pytme 0.2.9__cp311-cp311-macosx_15_0_arm64.whl → 0.3.0__cp311-cp311-macosx_15_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pytme-0.3.0.data/scripts/estimate_memory_usage.py +76 -0
- pytme-0.3.0.data/scripts/match_template.py +1106 -0
- {pytme-0.2.9.data → pytme-0.3.0.data}/scripts/postprocess.py +320 -190
- {pytme-0.2.9.data → pytme-0.3.0.data}/scripts/preprocess.py +21 -31
- {pytme-0.2.9.data → pytme-0.3.0.data}/scripts/preprocessor_gui.py +85 -19
- pytme-0.3.0.data/scripts/pytme_runner.py +771 -0
- {pytme-0.2.9.dist-info → pytme-0.3.0.dist-info}/METADATA +22 -20
- pytme-0.3.0.dist-info/RECORD +126 -0
- {pytme-0.2.9.dist-info → pytme-0.3.0.dist-info}/entry_points.txt +2 -1
- pytme-0.3.0.dist-info/licenses/LICENSE +339 -0
- scripts/estimate_memory_usage.py +76 -0
- scripts/eval.py +93 -0
- scripts/extract_candidates.py +224 -0
- scripts/match_template.py +349 -378
- pytme-0.2.9.data/scripts/match_template.py → scripts/match_template_filters.py +213 -148
- scripts/postprocess.py +320 -190
- scripts/preprocess.py +21 -31
- scripts/preprocessor_gui.py +85 -19
- scripts/pytme_runner.py +771 -0
- scripts/refine_matches.py +625 -0
- tests/preprocessing/test_frequency_filters.py +28 -14
- tests/test_analyzer.py +41 -36
- tests/test_backends.py +1 -0
- tests/test_matching_cli.py +109 -53
- tests/test_matching_data.py +5 -5
- tests/test_matching_exhaustive.py +1 -2
- tests/test_matching_optimization.py +4 -9
- tests/test_matching_utils.py +1 -1
- tests/test_orientations.py +0 -1
- tme/__version__.py +1 -1
- tme/analyzer/__init__.py +2 -0
- tme/analyzer/_utils.py +26 -21
- tme/analyzer/aggregation.py +396 -222
- tme/analyzer/base.py +127 -0
- tme/analyzer/peaks.py +189 -201
- tme/analyzer/proxy.py +123 -0
- tme/backends/__init__.py +4 -3
- tme/backends/_cupy_utils.py +25 -24
- tme/backends/_jax_utils.py +20 -18
- tme/backends/cupy_backend.py +13 -26
- tme/backends/jax_backend.py +24 -23
- tme/backends/matching_backend.py +4 -3
- tme/backends/mlx_backend.py +4 -3
- tme/backends/npfftw_backend.py +34 -30
- tme/backends/pytorch_backend.py +18 -4
- tme/cli.py +126 -0
- tme/density.py +9 -7
- tme/extensions.cpython-311-darwin.so +0 -0
- tme/filters/__init__.py +3 -3
- tme/filters/_utils.py +36 -10
- tme/filters/bandpass.py +229 -188
- tme/filters/compose.py +5 -4
- tme/filters/ctf.py +516 -254
- tme/filters/reconstruction.py +91 -32
- tme/filters/wedge.py +196 -135
- tme/filters/whitening.py +37 -42
- tme/matching_data.py +28 -39
- tme/matching_exhaustive.py +31 -27
- tme/matching_optimization.py +5 -4
- tme/matching_scores.py +25 -15
- tme/matching_utils.py +158 -28
- tme/memory.py +4 -3
- tme/orientations.py +22 -9
- tme/parser.py +114 -33
- tme/preprocessor.py +6 -5
- tme/rotations.py +10 -7
- tme/structure.py +4 -3
- pytme-0.2.9.data/scripts/estimate_ram_usage.py +0 -97
- pytme-0.2.9.dist-info/RECORD +0 -119
- pytme-0.2.9.dist-info/licenses/LICENSE +0 -153
- scripts/estimate_ram_usage.py +0 -97
- tests/data/Maps/.DS_Store +0 -0
- tests/data/Structures/.DS_Store +0 -0
- {pytme-0.2.9.dist-info → pytme-0.3.0.dist-info}/WHEEL +0 -0
- {pytme-0.2.9.dist-info → pytme-0.3.0.dist-info}/top_level.txt +0 -0
tme/matching_utils.py
CHANGED
@@ -1,8 +1,9 @@
|
|
1
|
-
"""
|
1
|
+
"""
|
2
|
+
Utility functions for template matching.
