
14
- Dynamic: author-email
15
- Dynamic: description
16
- Dynamic: description-content-type
17
- Dynamic: home-page
18
- Dynamic: license
19
- Dynamic: requires-dist
20
- Dynamic: summary
13
+ Requires-Dist: torch<3,>=1.10
14
+ Description-Content-Type: text/markdown
21
15
 
22
16
  <div align="center">
23
17
 
@@ -418,7 +412,7 @@ Few pointers to get you started:
418
412
  - [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pytorch/ignite/blob/master/examples/notebooks/FastaiLRFinder_MNIST.ipynb) [Basic example of LR finder on
419
413
  MNIST](https://github.com/pytorch/ignite/blob/master/examples/notebooks/FastaiLRFinder_MNIST.ipynb)
420
414
  - [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pytorch/ignite/blob/master/examples/notebooks/Cifar100_bench_amp.ipynb) [Benchmark mixed precision training on Cifar100:
421
- torch.cuda.amp vs nvidia/apex](https://github.com/pytorch/ignite/blob/master/examples/notebooks/Cifar100_bench_amp.ipynb)
415
+ torch.amp vs nvidia/apex](https://github.com/pytorch/ignite/blob/master/examples/notebooks/Cifar100_bench_amp.ipynb)
422
416
  - [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pytorch/ignite/blob/master/examples/notebooks/MNIST_on_TPU.ipynb) [MNIST training on a single
423
417
  TPU](https://github.com/pytorch/ignite/blob/master/examples/notebooks/MNIST_on_TPU.ipynb)
424
418
  - [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1E9zJrptnLJ_PKhmaP5Vhb6DTVRvyrKHx) [CIFAR10 Training on multiple TPUs](https://github.com/pytorch/ignite/tree/master/examples/cifar10)
@@ -1,4 +1,4 @@
1
- ignite/__init__.py,sha256=oCYDJyr3ErnJm-we1iloQ06Fjulw8UyvTf3yNtXcAk4,194
1
+ ignite/__init__.py,sha256=voD5WqO84J8muX3Xb2J5pA6NCtmtdNPL3YjnJyt58iI,194
2
2
  ignite/_utils.py,sha256=XDPpUDJ8ykLXWMV2AYTqGSj8XCfApsyzsQ3Vij_OB4M,182
3
3
  ignite/exceptions.py,sha256=5ZWCVLPC9rgoW8t84D-VeEleqz5O7XpAGPpCdU8rKd0,150
4
4
  ignite/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -7,84 +7,84 @@ ignite/base/__init__.py,sha256=y2g9egjuVCYRtaj-4ge081y-8cjIXsw_ZgZ6BRguHi0,44
7
7
  ignite/base/mixins.py,sha256=Ip1SHCQCsvNUnLJKJwX9L-hqpfcZAlTad87-PaVgCBI,991
8
8
  ignite/contrib/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
9
9
  ignite/contrib/engines/__init__.py,sha256=BxmXYIYEtEB1niMWITL8pgyKufCIpXR61rSzPQOhA0g,87
10
- ignite/contrib/engines/common.py,sha256=ChAzJhgqQi_2SLcZF8m9nI9VpefZ3dUZAlJj_PiRwwQ,28433
10
+ ignite/contrib/engines/common.py,sha256=8WyVV6pqVHKnBfcdZoBPbOUXqqwSOTUI2OKUyMqvOks,28483
11
11
  ignite/contrib/engines/tbptt.py,sha256=FSmF5SnoZn7mWNZWRZ-ohWUCfucET78GQu3lvVRNItk,4507
12
12
  ignite/contrib/handlers/__init__.py,sha256=rZszZnCbzncE2jqsvx9KP1iS3WZ0I-CnrV3Jh3Xl8_o,1073
13
- ignite/contrib/handlers/base_logger.py,sha256=uv1VRoSyuoZ2c6mxqJT9jaiPbSNtOp78D685Dog7kVQ,1182
14
- ignite/contrib/handlers/clearml_logger.py,sha256=_vG45njqIH7T2P9X-mxsGWrWLbg7S5HNJuTvcZ_IqkY,1409
15
- ignite/contrib/handlers/lr_finder.py,sha256=A62cXyRXClTHRXUaaUUK7v74Yryudh6o4Af4m9NTF9A,702
16
- ignite/contrib/handlers/mlflow_logger.py,sha256=L9Vl0fgBLLvZKuBjr9xbKE323gxUYPBUshTry9XkWbk,940
17
- ignite/contrib/handlers/neptune_logger.py,sha256=TvKCa2dpfwKNRn0l0C2her6ti8qQ9JrkexGjePgxsLQ,1319
