pytme 0.2.9.post1__cp311-cp311-macosx_15_0_arm64.whl → 0.3.0__cp311-cp311-macosx_15_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pytme-0.3.0.data/scripts/estimate_memory_usage.py +76 -0
- pytme-0.3.0.data/scripts/match_template.py +1106 -0
- {pytme-0.2.9.post1.data → pytme-0.3.0.data}/scripts/postprocess.py +320 -190
- {pytme-0.2.9.post1.data → pytme-0.3.0.data}/scripts/preprocess.py +21 -31
- {pytme-0.2.9.post1.data → pytme-0.3.0.data}/scripts/preprocessor_gui.py +85 -19
- pytme-0.3.0.data/scripts/pytme_runner.py +771 -0
- {pytme-0.2.9.post1.dist-info → pytme-0.3.0.dist-info}/METADATA +21 -20
- pytme-0.3.0.dist-info/RECORD +126 -0
- {pytme-0.2.9.post1.dist-info → pytme-0.3.0.dist-info}/entry_points.txt +2 -1
- pytme-0.3.0.dist-info/licenses/LICENSE +339 -0
- scripts/estimate_memory_usage.py +76 -0
- scripts/eval.py +93 -0
- scripts/extract_candidates.py +224 -0
- scripts/match_template.py +349 -378
- pytme-0.2.9.post1.data/scripts/match_template.py → scripts/match_template_filters.py +213 -148
- scripts/postprocess.py +320 -190
- scripts/preprocess.py +21 -31
- scripts/preprocessor_gui.py +85 -19
- scripts/pytme_runner.py +771 -0
- scripts/refine_matches.py +625 -0
- tests/preprocessing/test_frequency_filters.py +28 -14
- tests/test_analyzer.py +41 -36
- tests/test_backends.py +1 -0
- tests/test_matching_cli.py +109 -54
- tests/test_matching_data.py +5 -5
- tests/test_matching_exhaustive.py +1 -2
- tests/test_matching_optimization.py +4 -9
- tests/test_matching_utils.py +1 -1
- tests/test_orientations.py +0 -1
- tme/__version__.py +1 -1
- tme/analyzer/__init__.py +2 -0
- tme/analyzer/_utils.py +26 -21
- tme/analyzer/aggregation.py +395 -222
- tme/analyzer/base.py +127 -0
- tme/analyzer/peaks.py +189 -204
- tme/analyzer/proxy.py +123 -0
- tme/backends/__init__.py +4 -3
- tme/backends/_cupy_utils.py +25 -24
- tme/backends/_jax_utils.py +20 -18
- tme/backends/cupy_backend.py +13 -26
- tme/backends/jax_backend.py +24 -23
- tme/backends/matching_backend.py +4 -3
- tme/backends/mlx_backend.py +4 -3
- tme/backends/npfftw_backend.py +34 -30
- tme/backends/pytorch_backend.py +18 -4
- tme/cli.py +126 -0
- tme/density.py +9 -7
- tme/extensions.cpython-311-darwin.so +0 -0
- tme/filters/__init__.py +3 -3
- tme/filters/_utils.py +36 -10
- tme/filters/bandpass.py +229 -188
- tme/filters/compose.py +5 -4
- tme/filters/ctf.py +516 -254
- tme/filters/reconstruction.py +91 -32
- tme/filters/wedge.py +196 -135
- tme/filters/whitening.py +37 -42
- tme/matching_data.py +28 -39
- tme/matching_exhaustive.py +31 -27
- tme/matching_optimization.py +5 -4
- tme/matching_scores.py +25 -15
- tme/matching_utils.py +193 -27
- tme/memory.py +4 -3
- tme/orientations.py +22 -9
- tme/parser.py +114 -33
- tme/preprocessor.py +6 -5
- tme/rotations.py +10 -7
- tme/structure.py +4 -3
- pytme-0.2.9.post1.data/scripts/estimate_ram_usage.py +0 -97
- pytme-0.2.9.post1.dist-info/RECORD +0 -119
- pytme-0.2.9.post1.dist-info/licenses/LICENSE +0 -153
- scripts/estimate_ram_usage.py +0 -97
- tests/data/Maps/.DS_Store +0 -0
- tests/data/Structures/.DS_Store +0 -0
- {pytme-0.2.9.post1.dist-info → pytme-0.3.0.dist-info}/WHEEL +0 -0
- {pytme-0.2.9.post1.dist-info → pytme-0.3.0.dist-info}/top_level.txt +0 -0
tme/matching_utils.py
CHANGED
@@ -1,8 +1,9 @@
|
|
1
|
-
"""
|
1
|
+
"""
|
2
|
+
Utility functions for template matching.