|
2
3
|
|
3
|
-
|
4
|
+
Copyright (c) 2023 European Molecular Biology Laboratory
|
4
5
|
|
5
|
-
|
6
|
+
Author: Valentin Maurer <valentin.maurer@embl-hamburg.de>
|
6
7
|
"""
|
7
8
|
|
8
9
|
import os
|
@@ -15,7 +16,6 @@ from concurrent.futures import ThreadPoolExecutor
|
|
15
16
|
from typing import Tuple, Dict, Callable, Optional
|
16
17
|
|
17
18
|
import numpy as np
|
18
|
-
from tqdm import tqdm
|
19
19
|
from scipy.spatial import ConvexHull
|
20
20
|
from scipy.ndimage import gaussian_filter
|
21
21
|
|
@@ -520,7 +520,7 @@ def apply_convolution_mode(
|
|
520
520
|
elif convolution_mode == "same":
|
521
521
|
return func(arr, s1)
|
522
522
|
elif convolution_mode == "valid":
|
523
|
-
valid_shape = [s1[i] - s2[i] +
|
523
|
+
valid_shape = [s1[i] - s2[i] + 1 for i in range(arr.ndim)]
|
524
524
|
return func(arr, valid_shape)
|
525
525
|
|
526
526
|
|
@@ -725,13 +725,15 @@ def create_mask(mask_type: str, sigma_decay: float = 0, **kwargs) -> NDArray:
|
|
725
725
|
mask_type : str
|
726
726
|
Type of the mask to be created. Can be one of:
|
727
727
|
|
728
|
-
|
729
|
-
| box
|
730
|
-
|
731
|
-
| tube
|
732
|
-
|
733
|
-
|
|
734
|
-
|
728
|
+
+----------+---------------------------------------------------------+
|
729
|
+
| box | Box mask (see :py:meth:`box_mask`) |
|
730
|
+
+----------+---------------------------------------------------------+
|
731
|
+
| tube | Cylindrical mask (see :py:meth:`tube_mask`) |
|
732
|
+
+----------+---------------------------------------------------------+
|
733
|
+
| membrane | Cylindrical mask (see :py:meth:`membrane_mask`) |
|
734
|
+
+----------+---------------------------------------------------------+
|
735
|
+
| ellipse | Ellipsoidal mask (see :py:meth:`elliptical_mask`) |
|
736
|
+
+----------+---------------------------------------------------------+
|
735
737
|
sigma_decay : float, optional
|
736
738
|
Smoothing along mask edges using a Gaussian filter, 0 by default.
|
737
739
|
kwargs : dict
|
@@ -747,16 +749,16 @@ def create_mask(mask_type: str, sigma_decay: float = 0, **kwargs) -> NDArray:
|
|
747
749
|
ValueError
|
748
750
|
If the mask_type is invalid.
|
749
751
|
"""
|
750
|
-
mapping = {
|
752
|
+
mapping = {
|
753
|
+
"ellipse": elliptical_mask,
|
754
|
+
"box": box_mask,
|
755
|
+
"tube": tube_mask,
|
756
|
+
"membrane": membrane_mask,
|
757
|
+
}
|
751
758
|
if mask_type not in mapping:
|
752
759
|
raise ValueError(f"mask_type has to be one of {','.join(mapping.keys())}")
|
753
760
|
|
754
|
-
mask = mapping[mask_type](**kwargs)
|
755
|
-
if sigma_decay > 0:
|
756
|
-
mask_filter = gaussian_filter(mask.astype(np.float32), sigma=sigma_decay)
|
757
|
-
mask = np.add(mask, (1 - mask) * mask_filter)
|
758
|
-
mask[mask < np.exp(-np.square(sigma_decay))] = 0
|
759
|
-
|
761
|
+
mask = mapping[mask_type](**kwargs, sigma_decay=sigma_decay)
|
760
762
|
return mask
|
761
763
|
|
762
764
|
|
@@ -765,6 +767,8 @@ def elliptical_mask(
|
|
765
767
|
radius: Tuple[float],
|
766
768
|
center: Optional[Tuple[float]] = None,
|
767
769
|
orientation: Optional[NDArray] = None,
|
770
|
+
sigma_decay: float = 0.0,
|
771
|
+
cutoff_sigma: float = 3,
|
768
772
|
) -> NDArray:
|
769
773
|
"""
|
770
774
|
Creates an ellipsoidal mask.