18
- ignite/contrib/handlers/param_scheduler.py,sha256=UbpdeCYHQ59f3M43iBfiVryiTjFGUf1SpyCXgk-AjDM,1517
19
- ignite/contrib/handlers/polyaxon_logger.py,sha256=vZBStQamhlDoRITEby8nkgcvsstv-igcO7EJO3QvEp4,962
20
- ignite/contrib/handlers/tensorboard_logger.py,sha256=l7lK8rumZUz6nqe9M4RRF5HqTUv8341ckaCWYE_4elE,1388
21
- ignite/contrib/handlers/time_profilers.py,sha256=OKl7gm09O5AiQHf6acEjF1g6zLdi7ePpMR-2FCe1Dlg,846
22
- ignite/contrib/handlers/tqdm_logger.py,sha256=WtEPBGYkX4AmH4fzjHP0dTsPN6qwzmbgaD1iotvDzMc,703
23
- ignite/contrib/handlers/visdom_logger.py,sha256=5Cn_UiG5b7ZMZ5E7JVg5WE4pEoztifrZHHEcXx-pmmU,1212
24
- ignite/contrib/handlers/wandb_logger.py,sha256=dF872Eymw9w7Km72wJkCMn5mEpkfwFeyFWCVenx_5U8,929
13
+ ignite/contrib/handlers/base_logger.py,sha256=gHVTkVvYMRUXI793rNq8564mMyJaL_HCuoCu8xiKxFY,1158
14
+ ignite/contrib/handlers/clearml_logger.py,sha256=4CRD38jrif-8MeKYiEu5RbF5B-PhEkPnUGfielvt5s8,1385
15
+ ignite/contrib/handlers/lr_finder.py,sha256=ef9rdoPriBo8wGBfk4hfyRz6JUaQVXJmSxeNQOnznjE,678
16
+ ignite/contrib/handlers/mlflow_logger.py,sha256=fIfYVqydhQNVXnAzAKhhBKv1t-KWDzvZo-zs291zcy4,916
17
+ ignite/contrib/handlers/neptune_logger.py,sha256=gOkdMGoKZVqEnCAF-EVfHL-wk0OLXxGwcoXya2O_NIE,1295
18
+ ignite/contrib/handlers/param_scheduler.py,sha256=Z651F0MBJrmgFz5TQMh_BlbXhxr-mh6rs4ZMY5naqQ0,1493
19
+ ignite/contrib/handlers/polyaxon_logger.py,sha256=WZDKx86S_AqGiRnaEZmCP4BoB5c6G7Sd1b0MregAFJI,938
20
+ ignite/contrib/handlers/tensorboard_logger.py,sha256=DwjicfzeW9108k2lxmeZ21e4hcPIcddzbqUQpG9g2NU,1364
21
+ ignite/contrib/handlers/time_profilers.py,sha256=n5QKwor0xdrNmjfgH6q3TZFFk3GBVEdnbkGtvSqFnVc,822
22
+ ignite/contrib/handlers/tqdm_logger.py,sha256=bcqx7YwWCx5pjhIkKwcpU4jMwLBVfTrvxp_2rau5GZM,679
23
+ ignite/contrib/handlers/visdom_logger.py,sha256=uTs9kE4-e2YRrZgkZJGHpjmE19WYGC8Mj3Ke1FpUrGU,1188
24
+ ignite/contrib/handlers/wandb_logger.py,sha256=QUAsXlVq7b9NcXoc1-99jfoghYrxC2izAL-ZIknVNRo,905
25
25
  ignite/contrib/metrics/__init__.py,sha256=Hh_hYZol4iAZ5nH_WEFIaiuqgw7UqkJrxj0mb-Oaj9A,414
26
- ignite/contrib/metrics/average_precision.py,sha256=5bY5N6YRX88wV7Q69Q2B84LyFRlIaJ8Vo_J-wB6PGds,759
27
- ignite/contrib/metrics/cohen_kappa.py,sha256=fakVVFraPHNVlMRlSPtQQDizH18Bwnw4xFe_qNCvAZ8,692
28
- ignite/contrib/metrics/gpu_info.py,sha256=PffJkgNXo8qD6V9msh9XcZvGKeX2s6BGDeLCH0luRtk,659
29
- ignite/contrib/metrics/precision_recall_curve.py,sha256=qfNM-W2WbaBMhjOd8Y3ENuwkxvEGGAlp8SIZqfw3jOE,956
30
- ignite/contrib/metrics/roc_auc.py,sha256=KxQlipus1_nht3N0Q0wW2iWNwV3urQZzupGKHcSCeiI,687
26
+ ignite/contrib/metrics/average_precision.py,sha256=QBMwk8qVxiLXtIKnLPjspXUKvsQE7H0Xxq3CLFciwdA,735
27
+ ignite/contrib/metrics/cohen_kappa.py,sha256=GoxJkBgIB21E5Nl_UqIe5oLqEHrGeQePpPcZot6-rJ8,668
28
+ ignite/contrib/metrics/gpu_info.py,sha256=s7KWhvoLzy7_AT5r4624ivSqHJ7Nc2D0s6XLgv7xsCo,635
29
+ ignite/contrib/metrics/precision_recall_curve.py,sha256=_Y6Ra6JdBP5Qng0Lx7_qy35BeLpRz77SHN-HN-B5S88,932
30
+ ignite/contrib/metrics/roc_auc.py,sha256=tI5yXSWCt6W4JDSnAEcuN5gyV7u6JhOJwB-DnEiXKyw,663
31
31