|
2
3
|
|
3
|
-
|
4
|
+
Copyright (c) 2023 European Molecular Biology Laboratory
|
4
5
|
|
5
|
-
|
6
|
+
Author: Valentin Maurer <valentin.maurer@embl-hamburg.de>
|
6
7
|
"""
|
7
8
|
|
8
9
|
import os
|
@@ -519,7 +520,7 @@ def apply_convolution_mode(
|
|
519
520
|
elif convolution_mode == "same":
|
520
521
|
return func(arr, s1)
|
521
522
|
elif convolution_mode == "valid":
|
522
|
-
valid_shape = [s1[i] - s2[i] +
|
523
|
+
valid_shape = [s1[i] - s2[i] + 1 for i in range(arr.ndim)]
|
523
524
|
return func(arr, valid_shape)
|
524
525
|
|
525
526
|
|
@@ -724,13 +725,15 @@ def create_mask(mask_type: str, sigma_decay: float = 0, **kwargs) -> NDArray:
|
|
724
725
|
mask_type : str
|
725
726
|
Type of the mask to be created. Can be one of:
|
726
727
|
|
727
|
-
|
728
|
-
| box
|
729
|
-
|
730
|
-
| tube
|
731
|
-
|
732
|
-
|
|
733
|
-
|
728
|
+
+----------+---------------------------------------------------------+
|
729
|
+
| box | Box mask (see :py:meth:`box_mask`) |
|
730
|
+
+----------+---------------------------------------------------------+
|
731
|
+
| tube | Cylindrical mask (see :py:meth:`tube_mask`) |
|
732
|
+
+----------+---------------------------------------------------------+
|
733
|
+
| membrane | Cylindrical mask (see :py:meth:`membrane_mask`) |
|
734
|
+
+----------+---------------------------------------------------------+
|
735
|
+
| ellipse | Ellipsoidal mask (see :py:meth:`elliptical_mask`) |
|
736
|
+
+----------+---------------------------------------------------------+
|
734
737
|
sigma_decay : float, optional
|
735
738
|
Smoothing along mask edges using a Gaussian filter, 0 by default.
|
736
739
|
kwargs : dict
|
@@ -746,16 +749,16 @@ def create_mask(mask_type: str, sigma_decay: float = 0, **kwargs) -> NDArray:
|
|
746
749
|
ValueError
|
747
750
|
If the mask_type is invalid.
|
748
751
|
"""
|
749
|
-
mapping = {
|
752
|
+
mapping = {
|
753
|
+
"ellipse": elliptical_mask,
|
754
|
+
"box": box_mask,
|
755
|
+
"tube": tube_mask,
|
756
|
+
"membrane": membrane_mask,
|
757
|
+
}
|
750
758
|
if mask_type not in mapping:
|
751
759
|
raise ValueError(f"mask_type has to be one of {','.join(mapping.keys())}")
|
752
760
|
|
753
|
-
mask = mapping[mask_type](**kwargs)
|
754
|
-
if sigma_decay > 0:
|
755
|
-
mask_filter = gaussian_filter(mask.astype(np.float32), sigma=sigma_decay)
|
756
|
-
mask = np.add(mask, (1 - mask) * mask_filter)
|
757
|
-
mask[mask < np.exp(-np.square(sigma_decay))] = 0
|
758
|
-
|
761
|
+
mask = mapping[mask_type](**kwargs, sigma_decay=sigma_decay)
|
759
762
|
return mask
|
760
763
|
|
761
764
|
|
@@ -764,6 +767,8 @@ def elliptical_mask(
|
|
764
767
|
radius: Tuple[float],
|
765
768
|
center: Optional[Tuple[float]] = None,
|
766
769
|
orientation: Optional[NDArray] = None,
|
770
|
+
sigma_decay: float = 0.0,
|
771
|
+
cutoff_sigma: float = 3,
|
767
772
|
) -> NDArray:
|
768
773
|
"""
|
769
774
|
Creates an ellipsoidal mask.