|
@@ -826,9 +830,14 @@ def elliptical_mask(
|
|
826
830
|
)
|
827
831
|
indices = indices.reshape(*return_shape)
|
828
832
|
|
829
|
-
|
830
|
-
|
831
|
-
|
833
|
+
dist = np.linalg.norm(indices / radius, axis=0)
|
834
|
+
if sigma_decay > 0:
|
835
|
+
sigma_decay = 2 * (sigma_decay / np.mean(radius)) ** 2
|
836
|
+
mask = np.maximum(0, dist - 1)
|
837
|
+
mask = np.exp(-(mask**2) / sigma_decay)
|
838
|
+
mask *= mask > np.exp(-(cutoff_sigma**2) / 2)
|
839
|
+
else:
|
840
|
+
mask = (dist <= 1).astype(int)
|
832
841
|
return mask
|
833
842
|
|
834
843
|
|
@@ -926,7 +935,13 @@ def tube_mask2(
|
|
926
935
|
return mask
|
927
936
|
|
928
937
|
|
929
|
-
def box_mask(
|
938
|
+
def box_mask(
|
939
|
+
shape: Tuple[int],
|
940
|
+
center: Tuple[int],
|
941
|
+
height: Tuple[int],
|
942
|
+
sigma_decay: float = 0.0,
|
943
|
+
cutoff_sigma: float = 0.0,
|
944
|
+
) -> np.ndarray:
|
930
945
|
"""
|
931
946
|
Creates a box mask centered around the provided center point.
|
932
947
|
|
@@ -963,6 +978,11 @@ def box_mask(shape: Tuple[int], center: Tuple[int], height: Tuple[int]) -> np.nd
|
|
963
978
|
|
964
979
|
out = np.zeros(shape)
|
965
980
|
out[slice_indices] = 1
|
981
|
+
|
982
|
+
if sigma_decay > 0:
|
983
|
+
mask_filter = gaussian_filter(out.astype(np.float32), sigma=sigma_decay)
|
984
|
+
out = np.add(out, (1 - out) * mask_filter)
|
985
|
+
out *= out > np.exp(-(cutoff_sigma**2) / 2)
|
966
986
|
return out
|
967
987
|
|
968
988
|
|
@@ -973,6 +993,8 @@ def tube_mask(
|
|
973
993
|
inner_radius: float,
|
974
994
|
outer_radius: float,
|
975
995
|
height: int,
|
996
|
+
sigma_decay: float = 0.0,
|
997
|
+
**kwargs,
|
976
998
|
) -> NDArray:
|
977
999
|
"""
|
978
1000
|
Creates a tube mask.
|
@@ -1028,6 +1050,7 @@ def tube_mask(
|
|
1028
1050
|
shape=circle_shape,
|
1029
1051
|
radius=inner_radius,
|
1030
1052
|
center=circle_center,
|
1053
|
+
sigma_decay=sigma_decay,
|
1031
1054
|
)
|
1032
1055
|
if outer_radius > 0:
|
1033
1056
|
outer_circle = create_mask(
|
@@ -1035,6 +1058,7 @@ def tube_mask(
|
|
1035
1058
|
shape=circle_shape,
|
1036
1059
|
radius=outer_radius,
|
1037
1060
|
center=circle_center,
|
1061
|
+
sigma_decay=sigma_decay,
|
1038
1062
|
)
|
1039
1063
|
circle = outer_circle - inner_circle
|
1040
1064
|
circle = np.expand_dims(circle, axis=symmetry_axis)
|
@@ -1055,9 +1079,106 @@ def tube_mask(
|
|
1055
1079
|
return tube
|
1056
1080
|
|
1057
1081
|
|
1082
|
+
def membrane_mask(
|
1083
|
+
shape: Tuple[int],
|
1084
|
+
radius: float,
|
1085
|
+
thickness: float,
|
1086
|
+
separation: float,
|
1087
|
+
symmetry_axis: int = 2,
|
1088
|
+
center: Optional[Tuple[float]] = None,
|
1089
|
+
sigma_decay: float = 0.5,
|
1090
|
+
cutoff_sigma: float = 3,
|
1091
|
+
**kwargs,
|
1092
|
+
) -> NDArray:
|
1093
|
+
"""
|
1094
|
+
Creates a membrane mask consisting of two parallel disks with Gaussian intensity profile.
|
1095
|
+
Uses efficient broadcasting approach: flat disk mask × height profile.
|
1096
|
+
|
1097
|
+
Parameters
|
1098
|
+
----------
|
1099
|
+
shape : tuple of ints
|
1100
|
+
Shape of the mask to be created.
|
1101
|
+
radius : float
|
1102
|
+
Radius of the membrane disks.
|
1103
|
+
thickness : float
|
1104
|
+
Thickness of each disk in the membrane.
|
1105
|
+
separation : float
|
1106
|
+
Distance between the centers of the two disks.
|
1107
|
+
symmetry_axis : int, optional
|
1108
|
+
The axis perpendicular to the membrane disks, defaults to 2.