  ignite/contrib/metrics/regression/__init__.py,sha256=pyDDt7-eG_xaii_2Noy3DkHh6E437Aqx8XfgRhGGiew,2581
32
32
  ignite/contrib/metrics/regression/_base.py,sha256=z3HI4L5ezfmvHcJziTsDtNNNQqQX2QxdR80CwWmXaTs,2268
33
- ignite/contrib/metrics/regression/canberra_metric.py,sha256=3tantTRqmW15jQZ6UJTS0iVY-7cBpBUCoozUmfVEWMk,818
34
- ignite/contrib/metrics/regression/fractional_absolute_error.py,sha256=LIn9X-UhAW7kTPRMby5IvT9Z9Gg2MhfWgqYJiwfoEDg,924
35
- ignite/contrib/metrics/regression/fractional_bias.py,sha256=_qkvHWZqAaPCdRYqwU3HvzkIUi4qalSq5cIoh1ejbtY,818
36
- ignite/contrib/metrics/regression/geometric_mean_absolute_error.py,sha256=F4ixbdhQsraztRMVIjQfhQ3VtzbS9IwYEWDVmLD67A8,964
37
- ignite/contrib/metrics/regression/geometric_mean_relative_absolute_error.py,sha256=XVLou8nz3qBfmoXH8EZ08lIc_8T1J0zwksZS2crLFtk,1059
38
- ignite/contrib/metrics/regression/manhattan_distance.py,sha256=dT7U8iaX05tfN95nRaLIFehb8Gy8EOgLgVL_vepzSns,851
39
- ignite/contrib/metrics/regression/maximum_absolute_error.py,sha256=hYCR-R80BqFa39-diInnGSqAlRU1mqZe4hIK5_X80tA,891
40
- ignite/contrib/metrics/regression/mean_absolute_relative_error.py,sha256=gD_Y7bq_V7l2uYZ0dAWsRC6G5q9ccRU_kozlTfOT9ho,953
41
- ignite/contrib/metrics/regression/mean_error.py,sha256=53dmrYXuF2wEB5wh6-XjFJaPVxplhmFvGChPMHZ2XUo,763
42
- ignite/contrib/metrics/regression/mean_normalized_bias.py,sha256=fzHfqErIvxhzyT5Ig4hWYX1jCFLBTVxK60XTBPoDZAc,869
43
- ignite/contrib/metrics/regression/median_absolute_error.py,sha256=4GiWvDqhq5NlZju8ZtdfRFrT9UrtAxe-R-M80CCXqak,880
44
- ignite/contrib/metrics/regression/median_absolute_percentage_error.py,sha256=zODfHYqn8VDwUut3H24nuP-YHQG4iShrHi17g7xTJKY,997
45
- ignite/contrib/metrics/regression/median_relative_absolute_error.py,sha256=5G2QIoE_LsyQ54lH9dDAjdVuJ7qAKfBYKAKe0ks87yM,975
46
- ignite/contrib/metrics/regression/r2_score.py,sha256=g4dTNC6idrgnTZSs2o_xxp5_JuP1JVgyZvNtCpjtRVs,741
47
- ignite/contrib/metrics/regression/wave_hedges_distance.py,sha256=z1eGISFBmo4BjXrGpAndV7Vk7xg7l7jKnwZVGDlLrVI,869
33
+ ignite/contrib/metrics/regression/canberra_metric.py,sha256=J9wHIM19uooMyFT95B01y3L9xH2fQDSct3nwq0HtFlo,796
34
+ ignite/contrib/metrics/regression/fractional_absolute_error.py,sha256=t1jqwbMtN4JUPgz3WzTQhX2kSdli172lgiAiShfqK-M,902
35
+ ignite/contrib/metrics/regression/fractional_bias.py,sha256=qlRPtzDEkZ_rTO0_0F-2hPxsEPvGweQ61wCzJd82psE,796
36
+ ignite/contrib/metrics/regression/geometric_mean_absolute_error.py,sha256=LPmjhPCp_o5cXFLVMYm6eEC0RNINovftuC53JEBtmwo,942
37
+ ignite/contrib/metrics/regression/geometric_mean_relative_absolute_error.py,sha256=n_dc0IAk2qnxeGyteSaEyejTeWMMcB2mDPQLR7Dj6EY,1037
38
+ ignite/contrib/metrics/regression/manhattan_distance.py,sha256=Cuzj8gJABN59jxLg3B13iUXzzC9nGoVX8trNDBs_N14,829
39
+ ignite/contrib/metrics/regression/maximum_absolute_error.py,sha256=J3JFZp5nMdmjtyGkcS1Wo4sIeHzxKhx02RK8Ro0f8Rs,869
40
+ ignite/contrib/metrics/regression/mean_absolute_relative_error.py,sha256=CYr02QTeKubrgsGKuvt1i83Yjxa6CWWjgEa7uHVX8HU,931
41
+ ignite/contrib/metrics/regression/mean_error.py,sha256=rNJuoCDYzTS7sbHG-2gap3nzsq--GYG_brHAV0gac14,741
42
+ ignite/contrib/metrics/regression/mean_normalized_bias.py,sha256=bO4HdG4W-WNjuSMYUU-MrVfHQKHI__3NdiuFMbd4HOs,847
