pytme 0.3b0__cp311-cp311-macosx_15_0_arm64.whl → 0.3.1__cp311-cp311-macosx_15_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {pytme-0.3b0.data → pytme-0.3.1.data}/scripts/estimate_memory_usage.py +1 -5
- {pytme-0.3b0.data → pytme-0.3.1.data}/scripts/match_template.py +177 -226
- {pytme-0.3b0.data → pytme-0.3.1.data}/scripts/postprocess.py +69 -47
- {pytme-0.3b0.data → pytme-0.3.1.data}/scripts/preprocess.py +10 -23
- {pytme-0.3b0.data → pytme-0.3.1.data}/scripts/preprocessor_gui.py +98 -28
- pytme-0.3.1.data/scripts/pytme_runner.py +1223 -0
- {pytme-0.3b0.dist-info → pytme-0.3.1.dist-info}/METADATA +15 -15
- pytme-0.3.1.dist-info/RECORD +133 -0
- {pytme-0.3b0.dist-info → pytme-0.3.1.dist-info}/entry_points.txt +1 -0
- pytme-0.3.1.dist-info/licenses/LICENSE +339 -0
- scripts/estimate_memory_usage.py +1 -5
- scripts/eval.py +93 -0
- scripts/extract_candidates.py +118 -99
- scripts/match_template.py +177 -226
- scripts/match_template_filters.py +1200 -0
- scripts/postprocess.py +69 -47
- scripts/preprocess.py +10 -23
- scripts/preprocessor_gui.py +98 -28
- scripts/pytme_runner.py +1223 -0
- scripts/refine_matches.py +156 -387
- tests/data/.DS_Store +0 -0
- tests/data/Blurring/.DS_Store +0 -0
- tests/data/Maps/.DS_Store +0 -0
- tests/data/Raw/.DS_Store +0 -0
- tests/data/Structures/.DS_Store +0 -0
- tests/preprocessing/test_frequency_filters.py +19 -10
- tests/preprocessing/test_utils.py +18 -0
- tests/test_analyzer.py +122 -122
- tests/test_backends.py +4 -9
- tests/test_density.py +0 -1
- tests/test_matching_cli.py +30 -30
- tests/test_matching_data.py +5 -5
- tests/test_matching_utils.py +11 -61
- tests/test_rotations.py +1 -1
- tme/__version__.py +1 -1
- tme/analyzer/__init__.py +1 -1
- tme/analyzer/_utils.py +5 -8
- tme/analyzer/aggregation.py +28 -9
- tme/analyzer/base.py +25 -36
- tme/analyzer/peaks.py +49 -122
- tme/analyzer/proxy.py +1 -0
- tme/backends/_jax_utils.py +31 -28
- tme/backends/_numpyfftw_utils.py +270 -0
- tme/backends/cupy_backend.py +11 -54
- tme/backends/jax_backend.py +72 -48
- tme/backends/matching_backend.py +6 -51
- tme/backends/mlx_backend.py +1 -27
- tme/backends/npfftw_backend.py +95 -90
- tme/backends/pytorch_backend.py +5 -26
- tme/density.py +7 -10
- tme/extensions.cpython-311-darwin.so +0 -0
- tme/filters/__init__.py +2 -2
- tme/filters/_utils.py +32 -7
- tme/filters/bandpass.py +225 -186
- tme/filters/ctf.py +138 -87
- tme/filters/reconstruction.py +38 -9
- tme/filters/wedge.py +98 -112
- tme/filters/whitening.py +1 -6
- tme/mask.py +341 -0
- tme/matching_data.py +20 -44
- tme/matching_exhaustive.py +46 -56
- tme/matching_optimization.py +2 -1
- tme/matching_scores.py +216 -412
- tme/matching_utils.py +82 -424
- tme/memory.py +1 -1
- tme/orientations.py +16 -8
- tme/parser.py +109 -29
- tme/preprocessor.py +2 -2
- tme/rotations.py +1 -1
- pytme-0.3b0.dist-info/RECORD +0 -122
- pytme-0.3b0.dist-info/licenses/LICENSE +0 -153
- {pytme-0.3b0.dist-info → pytme-0.3.1.dist-info}/WHEEL +0 -0
- {pytme-0.3b0.dist-info → pytme-0.3.1.dist-info}/top_level.txt +0 -0
scripts/eval.py
ADDED
@@ -0,0 +1,93 @@
|
|
1
|
+
#!python3
|
2
|
+
""" Apply tme.preprocessor.Preprocessor methods to an input file based
|
3
|
+
on a provided yaml configuration obtaiend from preprocessor_gui.py.