|
@@ -825,9 +830,14 @@ def elliptical_mask(
|
|
825
830
|
)
|
826
831
|
indices = indices.reshape(*return_shape)
|
827
832
|
|
828
|
-
|
829
|
-
|
830
|
-
|
833
|
+
dist = np.linalg.norm(indices / radius, axis=0)
|
834
|
+
if sigma_decay > 0:
|
835
|
+
sigma_decay = 2 * (sigma_decay / np.mean(radius)) ** 2
|
836
|
+
mask = np.maximum(0, dist - 1)
|
837
|
+
mask = np.exp(-(mask**2) / sigma_decay)
|
838
|
+
mask *= mask > np.exp(-(cutoff_sigma**2) / 2)
|
839
|
+
else:
|
840
|
+
mask = (dist <= 1).astype(int)
|
831
841
|
return mask
|
832
842
|
|
833
843
|
|
@@ -925,7 +935,13 @@ def tube_mask2(
|
|
925
935
|
return mask
|
926
936
|
|
927
937
|
|
928
|
-
def box_mask(
|
938
|
+
def box_mask(
|
939
|
+
shape: Tuple[int],
|
940
|
+
center: Tuple[int],
|
941
|
+
height: Tuple[int],
|
942
|
+
sigma_decay: float = 0.0,
|
943
|
+
cutoff_sigma: float = 0.0,
|
944
|
+
) -> np.ndarray:
|
929
945
|
"""
|
930
946
|
Creates a box mask centered around the provided center point.
|
931
947
|
|
@@ -962,6 +978,11 @@ def box_mask(shape: Tuple[int], center: Tuple[int], height: Tuple[int]) -> np.nd
|
|
962
978
|
|
963
979
|
out = np.zeros(shape)
|
964
980
|
out[slice_indices] = 1
|
981
|
+
|
982
|
+
if sigma_decay > 0:
|
983
|
+
mask_filter = gaussian_filter(out.astype(np.float32), sigma=sigma_decay)
|
984
|
+
out = np.add(out, (1 - out) * mask_filter)
|
985
|
+
out *= out > np.exp(-(cutoff_sigma**2) / 2)
|
965
986
|
return out
|
966
987
|
|
967
988
|
|
@@ -972,6 +993,8 @@ def tube_mask(
|
|
972
993
|
inner_radius: float,
|
973
994
|
outer_radius: float,
|
974
995
|
height: int,
|
996
|
+
sigma_decay: float = 0.0,
|
997
|
+
**kwargs,
|
975
998
|
) -> NDArray:
|
976
999
|
"""
|
977
1000
|
Creates a tube mask.
|
@@ -1027,6 +1050,7 @@ def tube_mask(
|
|
1027
1050
|
shape=circle_shape,
|
1028
1051
|
radius=inner_radius,
|
1029
1052
|
center=circle_center,
|
1053
|
+
sigma_decay=sigma_decay,
|
1030
1054
|
)
|
1031
1055
|
if outer_radius > 0:
|
1032
1056
|
outer_circle = create_mask(
|
@@ -1034,6 +1058,7 @@ def tube_mask(
|
|
1034
1058
|
shape=circle_shape,
|
1035
1059
|
radius=outer_radius,
|
1036
1060
|
center=circle_center,
|
1061
|
+
sigma_decay=sigma_decay,
|
1037
1062
|
)
|
1038
1063
|
circle = outer_circle - inner_circle
|
1039
1064
|
circle = np.expand_dims(circle, axis=symmetry_axis)
|
@@ -1054,9 +1079,106 @@ def tube_mask(
|
|
1054
1079
|
return tube
|
1055
1080
|
|
1056
1081
|
|
1082
|
+
def membrane_mask(
|
1083
|
+
shape: Tuple[int],
|
1084
|
+
radius: float,
|
1085
|
+
thickness: float,
|
1086
|
+
separation: float,
|
1087
|
+
symmetry_axis: int = 2,
|
1088
|
+
center: Optional[Tuple[float]] = None,
|
1089
|
+
sigma_decay: float = 0.5,
|
1090
|
+
cutoff_sigma: float = 3,
|
1091
|
+
**kwargs,
|
1092
|
+
) -> NDArray:
|
1093
|
+
"""
|
1094
|
+
Creates a membrane mask consisting of two parallel disks with Gaussian intensity profile.