43
+ ignite/contrib/metrics/regression/median_absolute_error.py,sha256=z3xesUZUmjtSXUDQ29r2E6x8BiDNWjec7_KLRUFCv_o,858
44
+ ignite/contrib/metrics/regression/median_absolute_percentage_error.py,sha256=ogc_WJFF9NWjzSogSOaAtmZAadM74jv_eDo_69QoiXo,975
45
+ ignite/contrib/metrics/regression/median_relative_absolute_error.py,sha256=lqzsNL-TIGPv97xlOwV2aNlZJM_vQXgl5pKnvAOAI4Y,953
46
+ ignite/contrib/metrics/regression/r2_score.py,sha256=1Mwo3Ft2PkYL8xq-CcbKqidJP5jeaWe1ba5sVESsTaU,719
47
+ ignite/contrib/metrics/regression/wave_hedges_distance.py,sha256=1uSqAUZX5aBzw0UJNla6bRYhHM3uPdVPuEzNJa4dixk,847
48
48
  ignite/distributed/__init__.py,sha256=qC28ok9XHWJawZfQR2MqWf6ctggS4rUY9PiTJjOCNvI,181
49
- ignite/distributed/auto.py,sha256=iqJ5-kkOqwCjIOociEB4N8gtgKO7J-2thJsYn4pvGnk,15401
50
- ignite/distributed/launcher.py,sha256=hjdL8pnWNrpMQjw_GrY9CGWyUqvb6g42nfEsT_5cxdo,13492
51
- ignite/distributed/utils.py,sha256=8_umdjizOnSNn7B8g9qacfyDtecAmnTKI8k-FdJzYRg,24718
49
+ ignite/distributed/auto.py,sha256=9nk9ArklntyzTaHx-odUTtKtX7bch-qQf1HQE7Y6YQE,15443
50
+ ignite/distributed/launcher.py,sha256=lEzoLqfVQDDXoPJ0ELUNs7090o1I6cDBFKuq3lTLPs4,13298
51
+ ignite/distributed/utils.py,sha256=D97JwWgL9RKP8rTfDRf1zMmfRUeJizr7XfLZ8LAScOI,24999
52
52
  ignite/distributed/comp_models/__init__.py,sha256=S2WHl463U7BvpcUe9-JaGtuCi3G1cMHFW5QFBQ6fv20,1357
53
- ignite/distributed/comp_models/base.py,sha256=OA5U9JIiZkq5yA6IJhaUsxB2ezEeUMhZ9hhixnFXVd4,14021
54
- ignite/distributed/comp_models/horovod.py,sha256=iTE4UoLjz8aUAVMzBkK4qLkiJtPGZapsslHyJbiwwkk,8143
55
- ignite/distributed/comp_models/native.py,sha256=B4uKt10TZ38-VImqUqGAv_p-pGRJh8mPgqu0gEGThLU,28002
56
- ignite/distributed/comp_models/xla.py,sha256=vbSOZoWOOT09t0Yx_HhlHeqjCOMABAydQ2KpNq44eLA,6174
57
- ignite/engine/__init__.py,sha256=ASvoTDzjl0ix7ZqHq_N3cDCNUy33gD_UUfs8-u9zni4,36126
58
- ignite/engine/deterministic.py,sha256=lIacEolZPmfPgVWM_T0Eqg-2G08Wpi_hc1fifzFq0p8,11632
59
- ignite/engine/engine.py,sha256=zu7hpdKbmIUnGGW1uWVqxCHBseQkiNdeKAvT57A5zK8,59815
60
- ignite/engine/events.py,sha256=ydfG3HPMo3HKcycFSG_GrZ199Tuttcjmd85eQaV_5c0,21807
53
+ ignite/distributed/comp_models/base.py,sha256=pTIylP1h2g6NWopBEponfXC6UefqS1l2lEdzTUTNXFc,14185
54
+ ignite/distributed/comp_models/horovod.py,sha256=pGrcHQcwjuuMWJufBR4RyT5YR6RHT8wtk4-Bz_ir3_w,9353
55
+ ignite/distributed/comp_models/native.py,sha256=k2ADEkHNTRDyWfBE1JP7AvTQTjjPtW8a2pyNLkeV6AQ,28139
56
+ ignite/distributed/comp_models/xla.py,sha256=XhKFeo7kNu4mTe9yyzLoEzxS8cDbTFJKAYY9m_dDHIk,6367
57
+ ignite/engine/__init__.py,sha256=MRFj6yywKhVkov4ccPkrw4dX1O8PfqceiJkngrcFb7A,36094
58
+ ignite/engine/deterministic.py,sha256=uXn5VfxN_AgcEzZwBk_zdPWlSdKH2tl8Md1lcx1mvJ4,11643
59
+ ignite/engine/engine.py,sha256=R0cDvh_MxFWOucmVuxrjiH3_xcybNDo9c4BkHUk2CEI,60713
60
+ ignite/engine/events.py,sha256=FrcvnvjNZEzzohMQU6ZxL8ezrUQshUuM917Rsyxf8v0,21833
61
61
  ignite/engine/utils.py,sha256=QG5mkdg4OipspqgpNQcJuoHTYdr2Sx5LS16kfjOHDdI,1073
62
- ignite/handlers/__init__.py,sha256=t2UbfFcFNjR_zh3_WHoa0N3n-n_oD1jibbJw0JC3LsE,2641
63