|
4
|
+
|
5
|
+
Copyright (c) 2023 European Molecular Biology Laboratory
|
6
|
+
|
7
|
+
Author: Valentin Maurer <valentin.maurer@embl-hamburg.de>
|
8
|
+
"""
|
9
|
+
import yaml
|
10
|
+
import argparse
|
11
|
+
import textwrap
|
12
|
+
from tme import Preprocessor, Density
|
13
|
+
|
14
|
+
|
15
|
+
def parse_args():
|
16
|
+
parser = argparse.ArgumentParser(
|
17
|
+
description=textwrap.dedent(
|
18
|
+
"""
|
19
|
+
Apply preprocessing to an input file based on a provided YAML configuration.
|
20
|
+
|
21
|
+
Expected YAML file format:
|
22
|
+
```yaml
|
23
|
+
<method_name>:
|
24
|
+
<parameter1>: <value1>
|
25
|
+
<parameter2>: <value2>
|
26
|
+
...
|
27
|
+
```
|
28
|
+
"""
|
29
|
+
),
|
30
|
+
formatter_class=argparse.RawDescriptionHelpFormatter,
|
31
|
+
)
|
32
|
+
parser.add_argument(
|
33
|
+
"-i",
|
34
|
+
"--input_file",
|
35
|
+
type=str,
|
36
|
+
required=True,
|
37
|
+
help="Path to the input data file in CCP4/MRC format.",
|
38
|
+
)
|
39
|
+
parser.add_argument(
|
40
|
+
"-y",
|
41
|
+
"--yaml_file",
|
42
|
+
type=str,
|
43
|
+
required=True,
|
44
|
+
help="Path to the YAML configuration file.",
|
45
|
+
)
|
46
|
+
parser.add_argument(
|
47
|
+
"-o",
|
48
|
+
"--output_file",
|
49
|
+
type=str,
|
50
|
+
required=True,
|
51
|
+
help="Path to output file in CPP4/MRC format..",
|
52
|
+
)
|
53
|
+
parser.add_argument(
|
54
|
+
"--compress", action="store_true", help="Compress the output file using gzip."
|
55
|
+
)
|
56
|
+
|
57
|
+
args = parser.parse_args()
|
58
|
+
|
59
|
+
return args
|
60
|
+
|
61
|
+
|
62
|
+
def main():
|
63
|
+
args = parse_args()
|
64
|
+
with open(args.yaml_file, "r") as f:
|
65
|
+
preprocess_settings = yaml.safe_load(f)
|
66
|
+
|
67
|
+
if len(preprocess_settings) > 1:
|
68
|
+
raise NotImplementedError(
|
69
|
+
"Multiple preprocessing methods specified. "
|
70
|
+
"The script currently supports one method at a time."
|
71
|
+
)
|
72
|
+
|
73
|
+
method_name = list(preprocess_settings.keys())[0]
|
74
|
+
if not hasattr(Preprocessor, method_name):
|
75
|
+
raise ValueError(f"Method {method_name} does not exist in Preprocessor.")
|
76
|
+
|
77
|
+
density = Density.from_file(args.input_file)
|
78
|
+
output = density.empty
|
79
|
+
|
80
|
+
method_params = preprocess_settings[method_name]
|
81
|
+
preprocessor = Preprocessor()
|
82
|
+
method = getattr(preprocessor, method_name, None)
|
83
|
+
if not method:
|
84
|
+
raise ValueError(
|
85
|
+
f"{method} does not exist in dge.preprocessor.Preprocessor class."
|
86
|
+
)
|
87
|
+
|
88
|
+
output.data = method(template=density.data, **method_params)
|
89
|
+
output.to_file(args.output_file, gzip=args.compress)
|
90
|
+
|
91
|
+
|
92
|
+
if __name__ == "__main__":
|
93
|
+
main()
|
scripts/extract_candidates.py
CHANGED
@@ -1,19 +1,22 @@
|
|
1
1
|
#!python3
|
2
|
-
"""
|
2
|
+
"""Prepare orientations stack for refinement.