|
1095
|
+
Uses efficient broadcasting approach: flat disk mask × height profile.
|
1096
|
+
|
1097
|
+
Parameters
|
1098
|
+
----------
|
1099
|
+
shape : tuple of ints
|
1100
|
+
Shape of the mask to be created.
|
1101
|
+
radius : float
|
1102
|
+
Radius of the membrane disks.
|
1103
|
+
thickness : float
|
1104
|
+
Thickness of each disk in the membrane.
|
1105
|
+
separation : float
|
1106
|
+
Distance between the centers of the two disks.
|
1107
|
+
symmetry_axis : int, optional
|
1108
|
+
The axis perpendicular to the membrane disks, defaults to 2.
|
1109
|
+
center : tuple of floats, optional
|
1110
|
+
Center of the membrane (midpoint between the two disks), defaults to shape // 2.
|
1111
|
+
sigma_decay : float, optional
|
1112
|
+
Controls edge sharpness relative to radius, defaults to 0.5.
|
1113
|
+
cutoff_sigma : float, optional
|
1114
|
+
Cutoff for height profile in standard deviations, defaults to 3.
|
1115
|
+
|
1116
|
+
Returns
|
1117
|
+
-------
|
1118
|
+
NDArray
|
1119
|
+
The created membrane mask with Gaussian intensity profile.
|
1120
|
+
|
1121
|
+
Raises
|
1122
|
+
------
|
1123
|
+
ValueError
|
1124
|
+
If ``thickness`` is negative.
|
1125
|
+
If ``separation`` is negative.
|
1126
|
+
If ``center`` and ``shape`` do not have the same length.
|
1127
|
+
If ``symmetry_axis`` is out of bounds.
|
1128
|
+
|
1129
|
+
Examples
|
1130
|
+
--------
|
1131
|
+
>>> from tme.matching_utils import membrane_mask
|
1132
|
+
>>> mask = membrane_mask(shape=(50,50,50), radius=10, thickness=2, separation=15)
|
1133
|
+
"""
|
1134
|
+
shape = np.asarray(shape, dtype=int)
|
1135
|
+
|
1136
|
+
if center is None:
|
1137
|
+
center = np.divide(shape, 2).astype(float)
|
1138
|
+
|
1139
|
+
center = np.asarray(center, dtype=np.float32)
|
1140
|
+
center = np.repeat(center, shape.size // center.size)
|
1141
|
+
|
1142
|
+
if thickness < 0:
|
1143
|
+
raise ValueError("thickness must be non-negative.")
|
1144
|
+
if separation < 0:
|
1145
|
+
raise ValueError("separation must be non-negative.")
|
1146
|
+
if symmetry_axis >= len(shape):
|
1147
|
+
raise ValueError(f"symmetry_axis must be less than {len(shape)}.")
|
1148
|
+
if center.size != shape.size:
|
1149
|
+
raise ValueError("Length of center has to be either one or match shape.")