- ignite/handlers/base_logger.py,sha256=3FXA0-4T2c0SXvJ1d2GE4yHN_B-Z4KTMdE4YlERZ-9U,11793
64
- ignite/handlers/checkpoint.py,sha256=xg0bEShzdAg7SKx8CLAPiWAy7pHi2Jm-EAQKb0NJpyo,44882
65
- ignite/handlers/clearml_logger.py,sha256=jZZ3t1m7LlbKZFuuMmfbf5Usaz8rf8aCnB0V5MOQCjg,37473
62
+ ignite/handlers/__init__.py,sha256=Qq85YTtHPcii6UAfMOoCPg9RwigH96iqxOJKIlRfDqw,2728
63
+ ignite/handlers/base_logger.py,sha256=wPiGn9iCh5ung1GaRUf_qAlqe63h1NpUUQ0XK709p2k,13011
64
+ ignite/handlers/checkpoint.py,sha256=u6cFUDxAoSSBKCBprmDud2LEZGDEYHvyCoLUmtG3Xd4,46309
65
+ ignite/handlers/clearml_logger.py,sha256=0-57RYznIz-EgTsKtkKFPdGGFQXJIhq146H_qiE8hVc,37897
66
66
  ignite/handlers/early_stopping.py,sha256=UA6TiKho5CbD085R-16H8w3r0BYPQcWQjhEXg8aITSw,4139
67
67
  ignite/handlers/ema_handler.py,sha256=SmUyyWIFPZW3yMvjD_sSk5m_LfnMFl9R-uQdbXNFfY0,11854
68
- ignite/handlers/fbresearch_logger.py,sha256=onsUIHv6lYWcGf3VNeTWDCL_s1igK_PXmLGaTksjyk4,11120
69
- ignite/handlers/lr_finder.py,sha256=LdyBDQEg193mgTWJZHtZ8jP-L3giJSqSE3ffyo-wDoo,22117
70
- ignite/handlers/mlflow_logger.py,sha256=mMxPnBqJRcolYMtbBE8U32qneOdiwZOzOa7tEveon1Q,12311
71
- ignite/handlers/neptune_logger.py,sha256=LictGhcBeUNU5HrtmX3xi1qliNY1xMWPmGIgFC8Wzdo,27001
72
- ignite/handlers/param_scheduler.py,sha256=c730LIS6obDNNH2jitc2BRDK6AO36FfD3e1x336Oen4,68261
73
- ignite/handlers/polyaxon_logger.py,sha256=USJuycaEggP3J45fReP8-mwQeoWr-lKuGgNXJweRB0I,12056
74
- ignite/handlers/state_param_scheduler.py,sha256=xBOF07_JVexafmC-k4ifL_nN31IF8ThbebGWIxlbLs8,20745
68
+ ignite/handlers/fbresearch_logger.py,sha256=MfQeiBIXBYLEwZoDIld2oCceMeTAsz8rc5cd7fLtpJs,11133
69
+ ignite/handlers/lr_finder.py,sha256=EMcQR3NDPOuh2s85a5Zu5Bqt0I4pg1cACJpjSa5cO4A,22100
70
+ ignite/handlers/mlflow_logger.py,sha256=M5Mggrnr2wMsms8wbEaHqNtTk5L1zNs1MlPWD0ZCpDQ,13894
71
+ ignite/handlers/neptune_logger.py,sha256=Rv-O_i0zGZC2Ozzeetxv7rtD7iP3IeWEcbY-U28Mkzg,27348
72
+ ignite/handlers/param_scheduler.py,sha256=Tn4o27YBrp5JsuadHobIrsHfmvB_cR1IrV_oV1Eo7us,68373
73
+ ignite/handlers/polyaxon_logger.py,sha256=5b7Zxhksne8Ufg_SBTG-rlf_9CPSjkBQOJR4-ynoZnQ,12354
74
+ ignite/handlers/state_param_scheduler.py,sha256=B89YKZyj9DXLXQyr3amDNMslUOWNHZDis2DXIwW0q10,20841
75
75
  ignite/handlers/stores.py,sha256=8XM_Qqsitfu0WtOOE-K2FMtv51vD90r3GgQlCzRABYc,2616
76
- ignite/handlers/tensorboard_logger.py,sha256=BWcAo2dn7HCl0zVORHCKaSvtbLDBQbhkbiDEu86MRiU,26381
76
+ ignite/handlers/tensorboard_logger.py,sha256=q3YxXkbIFayBggI_kcHyl-upttVVjjnqFOLgyjj2cRo,27967
77
77
  ignite/handlers/terminate_on_nan.py,sha256=RFSKd3Oqn9Me2xLCos4lSE-hnY7fYWWjE9blioeMlIs,2103
78
78
  ignite/handlers/time_limit.py,sha256=heTuS-ReBbOUCm1NcNJGhzxI080Hanc4hOLB2Y4GeZk,1567
79
- ignite/handlers/time_profilers.py,sha256=GZCoOpiFSc2yVgHQjpS1To8Yjb6G6HwydsiWMjwMQfA,30301
79
+ ignite/handlers/time_profilers.py,sha256=8iCcBYPxv0vKFSO_ujFV0ST54a9PD9ezFLvYTIu9lFI,30482
80
80
  ignite/handlers/timing.py,sha256=nHeBHvPwYdPRMAx-jk_8MjZit4a7rmsmIWkUrajAG-s,4705
81
- ignite/handlers/tqdm_logger.py,sha256=Yu8GBtTrKlO8H6_b9VS9obWJ_TIJ7p62OI_VwkGYdN4,13040
81
+ ignite/handlers/tqdm_logger.py,sha256=3kxH39vM0LCDVwIZl9HQRaWM2Pr6bYC_l9oydFJmdM4,13093
82
82