|
1109
|
+
center : tuple of floats, optional
|
1110
|
+
Center of the membrane (midpoint between the two disks), defaults to shape // 2.
|
1111
|
+
sigma_decay : float, optional
|
1112
|
+
Controls edge sharpness relative to radius, defaults to 0.5.
|
1113
|
+
cutoff_sigma : float, optional
|
1114
|
+
Cutoff for height profile in standard deviations, defaults to 3.
|
1115
|
+
|
1116
|
+
Returns
|
1117
|
+
-------
|
1118
|
+
NDArray
|
1119
|
+
The created membrane mask with Gaussian intensity profile.
|
1120
|
+
|
1121
|
+
Raises
|
1122
|
+
------
|
1123
|
+
ValueError
|
1124
|
+
If ``thickness`` is negative.
|
1125
|
+
If ``separation`` is negative.
|
1126
|
+
If ``center`` and ``shape`` do not have the same length.
|
1127
|
+
If ``symmetry_axis`` is out of bounds.
|
1128
|
+
|
1129
|
+
Examples
|
1130
|
+
--------
|
1131
|
+
>>> from tme.matching_utils import membrane_mask
|
1132
|
+
>>> mask = membrane_mask(shape=(50,50,50), radius=10, thickness=2, separation=15)
|
1133
|
+
"""
|
1134
|
+
shape = np.asarray(shape, dtype=int)
|
1135
|
+
|
1136
|
+
if center is None:
|
1137
|
+
center = np.divide(shape, 2).astype(float)
|
1138
|
+
|
1139
|
+
center = np.asarray(center, dtype=np.float32)
|
1140
|
+
center = np.repeat(center, shape.size // center.size)
|
1141
|
+
|
1142
|
+
if thickness < 0:
|
1143
|
+
raise ValueError("thickness must be non-negative.")
|
1144
|
+
if separation < 0:
|
1145
|
+
raise ValueError("separation must be non-negative.")
|
1146
|
+
if symmetry_axis >= len(shape):
|
1147
|
+
raise ValueError(f"symmetry_axis must be less than {len(shape)}.")
|
1148
|
+
if center.size != shape.size:
|
1149
|
+
raise ValueError("Length of center has to be either one or match shape.")
|
1150
|
+
|
1151
|
+
disk_mask = elliptical_mask(
|
1152
|
+
shape=[x for i, x in enumerate(shape) if i != symmetry_axis],
|
1153
|
+
radius=radius,
|
1154
|
+
sigma_decay=sigma_decay,
|
1155
|
+
cutoff_sigma=cutoff_sigma,
|
1156
|
+
)
|
1157
|
+
|
1158
|
+
axial_coord = np.arange(shape[symmetry_axis]) - center[symmetry_axis]
|
1159
|
+
height_profile = np.zeros((shape[symmetry_axis],), dtype=np.float32)
|
1160
|
+
for leaflet_pos in [-separation / 2, separation / 2]:
|
1161
|
+
leaflet_profile = np.exp(
|
1162
|
+
-((axial_coord - leaflet_pos) ** 2) / (2 * (thickness / 3) ** 2)
|
1163
|
+
)
|
1164
|
+
cutoff_threshold = np.exp(-(cutoff_sigma**2) / 2)
|
1165
|
+
leaflet_profile *= leaflet_profile > cutoff_threshold
|
1166
|
+
|
1167
|
+
height_profile = np.maximum(height_profile, leaflet_profile)
|
1168
|
+
|
1169
|
+
disk_mask = disk_mask.reshape(
|
1170
|
+
[x if i != symmetry_axis else 1 for i, x in enumerate(shape)]
|
1171
|
+
)
|
1172
|
+
height_profile = height_profile.reshape(
|
1173
|
+
[1 if i != symmetry_axis else x for i, x in enumerate(shape)]
|
1174
|
+
)
|
1175
|
+
|
1176
|
+
return disk_mask * height_profile
|
1177
|
+
|
1178
|
+
|
1058
1179
|
def scramble_phases(
|
1059
1180
|
arr: NDArray,
|
1060
|
-
noise_proportion: float = 0
|
1181
|
+
noise_proportion: float = 1.0,
|
1061
1182
|
seed: int = 42,
|
1062
1183
|
normalize_power: bool = False,
|
1063
1184
|
) -> NDArray:
|
@@ -1069,7 +1190,7 @@ def scramble_phases(
|
|
1069
1190
|
arr : NDArray
|
1070
1191
|
Input data.
|
1071
1192
|
noise_proportion : float, optional
|
1072
|
-
Proportion of scrambled phases, 0
|
1193
|
+
Proportion of scrambled phases, 1.0 by default.