|
3
3
|
|
4
|
-
|
4
|
+
Copyright (c) 2023 European Molecular Biology Laboratory
|
5
5
|
|
6
|
-
|
6
|
+
Author: Valentin Maurer <valentin.maurer@embl-hamburg.de>
|
7
7
|
"""
|
8
8
|
import argparse
|
9
|
-
from os
|
9
|
+
from os import unlink
|
10
|
+
from os.path import splitext, basename
|
10
11
|
|
11
12
|
import numpy as np
|
13
|
+
from collections import defaultdict
|
12
14
|
|
15
|
+
from tme.parser import StarParser
|
13
16
|
from tme import Density, Orientations
|
14
|
-
from tme.matching_utils import
|
15
|
-
|
16
|
-
|
17
|
+
from tme.matching_utils import generate_tempfile_name
|
18
|
+
from tme.rotations import (
|
19
|
+
align_vectors,
|
17
20
|
euler_from_rotationmatrix,
|
18
21
|
euler_to_rotationmatrix,
|
19
22
|
)
|
@@ -25,7 +28,7 @@ class ProgressBar:
|
|
25
28
|
"""
|
26
29
|
|
27
30
|
def __init__(self, message: str, nchars: int, total: int):
|
28
|
-
self._size = nchars - len(message) - (len(str(total))+2) * 2
|
31
|
+
self._size = nchars - len(message) - (len(str(total)) + 2) * 2
|
29
32
|
self._message = message
|
30
33
|
self._total = total
|
31
34
|
|
@@ -45,20 +48,14 @@ def parse_args():
|
|
45
48
|
)
|
46
49
|
|
47
50
|
io_group = parser.add_argument_group("Input / Output")
|
48
|
-
io_group.add_argument(
|
49
|
-
"--target",
|
50
|
-
required=True,
|
51
|
-
type=str,
|
52
|
-
help="Extract candidates from this target.",
|
53
|
-
)
|
54
51
|
io_group.add_argument(
|
55
52
|
"--orientations",
|
56
53
|
required=True,
|
57
54
|
type=str,
|
58
|
-
help="
|
55
|
+
help="Star file with picks and micrograph names.",
|
59
56
|
)
|
60
57
|
io_group.add_argument(
|
61
|
-
"--
|
58
|
+
"--orientations-scaling",
|
62
59
|
required=False,
|
63
60
|
type=float,
|
64
61
|
default=1.0,
|
@@ -67,54 +64,59 @@ def parse_args():
|
|
67
64
|
)
|
68
65
|
io_group.add_argument(
|
69
66
|
"-o",
|
70
|
-
"--
|
67
|
+
"--output-prefix",
|
71
68
|
required=True,
|
72
69
|
type=str,
|
73
|
-
help="
|
70
|
+
help="Output prefix to use.",
|
74
71
|
)
|
75
72
|
|
76
73
|
alignment_group = parser.add_argument_group("Alignment")
|
77
74
|
alignment_group.add_argument(
|
78
|
-
"--
|
75
|
+
"--align-orientations",
|
79
76
|
action="store_true",
|
80
77
|
required=False,
|
81
78
|
help="Whether to align extracted orientations based on their angles. Allows "
|
82
79
|
"for efficient subsequent sampling of cone angles.",
|
83
80
|
)
|
84
81
|
alignment_group.add_argument(
|
85
|
-
"--
|
82
|
+
"--angles-are-vector",
|
86
83
|
action="store_true",
|
87
84
|
required=False,
|
88
85
|
help="Considers euler_z euler_y, euler_x as vector that will be rotated to align "
|
89
86
|
"with the z-axis (1,0,0). Only considered when --align_orientations is set.",
|
90
87
|
)
|
91
88
|
alignment_group.add_argument(
|
92
|
-
"--
|
93
|
-
dest="interpolation_order",
|
89
|
+
"--interpolation-order",
|
94
90
|
required=False,
|
95
91
|
type=int,
|
96
92
|
default=1,
|
97
93
|
help="Interpolation order for alignment, less than zero is no interpolation.",
|
98
94
|
)
|
95
|
+
alignment_group.add_argument(
|
96
|
+
"--split-by-micrograph",
|
97
|
+
action="store_true",
|
98
|
+
required=False,
|
99
|
+
help="Create separate output files for each micrograph."