  ignite/handlers/utils.py,sha256=X4LRqo1kqGsbmX0pEuZKYR6K4C8sZudAqxCLriiXtCg,872
83
- ignite/handlers/visdom_logger.py,sha256=zDMjyBcVVHYExQFdxbrEXhoy37lpYuEXm_b7XL2JCEk,21551
84
- ignite/handlers/wandb_logger.py,sha256=0TQoOzjjexr7nE_eO3Aoo4PA5vSZJBnXK3uEuXRrtaA,14392
83
+ ignite/handlers/visdom_logger.py,sha256=RY5ss3NAPad7d3xFFnqczCtuO6RgmWq9ROz-sFf6imI,21862
84
+ ignite/handlers/wandb_logger.py,sha256=vGok3gADQmTNkc6KkfFBreYoHAO8EneuU65xjBpT5-Q,14837
85
85
  ignite/metrics/__init__.py,sha256=m-8F8J17r-aEwsO6Ww-8AqDRN59WFfYBwCDKwqGDSmI,3627
86
86
  ignite/metrics/accumulation.py,sha256=xWdsm9u6JfsfODX_GUKzQc_omrdFDJ4yELBR-xXgc4s,12448
87
- ignite/metrics/accuracy.py,sha256=rI1TG-7WdJxcqGCMxGErXBWLmTNP1yczJgjjRyby0No,10168
87
+ ignite/metrics/accuracy.py,sha256=W8mO4W11VzryMXKy8G7W_g4A9PH9RYpejW_tQ-T_Txw,10245
88
88
  ignite/metrics/average_precision.py,sha256=AL4fvWCUL6zMNq_u2vQRnAdmdByB8S8x8jSE-MoFVjY,3694
89
89
  ignite/metrics/classification_report.py,sha256=zjGlaMnRz2__op6hrZq74OusO0W_5B1AIe8KzYGFilM,5988
90
90
  ignite/metrics/cohen_kappa.py,sha256=Qwcd4P2kN12CVCFC-kVdzn_2XV7kGzP6LlWkK209JJ8,3815
@@ -92,50 +92,50 @@ ignite/metrics/confusion_matrix.py,sha256=dZDuK3vxrrbiQh6VfyV5aWFpuTJWsfnZ30Mxt6
92
92
  ignite/metrics/cosine_similarity.py,sha256=myq1iGFBBUgEhyOg_ZxkOqUQpS6FYAc3PAcnObc3Dp4,4429
93
93
  ignite/metrics/entropy.py,sha256=gJZkR5Sl1ZdIzJ9pFkydf1186bZU8OnkOLvOtKz6Wrs,4511
94
94
  ignite/metrics/epoch_metric.py,sha256=H4PVsDtcqk53l47Ehc3kliKT4QtyZUf600ut-8rRP8M,7050
95
- ignite/metrics/fbeta.py,sha256=Ioq_cscx5N8oF77B7QYkPMzGFlp0KtFtYXHgfJ1twO8,6376
95
+ ignite/metrics/fbeta.py,sha256=2oDsRM7XXJ8LPVrn7iwLdRy75RLJELijmshtMQO3mJM,6870
96
96
  ignite/metrics/frequency.py,sha256=NW01rPgWnW1chVOSNAPCcPBu2CvjyXkoyFDAmjOK9A4,4037
97
97
  ignite/metrics/gpu_info.py,sha256=kcDIifr9js_P-32LddizEggvvL6eqFLYCHYeFDR4GL0,4301
98
98
  ignite/metrics/hsic.py,sha256=am-gor2mXY3H3u2vVNQGPJtkx_5W5JNZeukl2uYqajE,7099
99
- ignite/metrics/js_divergence.py,sha256=cng6KpR7I7znEEUcr434kJQ2uswgo5wbT5pAAcyVqdI,4838
99
+ ignite/metrics/js_divergence.py,sha256=HAgj12JwL9bT33cCSAX7g4EKSfqFNNehkgwZfJuncfw,4828
100
100
  ignite/metrics/kl_divergence.py,sha256=FdC5BT-nd8nmYqT95Xozw-hW0hZC6dtTklkpJdwWJ6o,5152
101
101
  ignite/metrics/loss.py,sha256=mB-zYptymtcyIys0OlbVgUOAqL2WHT2dCPMFda-Klpo,4818
102
- ignite/metrics/maximum_mean_discrepancy.py,sha256=FVBt-IJNrZo_zV0vwpsjaShDhl4Z5nJWVLRjTV-GpoE,6452
102
+ ignite/metrics/maximum_mean_discrepancy.py,sha256=AcrlYW6seQn3ZQKcnPIrLzYK2Ho0riGjuRsJmTNtCms,6444
103
103
  ignite/metrics/mean_absolute_error.py,sha256=gfbzoXNdyj9GCEzSxHXn0359TNNjnKBYshSnCBQk7i4,3695
104
104
  ignite/metrics/mean_average_precision.py,sha256=cXP9pYidQnAazGXBrhC80WoI4eK4lb3avNO5d70TLd4,19136
105
105
  ignite/metrics/mean_pairwise_distance.py,sha256=Ys6Rns6s-USS_tyP6Pa3bWZSI7f_hP5-lZM64UGJGjo,4104
106
106
  ignite/metrics/mean_squared_error.py,sha256=QdxXMYzxltfciMMRxxK5JhdlKXsdHe370EzwvIbwSmA,3679
107
- ignite/metrics/metric.py,sha256=IZucnzQL-HZVWa-Ppta8V1mw67XC-UP8cIA3DJwaP6o,34953
107
+ ignite/metrics/metric.py,sha256=T3IiFIGTv_UOScd8ei4H9SraHfTJ09OM8I6hRfzr_sA,35141
108
108