|
1073
1194
|
seed : int, optional
|
1074
1195
|
The seed for the random phase scrambling, 42 by default.
|
1075
1196
|
normalize_power : bool, optional
|
@@ -1080,15 +1201,22 @@ def scramble_phases(
|
|
1080
1201
|
NDArray
|
1081
1202
|
Phase scrambled version of ``arr``.
|
1082
1203
|
"""
|
1204
|
+
from tme.filters._utils import fftfreqn
|
1205
|
+
|
1083
1206
|
np.random.seed(seed)
|
1084
1207
|
noise_proportion = max(min(noise_proportion, 1), 0)
|
1085
1208
|
|
1086
1209
|
arr_fft = np.fft.fftn(arr)
|
1087
1210
|
amp, ph = np.abs(arr_fft), np.angle(arr_fft)
|
1088
1211
|
|
1089
|
-
|
1090
|
-
|
1091
|
-
|
1212
|
+
# Scrambling up to nyquist gives more uniform noise distribution
|
1213
|
+
mask = np.fft.ifftshift(
|
1214
|
+
fftfreqn(arr_fft.shape, sampling_rate=1, compute_euclidean_norm=True) <= 0.5
|
1215
|
+
)
|
1216
|
+
|
1217
|
+
ph_noise = np.random.permutation(ph[mask])
|
1218
|
+
ph[mask] = ph[mask] * (1 - noise_proportion) + ph_noise * noise_proportion
|
1219
|
+
ret = np.real(np.fft.ifftn(amp * np.exp(1j * ph)))
|
1092
1220
|
|
1093
1221
|
if normalize_power:
|
1094
1222
|
np.divide(ret - ret.min(), ret.max() - ret.min(), out=ret)
|
@@ -1166,6 +1294,8 @@ class TqdmParallel(Parallel):
|
|
1166
1294
|
"""
|
1167
1295
|
|
1168
1296
|
def __init__(self, tqdm_args: Dict = {}, *args, **kwargs):
|
1297
|
+
from tqdm import tqdm
|
1298
|
+
|
1169
1299
|
super().__init__(*args, **kwargs)
|
1170
1300
|
self.pbar = tqdm(**tqdm_args)
|
1171
1301
|
|
tme/memory.py
CHANGED
@@ -1,8 +1,9 @@
|
|
1
|
-
"""
|
1
|
+
"""
|
2
|
+
Compute memory consumption of template matching components.
|
2
3
|
|
3
|
-
|
4
|
+
Copyright (c) 2023 European Molecular Biology Laboratory
|
4
5
|
|
5
|
-
|
6
|
+
Author: Valentin Maurer <valentin.maurer@embl-hamburg.de>
|
6
7
|
"""
|
7
8
|
|
8
9
|
from abc import ABC, abstractmethod
|
tme/orientations.py
CHANGED
@@ -1,10 +1,11 @@
|
|
1
|
-
|
2
|
-
|
1
|
+
"""
|
2
|
+
Handle template matching orientations and conversion between formats.
|
3
3
|
|
4
|
-
|
4
|
+
Copyright (c) 2024 European Molecular Biology Laboratory
|
5
5
|
|
6
|
-
|
6
|
+
Author: Valentin Maurer <valentin.maurer@embl-hamburg.de>
|
7
7
|
"""
|
8
|
+
|
8
9
|
from typing import List, Tuple
|
9
10
|
from dataclasses import dataclass
|
10
11
|
from string import ascii_lowercase, ascii_uppercase
|
@@ -14,7 +15,7 @@ import numpy as np
|
|
14
15
|
from .parser import StarParser
|
15
16
|
from .matching_utils import compute_extraction_box
|
16
17
|
|
17
|
-
# Exceeds available numpy dimensions for default installations
|
18
|
+
# Exceeds available numpy dimensions for default installations
|
18
19
|
NAMES = ["x", "y", "z", *ascii_lowercase[:-3], *ascii_uppercase]
|
19
20
|
|
20
21
|
|
@@ -81,7 +82,7 @@ class Orientations:
|
|
81
82
|
self.translations = np.array(self.translations).astype(np.float32)
|
82
83
|
self.rotations = np.array(self.rotations).astype(np.float32)
|
83
84
|
self.scores = np.array(self.scores).astype(np.float32)
|
84
|
-
self.details = np.array(self.details)
|
85
|
+
self.details = np.array(self.details)
|
85
86
|