|
100
|
+
)
|
99
101
|
|
100
102
|
extraction_group = parser.add_argument_group("Extraction")
|
101
103
|
extraction_group.add_argument(
|
102
|
-
"--
|
103
|
-
required=
|
104
|
+
"--box-size",
|
105
|
+
required=True,
|
104
106
|
type=int,
|
105
|
-
help="Box size for extraction
|
107
|
+
help="Box size for extraction.",
|
106
108
|
)
|
107
109
|
extraction_group.add_argument(
|
108
|
-
"--
|
110
|
+
"--translation-uncertainty",
|
109
111
|
required=False,
|
110
112
|
type=int,
|
111
113
|
help="Sets box size for extraction to template box plus this value.",
|
112
114
|
)
|
113
115
|
extraction_group.add_argument(
|
114
|
-
"--
|
116
|
+
"--drop-out-of-box",
|
115
117
|
action="store_true",
|
116
118
|
required=False,
|
117
|
-
help="Whether to
|
119
|
+
help="Whether to drop orientations that fall outside the box. If the "
|
118
120
|
"orientations are sensible, it is safe to pass this flag.",
|
119
121
|
)
|
120
122
|
|
@@ -125,100 +127,117 @@ def parse_args():
|
|
125
127
|
|
126
128
|
def main():
|
127
129
|
args = parse_args()
|
130
|
+
|
131
|
+
data = StarParser(args.orientations, delimiter="\t")
|
132
|
+
key = list(data.keys())[0]
|
133
|
+
|
134
|
+
index_map = defaultdict(list)
|
135
|
+
for index, value in enumerate(data[key]["_rlnMicrographName"]):
|
136
|
+
index_map[value].append(index)
|
137
|
+
|
128
138
|
orientations = Orientations.from_file(args.orientations)
|
129
139
|
orientations.translations = np.divide(
|
130
|
-
orientations.translations, args.
|
140
|
+
orientations.translations, args.orientations_scaling
|
131
141
|
)
|
132
142
|
|
133
|
-
target = Density.from_file(args.target, use_memmap=True)
|
134
|
-
|
135
143
|
box_size = np.array(args.box_size)
|
136
|
-
box_size = np.repeat(box_size,
|
137
|
-
|
144
|
+
box_size = np.repeat(box_size, 3 // box_size.size).astype(int)
|
138
145
|
extraction_shape = np.copy(box_size)
|
139
|
-
if args.align_orientations:
|
140
|
-
extraction_shape[:] = int(np.linalg.norm(box_size) + 1)
|
141
|
-
|
142
|
-
orientations, cand_slices, obs_slices = orientations.get_extraction_slices(
|
143
|
-
target_shape=target.shape,
|
144
|
-
extraction_shape=extraction_shape,
|
145
|
-
drop_out_of_box=not args.keep_out_of_box,
|
146
|
-
return_orientations=True,
|
147
|
-
)
|
148
146
|
|
149
147
|
if args.align_orientations:
|
148
|
+
extraction_shape[:] = int(np.linalg.norm(box_size) + 1)
|
150
149
|
for index in range(orientations.rotations.shape[0]):
|
151
150
|
rotation_matrix = euler_to_rotationmatrix(orientations.rotations[index])
|
152
151
|
rotation_matrix = np.linalg.inv(rotation_matrix)
|
153
152
|
if args.angles_are_vector:
|
154
|
-
rotation_matrix =
|
153
|
+
rotation_matrix = align_vectors(
|
155
154
|
orientations.rotations[index], target_vector=(1, 0, 0)
|
156
155
|
)
|
157
156
|
orientations.rotations[index] = euler_from_rotationmatrix(rotation_matrix)
|
158
157
|
|
159
|
-
|
160
|
-
|
161
|
-
|
162
|
-
|
163
|
-
|
164
|
-
|
165
|
-
|
166
|
-
|
167
|
-
|
168
|
-
|
169
|
-
|
170
|
-
|
171
|
-
|
172
|
-
),
|
173
|
-
sampling_rate=(1, *target.sampling_rate),
|
174
|
-
origin=(0, *target.origin),
|
175
|
-
)
|
176
|
-
dens.data[:] = target.metadata["mean"]
|
177
|
-
|
178
|
-
data_subset = np.zeros(extraction_shape, dtype=target.data.dtype)
|
179
|
-
pbar = ProgressBar(message="Aligning ", nchars=80, total=len(obs_slices))
|
180
|
-
for index, (obs_slice, cand_slice) in enumerate(zip(obs_slices, cand_slices)):
|
181
|
-
pbar.update(index + 1)
|
182
|
-
|
183
|
-
data_subset.fill(0)
|
184
|
-
data_subset[cand_slice] = target.data[obs_slice]
|
185
|
-
target_subset = Density(
|
186
|
-
data_subset,
|
187
|
-
sampling_rate=target.sampling_rate,
|
188
|
-
origin=target.origin,
|
158
|
+
ret_orientations, ret_dens, ix = [], [], 0