|
1150
|
+
|
1151
|
+
disk_mask = elliptical_mask(
|
1152
|
+
shape=[x for i, x in enumerate(shape) if i != symmetry_axis],
|
1153
|
+
radius=radius,
|
1154
|
+
sigma_decay=sigma_decay,
|
1155
|
+
cutoff_sigma=cutoff_sigma,
|
1156
|
+
)
|
1157
|
+
|
1158
|
+
axial_coord = np.arange(shape[symmetry_axis]) - center[symmetry_axis]
|
1159
|
+
height_profile = np.zeros((shape[symmetry_axis],), dtype=np.float32)
|
1160
|
+
for leaflet_pos in [-separation / 2, separation / 2]:
|
1161
|
+
leaflet_profile = np.exp(
|
1162
|
+
-((axial_coord - leaflet_pos) ** 2) / (2 * (thickness / 3) ** 2)
|
1163
|
+
)
|
1164
|
+
cutoff_threshold = np.exp(-(cutoff_sigma**2) / 2)
|
1165
|
+
leaflet_profile *= leaflet_profile > cutoff_threshold
|
1166
|
+
|
1167
|
+
height_profile = np.maximum(height_profile, leaflet_profile)
|
1168
|
+
|
1169
|
+
disk_mask = disk_mask.reshape(
|
1170
|
+
[x if i != symmetry_axis else 1 for i, x in enumerate(shape)]
|
1171
|
+
)
|
1172
|
+
height_profile = height_profile.reshape(
|
1173
|
+
[1 if i != symmetry_axis else x for i, x in enumerate(shape)]
|
1174
|
+
)
|
1175
|
+
|
1176
|
+
return disk_mask * height_profile
|
1177
|
+
|
1178
|
+
|
1057
1179
|
def scramble_phases(
|
1058
1180
|
arr: NDArray,
|
1059
|
-
noise_proportion: float = 0
|
1181
|
+
noise_proportion: float = 1.0,
|
1060
1182
|
seed: int = 42,
|
1061
1183
|
normalize_power: bool = False,
|
1062
1184
|
) -> NDArray:
|
@@ -1068,7 +1190,7 @@ def scramble_phases(
|
|
1068
1190
|
arr : NDArray
|
1069
1191
|
Input data.
|
1070
1192
|
noise_proportion : float, optional
|
1071
|
-
Proportion of scrambled phases, 0
|
1193
|
+
Proportion of scrambled phases, 1.0 by default.
|
1072
1194
|
seed : int, optional
|
1073
1195
|
The seed for the random phase scrambling, 42 by default.
|
1074
1196
|
normalize_power : bool, optional
|
@@ -1079,15 +1201,22 @@ def scramble_phases(
|
|
1079
1201
|
NDArray
|
1080
1202
|
Phase scrambled version of ``arr``.
|
1081
1203
|
"""
|
1204
|
+
from tme.filters._utils import fftfreqn
|
1205
|
+
|
1082
1206
|
np.random.seed(seed)
|
1083
1207
|
noise_proportion = max(min(noise_proportion, 1), 0)
|
1084
1208
|
|
1085
1209
|
arr_fft = np.fft.fftn(arr)
|
1086
1210
|
amp, ph = np.abs(arr_fft), np.angle(arr_fft)
|
1087
1211
|
|
1088
|
-
|
1089
|
-
|
1090
|
-
|
1212
|
+
# Scrambling up to nyquist gives more uniform noise distribution
|
1213
|
+
mask = np.fft.ifftshift(
|
1214
|
+
fftfreqn(arr_fft.shape, sampling_rate=1, compute_euclidean_norm=True) <= 0.5
|
1215
|
+
)
|
1216
|
+
|
1217
|
+
ph_noise = np.random.permutation(ph[mask])
|
1218
|
+
ph[mask] = ph[mask] * (1 - noise_proportion) + ph_noise * noise_proportion
|
1219
|
+
ret = np.real(np.fft.ifftn(amp * np.exp(1j * ph)))
|
1091
1220
|
|
1092
1221
|
if normalize_power:
|
1093
1222
|
np.divide(ret - ret.min(), ret.max() - ret.min(), out=ret)
|
@@ -1150,3 +1279,40 @@ def compute_extraction_box(
|
|
1150
1279
|
keep = be.multiply(keep, clamp_change == 0)
|
1151
1280
|
|
1152
1281
|
return obs_beg_clamp, obs_end_clamp, cand_beg, cand_end, keep
|
1282
|
+
|
1283
|
+
|
1284
|
+
class TqdmParallel(Parallel):
|
1285
|
+
"""
|
1286
|
+
A minimal Parallel implementation using tqdm for progress reporting.