n_orientations = set(
|
86
87
|
[
|
87
88
|
self.translations.shape[0],
|
@@ -324,6 +325,7 @@ class Orientations:
|
|
324
325
|
"_rlnAngleRot",
|
325
326
|
"_rlnAngleTilt",
|
326
327
|
"_rlnAnglePsi",
|
328
|
+
"_rlnClassNumber",
|
327
329
|
]
|
328
330
|
if source_path is not None:
|
329
331
|
header.append("_rlnMicrographName")
|
@@ -339,6 +341,7 @@ class Orientations:
|
|
339
341
|
for index, (translation, rotation, score, detail) in enumerate(self):
|
340
342
|
line = [str(x) for x in translation]
|
341
343
|
line.extend([str(x) for x in rotation])
|
344
|
+
line.extend([str(detail)])
|
342
345
|
|
343
346
|
if source_path is not None:
|
344
347
|
line.append(source_path)
|
@@ -489,9 +492,12 @@ class Orientations:
|
|
489
492
|
def _from_star(
|
490
493
|
cls, filename: str, delimiter: str = "\t"
|
491
494
|
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
|
492
|
-
|
495
|
+
parser = StarParser(filename, delimiter=delimiter)
|
496
|
+
|
497
|
+
ret = parser.get("data_particles", None)
|
498
|
+
if ret is None:
|
499
|
+
ret = parser.get("data_", None)
|
493
500
|
|
494
|
-
ret = ret.get("data_particles", None)
|
495
501
|
if ret is None:
|
496
502
|
raise ValueError(f"No data_particles section found in {filename}.")
|
497
503
|
|
@@ -500,13 +506,20 @@ class Orientations:
|
|
500
506
|
)
|
501
507
|
translation = translation.astype(np.float32).T
|
502
508
|
|
509
|
+
default_angle = np.zeros(translation.shape[0], dtype=np.float32)
|
510
|
+
for x in ("_rlnAngleRot", "_rlnAngleTilt", "_rlnAnglePsi"):
|
511
|
+
if x not in ret:
|
512
|
+
ret[x] = default_angle
|
513
|
+
|
503
514
|
rotation = np.vstack(
|
504
515
|
(ret["_rlnAngleRot"], ret["_rlnAngleTilt"], ret["_rlnAnglePsi"])
|
505
516
|
)
|
506
517
|
rotation = rotation.astype(np.float32).T
|
507
518
|
|
508
519
|
default = np.zeros(translation.shape[0])
|
509
|
-
|
520
|
+
|
521
|
+
scores = ret.get("_pytmeScore", default)
|
522
|
+
return translation, rotation, scores, default
|
510
523
|
|
511
524
|
@staticmethod
|
512
525
|
def _from_tbl(
|
tme/parser.py
CHANGED
@@ -1,8 +1,9 @@
|
|
1
|
-
"""
|
1
|
+
"""
|
2
|
+
Implements parsers for atomic structure file formats.
|
2
3
|
|
3
|
-
|
4
|
+
Copyright (c) 2023 European Molecular Biology Laboratory
|
4
5
|
|
5
|
-
|
6
|
+
Author: Valentin Maurer <valentin.maurer@embl-hamburg.de>
|
6
7
|
"""
|
7
8
|
|
8
9
|
import re
|
@@ -15,7 +16,14 @@ from typing import List, Dict, Union
|
|
15
16
|
|
16
17
|
import numpy as np
|
17
18
|
|
18
|
-
__all__ = [
|
19
|
+
__all__ = [
|
20
|
+
"PDBParser",
|
21
|
+
"MMCIFParser",
|
22
|
+
"GROParser",
|
23
|
+
"StarParser",
|
24
|
+
"XMLParser",
|
25
|
+
"MDOCParser",
|
26
|
+
]
|
19
27
|
|
20
28
|
|
21
29
|
class Parser(ABC):
|
@@ -84,6 +92,34 @@ class Parser(ABC):
|
|
84
92
|
"""
|
85
93
|
return key in self._data
|
86
94
|
|
95
|
+
def __repr__(self) -> str:
|
96
|
+
"""
|
97
|
+
String representation of the Parser showing available keys and their lengths.
|
98
|
+
|
99
|
+
Returns
|
100
|
+
-------
|
101
|
+
str
|
102
|
+
A formatted string showing each key and the length of its value.