  ignite/metrics/metric_group.py,sha256=UE7WrMbpKlO9_DPqxQdlmFAWveWoT1knKwRlHDl9YIU,2544
109
109
  ignite/metrics/metrics_lambda.py,sha256=NwKZ1J-KzFFbSw7YUaNJozdfKZLVqrkjQvFKT6ixnkg,7309
110
110
  ignite/metrics/multilabel_confusion_matrix.py,sha256=1pjLNPGTDJWAkN_BHdBPekcish6Ra0uRUeEbdj3Dm6Y,7377
111
111
  ignite/metrics/mutual_information.py,sha256=lu1ucVfkx01tGQfELyXzS9woCPOMVImFHfrbIXCvPe8,4692
112
112
  ignite/metrics/precision.py,sha256=xe8_e13cPMaC1Mfw-RTlmkag6pdcHCIbi70ASI1IahY,18622
113
- ignite/metrics/precision_recall_curve.py,sha256=2Gqv5B_Q5xP-mVlX1bmM5XZNnUTRdGG-MJZZvVcbQxc,6182
113
+ ignite/metrics/precision_recall_curve.py,sha256=rcmG2W7dDuA_8fyekHNk4ronecewolMprW4rxUB8xsc,6228
114
114
  ignite/metrics/psnr.py,sha256=G994inwIczTWC5JfwECr0LSAtgquRGCs0283GylPR8c,5558
115
115
  ignite/metrics/recall.py,sha256=MaywS5E8ioaHZvTPGhQaYPQV-xDmptYuv8kDRe_-BEY,9867
116
- ignite/metrics/roc_auc.py,sha256=jcp6KpLFPr7FrSq6ePvx5lzweny0l0kFwzTS4PEBJ6M,9129
116
+ ignite/metrics/roc_auc.py,sha256=U97y_JApK2vU1OmZKUJqolHQOZ1qemCSHdxcsLOO2Jg,9246
117
117
  ignite/metrics/root_mean_squared_error.py,sha256=yiOn5AQeg-RL2wM1MAng5Q98FHJc21chXU65tITT0Wo,2903
118
118
  ignite/metrics/running_average.py,sha256=vcC_LtsrJxEMea05TmBFzFqCK6nZd8hHavsfIlf2C6c,11333
119
- ignite/metrics/ssim.py,sha256=VhzEnpbpG2eQtkQKgmsVIf0IAavRckz52nIKEHcIGIM,10279
119
+ ignite/metrics/ssim.py,sha256=yU877i4wXcHA7vr5qAU9p0LmehEJdKQTFzd2L4Lwm3Q,11866
120
120
  ignite/metrics/top_k_categorical_accuracy.py,sha256=pqsArVTSxnwt49S3lZFVqOkCXbzx-WPxfQnhtQ390RM,4706
121
121
  ignite/metrics/clustering/__init__.py,sha256=QljKwToBY-0fHblKbj1GsmP7rE5tlzHkrtw98MYEX44,233
122
122
  ignite/metrics/clustering/_base.py,sha256=lpQwtR54oTUrif7vQ7EE3ch8PJ91ECnzLov8z34gf5E,1526
123
- ignite/metrics/clustering/calinski_harabasz_score.py,sha256=i9DbAuFOFIgi7UVnHiiD_YHKnGgdItOyWqM-XrqLgwk,4654
123
+ ignite/metrics/clustering/calinski_harabasz_score.py,sha256=jePNE7u72jh8RYL8Sew9rDn3BX6ydYq5Z2FPst4pqB0,4663
124
124
  ignite/metrics/clustering/davies_bouldin_score.py,sha256=VGC0jA3_gh9s4v3bm7Cw-5IV1ZUbqssYmU3s-rmnl_8,4646
125
- ignite/metrics/clustering/silhouette_score.py,sha256=MewWftWKR17OmkeBHLbzG_3RJs7XvSnfjal2D_3U62c,5151
125
+ ignite/metrics/clustering/silhouette_score.py,sha256=Q9mMcyoR9woHwjxwrAPecFPhKA9bkptoKhhe5-mBfLA,5159
126
126
  ignite/metrics/gan/__init__.py,sha256=mBZQNI5uBd72iMyJs6GpbSBLEMm1-Lu1KtgmDAoH_4I,149
127
- ignite/metrics/gan/fid.py,sha256=QrpTNLLqw1mHPUU5_DfWpIapWH4AjlTXzFdF1IdT8So,10014
127
+ ignite/metrics/gan/fid.py,sha256=rqITDukGd7CgQAMY8GRVPSLVrkF3MjjFR8bxE6M1kpg,10058
128
128
  ignite/metrics/gan/inception_score.py,sha256=78_qrECWb_KsbLbo1lvDnvFJ9FsWPsbUi1aKWyvp8kg,5601
129
129
  ignite/metrics/gan/utils.py,sha256=3nihbBrcM9MRcu6r0p3x5SgZQ5V4aag20ZppM7j_HiM,3993
130
130
  ignite/metrics/nlp/__init__.py,sha256=TiDKRhw7lhZeoL2Cn4s306cKIuBbXl2fizN1ZepMhwI,168
131
- ignite/metrics/nlp/bleu.py,sha256=O88d0-6gEm4ZztSWGkq6f2PPu3Icd8eqXUB6UJKYHmk,11424
132
- ignite/metrics/nlp/rouge.py,sha256=ybdmmne0Td3oWR5KX0jNSTTShsse5p_TyAFR6DerWOc,15364
133
- ignite/metrics/nlp/utils.py,sha256=o6zWzT8lugNAQVxJq-SEDFI35ve5-P-1TwyVu9wZCpM,2353