|
159
|
+
n_particles = orientations.translations.shape[0]
|
160
|
+
pbar = ProgressBar(message="Processing ", nchars=80, total=n_particles)
|
161
|
+
for target_path, indices in index_map.items():
|
162
|
+
|
163
|
+
target = Density.from_file(target_path, use_memmap=True)
|
164
|
+
|
165
|
+
subset = orientations[indices]
|
166
|
+
subset, cand_slices, obs_slices = subset.get_extraction_slices(
|
167
|
+
target_shape=target.shape,
|
168
|
+
extraction_shape=extraction_shape,
|
169
|
+
drop_out_of_box=args.drop_out_of_box,
|
170
|
+
return_orientations=True,
|
189
171
|
)
|
190
172
|
|
191
|
-
|
192
|
-
|
193
|
-
|
194
|
-
|
195
|
-
|
196
|
-
|
173
|
+
dens = Density(
|
174
|
+
np.memmap(
|
175
|
+
generate_tempfile_name(),
|
176
|
+
mode="w+",
|
177
|
+
shape=(subset.translations.shape[0], *box_size),
|
178
|
+
dtype=np.float32,
|
179
|
+
),
|
180
|
+
sampling_rate = (1, *target.sampling_rate),
|
181
|
+
metadata = {"batch_dimension" : (0,), "path" : target_path}
|
182
|
+
)
|
183
|
+
|
184
|
+
data_subset = np.zeros(extraction_shape, dtype=target.data.dtype)
|
185
|
+
for index, (obs_slice, cand_slice) in enumerate(zip(obs_slices, cand_slices)):
|
186
|
+
pbar.update(ix + 1)
|
187
|
+
|
188
|
+
data_subset.fill(0)
|
189
|
+
data_subset[cand_slice] = target.data[obs_slice]
|
190
|
+
target_subset = Density(
|
191
|
+
data_subset,
|
192
|
+
sampling_rate=target.sampling_rate,
|
193
|
+
origin=target.origin,
|
197
194
|
)
|
198
|
-
target_subset.pad(box_size, center=True)
|
199
195
|
|
200
|
-
|
201
|
-
|
202
|
-
|
203
|
-
|
204
|
-
|
205
|
-
|
206
|
-
|
196
|
+
if args.align_orientations:
|
197
|
+
rotation_matrix = euler_to_rotationmatrix(subset.rotations[index])
|
198
|
+
target_subset = target_subset.rigid_transform(
|
199
|
+
rotation_matrix=rotation_matrix,
|
200
|
+
use_geometric_center=True,
|
201
|
+
order=args.interpolation_order,
|
202
|
+
)
|
203
|
+
target_subset.pad(box_size, center=True)
|
204
|
+
dens.data[index] = target_subset.data.astype(np.float32)
|
205
|
+
ix += 1
|
207
206
|
|
208
|
-
dens
|
209
|
-
|
207
|
+
ret_dens.append(dens)
|
208
|
+
ret_orientations.append(subset)
|
210
209
|
|
211
|
-
|
212
|
-
|
213
|
-
}
|
214
|
-
dens.metadata.update(target_meta)
|
215
|
-
dens.metadata["batch_dimension"] = (0,)
|
216
|
-
dens.metadata["normals"] = orientations.rotations
|
210
|
+
if not len(ret_dens):
|
211
|
+
exit("Found no valid particles.")
|
217
212
|
|
218
|
-
|
219
|
-
|
220
|
-
|
221
|
-
|
213
|
+
print("")
|
214
|
+
if not args.split_by_micrograph:
|
215
|
+
ret_orientations = [Orientations(
|
216
|
+
translations=np.concatenate([x.translations for x in ret_orientations]),
|
217
|
+
rotations=np.concatenate([x.rotations for x in ret_orientations]),
|
218
|
+
scores=np.concatenate([x.scores for x in ret_orientations]),
|
219
|
+
details=np.concatenate([x.details for x in ret_orientations]),
|
220
|
+
)]
|
221
|
+
dens_data = Density(
|
222
|
+
np.concatenate([x.data for x in ret_dens]),
|
223
|
+
sampling_rate=ret_dens[0].sampling_rate
|
224
|
+
)
|
225
|
+
_ = [unlink(x.data.filename) for x in ret_dens]
|
226
|
+
dens_data.metadata.update({"batch_dimension" : (0, )})
|
227
|
+
ret_dens = [dens_data]
|
228
|
+
|
229
|
+
for orientation, dens in zip(ret_orientations, ret_dens):
|
230
|
+
fname = args.output_prefix
|
231
|
+
if args.split_by_micrograph:
|
232
|
+
target = splitext(basename(dens.metadata["path"]))[0]
|
233
|
+
fname = f"{args.output_prefix}_{target}"
|
234
|
+
|
235
|
+
dens.to_file(f"{fname}.h5")
|
236
|
+
orientation.to_file(f"{fname}_aligned.star")
|
237
|
+
try:
|
238
|
+
unlink(dens.data.filename)
|
239
|
+
except Exception:
|
240
|
+
continue
|
222
241
|
|
223
242
|
if __name__ == "__main__":
|
224
243
|
main()
|