|
103
|
+
"""
|
104
|
+
if not self._data:
|
105
|
+
return f"{self.__class__.__name__}(empty)"
|
106
|
+
|
107
|
+
lines = [f"{self.__class__.__name__}:"]
|
108
|
+
try:
|
109
|
+
for key, value in sorted(self._data.items()):
|
110
|
+
if isinstance(value, (list, tuple)):
|
111
|
+
lines.append(f" {key}: length {len(value)}")
|
112
|
+
elif isinstance(value, dict):
|
113
|
+
lines.append(f" {key}: dict with {len(value)} keys")
|
114
|
+
elif isinstance(value, str):
|
115
|
+
lines.append(f" {key}: str")
|
116
|
+
else:
|
117
|
+
lines.append(f" {key}: {type(value).__name__}")
|
118
|
+
except Exception:
|
119
|
+
pass
|
120
|
+
|
121
|
+
return "\n".join(lines)
|
122
|
+
|
87
123
|
def get(self, key, default=None):
|
88
124
|
"""
|
89
125
|
Retrieve a value from the internal data using a given key. If the
|
@@ -247,19 +283,6 @@ class MMCIFParser(Parser):
|
|
247
283
|
"""
|
248
284
|
|
249
285
|
def parse_input(self, lines: deque) -> Dict:
|
250
|
-
"""
|
251
|
-
Parse a list of lines from an MMCIF file and convert the data into a dictionary.
|
252
|
-
|
253
|
-
Parameters
|
254
|
-
----------
|
255
|
-
lines : deque of str
|
256
|
-
The lines of an MMCIF file to parse.
|
257
|
-
|
258
|
-
Returns
|
259
|
-
-------
|
260
|
-
dict
|
261
|
-
A dictionary containing the parsed data from the MMCIF file.
|
262
|
-
"""
|
263
286
|
lines = self._consolidate_strings(lines)
|
264
287
|
blocks = self._split_in_blocks(lines)
|
265
288
|
mmcif_dict = {}
|
@@ -448,21 +471,6 @@ class GROParser(Parser):
|
|
448
471
|
"""
|
449
472
|
|
450
473
|
def parse_input(self, lines, **kwargs) -> Dict:
|
451
|
-
"""
|
452
|
-
Parse a list of lines from a GRO file and convert the data into a dictionary.
|
453
|
-
|
454
|
-
Parameters
|
455
|
-
----------
|
456
|
-
lines : deque of str
|
457
|
-
The lines of a GRO file to parse.
|
458
|
-
kwargs : Dict, optional
|
459
|
-
Optional keyword arguments.
|
460
|
-
|
461
|
-
Returns
|
462
|
-
-------
|
463
|
-
dict
|
464
|
-
A dictionary containing the parsed data from the GRO file.
|
465
|
-
"""
|
466
474
|
data = {
|
467
475
|
"title": [],
|
468
476
|
"num_atoms": [],
|
@@ -560,7 +568,7 @@ class StarParser(MMCIFParser):
|
|
560
568
|
.. [1] https://www.iucr.org/__data/assets/file/0013/11416/star.5.html
|
561
569
|
"""
|
562
570
|
|
563
|
-
def parse_input(self, lines: List[str], delimiter: str =
|
571
|
+
def parse_input(self, lines: List[str], delimiter: str = None) -> Dict:
|
564
572
|
pattern = re.compile(r"\s*#.*")
|
565
573
|
|
566
574
|
ret, category, block = {}, None, []
|
@@ -683,3 +691,76 @@ class XMLParser(Parser):
|
|
683
691
|
pass
|
684
692
|
|
685
693
|
return value_str
|
694
|
+
|
695
|
+
|
696
|
+
class MDOCParser(Parser):
|
697
|
+
"""
|
698
|
+
Convert MDOC file (SerialEM metadata) into a dictionary representation.
|
699
|
+
|
700
|
+
MDOC files contain global parameters and per-tilt metadata for cryo-ET
|
701
|
+
tilt series, with sections marked by [ZValue = N] for individual tilts.