131
+ ignite/metrics/nlp/bleu.py,sha256=NyQZ3CQB1xUnH_KWer5QtxkM_S_aiO3ok86UMxHaQ_w,11539
132
+ ignite/metrics/nlp/rouge.py,sha256=siAxJzGE3KjH23u-F3DCUPke--ls-1XMygncGhTYJp4,15313
133
+ ignite/metrics/nlp/utils.py,sha256=CA0MRMk9l97QockFYYhU6k0-hLhP3GwW36ONZ7TRqmc,2341
134
134
  ignite/metrics/regression/__init__.py,sha256=I594yB38ypWi9IDi9rrdshdXeBnSRcST09tnLRjN0yk,1472
135
- ignite/metrics/regression/_base.py,sha256=K0Xs3ZmtodhPB4GaAkFBwEgb6gbylDbCngBqsK_lbrs,2242
135
+ ignite/metrics/regression/_base.py,sha256=5V6GkkaBYRuW9J3yDXucyTZp1XJ2uIG7F4w2XcBsd3w,2365
136
136
  ignite/metrics/regression/canberra_metric.py,sha256=HqQe-0lfwMMO5e_8hBIaAPS6PyKrIEtBKfRBNJV941Q,3077
137
137
  ignite/metrics/regression/fractional_absolute_error.py,sha256=ANQFQoadcg17ksTj_k0dY1M9E2OO8eboQCzjpRS-FNE,3259
138
- ignite/metrics/regression/fractional_bias.py,sha256=JKxhEaX9vINfwA1UJNIRNw3l3bonagHvj-ts8-iTDrs,3172
138
+ ignite/metrics/regression/fractional_bias.py,sha256=IafPS6cJxhDL_OdJe2SsCtOkiwE-DVt7B2RLkY_SHpM,3178
139
139
  ignite/metrics/regression/geometric_mean_absolute_error.py,sha256=4KWSqONfKK1au4oLZDwWLJw3ENJE7rDGVNYRQYLxj1E,3195
140
140
  ignite/metrics/regression/geometric_mean_relative_absolute_error.py,sha256=vzvnt2sSqBHFaKRu0NqwzGHKwXpamhzv4YqJ4RN8CFA,4265
141
141
  ignite/metrics/regression/kendall_correlation.py,sha256=XVeqnhru0CQSXRz5wezbfWtdIqw9T20xGk_QOf8CztM,5280
@@ -152,9 +152,8 @@ ignite/metrics/regression/r2_score.py,sha256=mTW5ldE05UtPdBGjo_LQF96fbS5jjQbM9gL
152
152
  ignite/metrics/regression/spearman_correlation.py,sha256=IzmN4WIe7C4cTUU3BOkBmaw4gW6LTYJUFVhWeblvDVA,4603
153
153
  ignite/metrics/regression/wave_hedges_distance.py,sha256=Ji_NRUgnZ3lJgi5fyNFLRjbHO648z4dBmqVDQU9ImKA,2792
154
154
  ignite/metrics/vision/__init__.py,sha256=lPBAEq1idc6Q17poFm1SjttE27irHF1-uNeiwrxnLrU,159
155
- ignite/metrics/vision/object_detection_average_precision_recall.py,sha256=PwdXVeGAF0sLIxUrvnnE7ZojpFNkZB5O6bYoopqc3M4,25024
156
- pytorch_ignite-0.6.0.dev20250310.dist-info/LICENSE,sha256=SwJvaRmy1ql-k9_nL4WnER4_ODTMF9fWoP9HXkoicgw,1527
157
- pytorch_ignite-0.6.0.dev20250310.dist-info/METADATA,sha256=LrlVvJQFZhfgqn_poFUypJpheT4AJ-8MzDpDFjHHNaU,27997
158
- pytorch_ignite-0.6.0.dev20250310.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
159
- pytorch_ignite-0.6.0.dev20250310.dist-info/top_level.txt,sha256=P2CnXR6kxvOX7ZMdd-9kVUTwLNz98t0sdjKeyvFBkR4,7
160
- pytorch_ignite-0.6.0.dev20250310.dist-info/RECORD,,
155
+ ignite/metrics/vision/object_detection_average_precision_recall.py,sha256=4wwiNVd658ynIpIbQlffTA-ehvyJ2EzmJ5pBSBuA8XQ,25091
156
+ pytorch_ignite-0.6.0.dev20260101.dist-info/METADATA,sha256=6vBV8oMvN0VS5TQGjUYKlNFa3wch_dlo73SJcji7xqw,27979
157
+ pytorch_ignite-0.6.0.dev20260101.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
158
+ pytorch_ignite-0.6.0.dev20260101.dist-info/licenses/LICENSE,sha256=SwJvaRmy1ql-k9_nL4WnER4_ODTMF9fWoP9HXkoicgw,1527
159
+ pytorch_ignite-0.6.0.dev20260101.dist-info/RECORD,,
@@ -1,5 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.8.0)
2
+ Generator: hatchling 1.28.0
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
-