|
702
|
+
"""
|
703
|
+
|
704
|
+
def parse_input(self, lines: deque, **kwargs) -> Dict:
|
705
|
+
data = {}
|
706
|
+
global_params = {}
|
707
|
+
in_zvalue_section = False
|
708
|
+
zvalue_pattern = re.compile(r"\[ZValue\s*=\s*(\d+)\]")
|
709
|
+
section_pattern = re.compile(r"\[T\s*=\s*(.*?)\]")
|
710
|
+
|
711
|
+
if not lines:
|
712
|
+
return data
|
713
|
+
|
714
|
+
while lines:
|
715
|
+
line = lines.popleft().strip()
|
716
|
+
|
717
|
+
if not line:
|
718
|
+
continue
|
719
|
+
|
720
|
+
# Check for ZValue section header
|
721
|
+
zvalue_match = zvalue_pattern.match(line)
|
722
|
+
if zvalue_match:
|
723
|
+
in_zvalue_section = True
|
724
|
+
|
725
|
+
zvalue = int(zvalue_match.group(1))
|
726
|
+
if "ZValue" not in data:
|
727
|
+
data["ZValue"] = []
|
728
|
+
data["ZValue"].append(zvalue)
|
729
|
+
continue
|
730
|
+
|
731
|
+
# Check for T section header (comments/metadata)
|
732
|
+
section_match = section_pattern.match(line)
|
733
|
+
if section_match:
|
734
|
+
section_content = section_match.group(1)
|
735
|
+
if "sections" not in global_params:
|
736
|
+
global_params["sections"] = []
|
737
|
+
global_params["sections"].append(section_content)
|
738
|
+
continue
|
739
|
+
|
740
|
+
# Parse key-value pairs
|
741
|
+
if "=" in line:
|
742
|
+
try:
|
743
|
+
key, value = line.split("=", 1)
|
744
|
+
key = key.strip()
|
745
|
+
value = value.strip()
|
746
|
+
|
747
|
+
try:
|
748
|
+
if "." not in value and "e" not in value.lower():
|
749
|
+
parsed_value = int(value)
|
750
|
+
else:
|
751
|
+
parsed_value = float(value)
|
752
|
+
except ValueError:
|
753
|
+
parsed_value = value
|
754
|
+
|
755
|
+
if not in_zvalue_section:
|
756
|
+
global_params[key] = parsed_value
|
757
|
+
else:
|
758
|
+
if key not in data:
|
759
|
+
data[key] = []
|
760
|
+
data[key].append(parsed_value)
|
761
|
+
|
762
|
+
except ValueError:
|
763
|
+
continue
|
764
|
+
|
765
|
+
data.update(global_params)
|
766
|
+
return data
|
tme/preprocessor.py
CHANGED
@@ -1,8 +1,9 @@
|
|
1
|
-
"""
|
1
|
+
"""
|
2
|
+
Implements Preprocessor class for filtering operations.
|
2
3
|
|
3
|
-
|
4
|
+
Copyright (c) 2023 European Molecular Biology Laboratory
|
4
5
|
|
5
|
-
|
6
|
+
Author: Valentin Maurer <valentin.maurer@embl-hamburg.de>
|
6
7
|
"""
|
7
8
|
|
8
9
|
import os
|
@@ -669,9 +670,9 @@ class Preprocessor:
|
|
669
670
|
NDArray
|
670
671
|
Bandpass filtered.
|
671
672
|
"""
|
672
|
-
from .filters import
|
673
|
+
from .filters import BandPassReconstructed
|
673
674
|
|
674
|
-
return
|
675
|
+
return BandPassReconstructed(
|
675
676
|
sampling_rate=sampling_rate,
|
676
677
|
lowpass=lowpass,
|
677
678
|
highpass=highpass,
|
tme/rotations.py
CHANGED
@@ -1,8 +1,9 @@
|
|
1
|
-
"""
|
1
|
+
"""
|
2
|
+
Implements various means of generating rotation matrices.
|
2
3
|
|
3
|
-
|
4
|
+
Copyright (c) 2023-2025 European Molecular Biology Laboratory
|
4
5
|
|
5
|
-
|
6
|
+
Author: Valentin Maurer <valentin.maurer@embl-hamburg.de>
|
6
7
|
"""
|
7
8
|
|
8
9
|
import yaml
|
@@ -183,12 +184,14 @@ def euler_to_rotationmatrix(angles: Tuple[float], seq: str = "zyz") -> NDArray:
|
|
183
184
|
NDArray
|
184
185
|
The generated rotation matrix.
|
185
186
|
"""
|
187
|
+
angles = np.asarray(angles)
|
188
|
+
|
186
189
|
n_angles = len(angles)
|
187
|
-
|
188
|
-
|
189
|
-
|
190
|
+
if angles.ndim == 2:
|
191
|
+
n_angles = angles.shape[1]
|
192
|
+
|
190
193
|
rotation_matrix = Rotation.from_euler(
|
191
|
-
seq=
|
194
|
+
seq=seq[:n_angles], angles=angles, degrees=True
|
192
195
|
)
|
193
196
|
return rotation_matrix.as_matrix().astype(np.float32)
|
194
197
|
|
tme/structure.py
CHANGED
@@ -1,8 +1,9 @@
|
|
1
|
-
"""
|
1
|
+
"""
|
2
|
+
Implements class Structure to represent atomic structures.
|
2
3
|
|
3
|
-
|
4
|
+
Copyright (c) 2023 European Molecular Biology Laboratory
|
4
5
|
|
5
|
-
|
6
|
+
Author: Valentin Maurer <valentin.maurer@embl-hamburg.de>
|
6
7
|
"""
|
7
8
|
|
8
9
|
import warnings
|