|
1287
|
+
|
1288
|
+
Parameters:
|
1289
|
+
-----------
|
1290
|
+
tqdm_args : dict, optional
|
1291
|
+
Dictionary of arguments passed to tqdm.tqdm
|
1292
|
+
*args, **kwargs:
|
1293
|
+
Arguments to pass to joblib.Parallel
|
1294
|
+
"""
|
1295
|
+
|
1296
|
+
def __init__(self, tqdm_args: Dict = {}, *args, **kwargs):
|
1297
|
+
from tqdm import tqdm
|
1298
|
+
|
1299
|
+
super().__init__(*args, **kwargs)
|
1300
|
+
self.pbar = tqdm(**tqdm_args)
|
1301
|
+
|
1302
|
+
def __call__(self, iterable, *args, **kwargs):
|
1303
|
+
self.n_tasks = len(iterable) if hasattr(iterable, "__len__") else None
|
1304
|
+
return super().__call__(iterable, *args, **kwargs)
|
1305
|
+
|
1306
|
+
def print_progress(self):
|
1307
|
+
if self.n_tasks is None:
|
1308
|
+
return super().print_progress()
|
1309
|
+
|
1310
|
+
if self.n_tasks != self.pbar.total:
|
1311
|
+
self.pbar.total = self.n_tasks
|
1312
|
+
self.pbar.refresh()
|
1313
|
+
|
1314
|
+
self.pbar.n = self.n_completed_tasks
|
1315
|
+
self.pbar.refresh()
|
1316
|
+
|
1317
|
+
if self.n_completed_tasks >= self.n_tasks:
|
1318
|
+
self.pbar.close()
|
tme/memory.py
CHANGED
@@ -1,8 +1,9 @@
|
|
1
|
-
"""
|
1
|
+
"""
|
2
|
+
Compute memory consumption of template matching components.
|
2
3
|
|
3
|
-
|
4
|
+
Copyright (c) 2023 European Molecular Biology Laboratory
|
4
5
|
|
5
|
-
|
6
|
+
Author: Valentin Maurer <valentin.maurer@embl-hamburg.de>
|
6
7
|
"""
|
7
8
|
|
8
9
|
from abc import ABC, abstractmethod
|
tme/orientations.py
CHANGED
@@ -1,10 +1,11 @@
|
|
1
|
-
|
2
|
-
|
1
|
+
"""
|
2
|
+
Handle template matching orientations and conversion between formats.
|
3
3
|
|
4
|
-
|
4
|
+
Copyright (c) 2024 European Molecular Biology Laboratory
|
5
5
|
|
6
|
-
|
6
|
+
Author: Valentin Maurer <valentin.maurer@embl-hamburg.de>
|
7
7
|
"""
|
8
|
+
|
8
9
|
from typing import List, Tuple
|
9
10
|
from dataclasses import dataclass
|
10
11
|
from string import ascii_lowercase, ascii_uppercase
|
@@ -14,7 +15,7 @@ import numpy as np
|
|
14
15
|
from .parser import StarParser
|
15
16
|
from .matching_utils import compute_extraction_box
|
16
17
|
|
17
|
-
# Exceeds available numpy dimensions for default installations
|
18
|
+
# Exceeds available numpy dimensions for default installations
|
18
19
|
NAMES = ["x", "y", "z", *ascii_lowercase[:-3], *ascii_uppercase]
|
19
20
|
|
20
21
|
|
@@ -81,7 +82,7 @@ class Orientations:
|
|
81
82
|
self.translations = np.array(self.translations).astype(np.float32)
|
82
83
|
self.rotations = np.array(self.rotations).astype(np.float32)
|
83
84
|
self.scores = np.array(self.scores).astype(np.float32)
|
84
|
-
self.details = np.array(self.details)
|
85
|
+
self.details = np.array(self.details)
|
85
86
|
n_orientations = set(
|
86
87
|
[
|
87
88
|
self.translations.shape[0],
|
@@ -324,6 +325,7 @@ class Orientations:
|
|
324
325
|
"_rlnAngleRot",
|
325
326
|
"_rlnAngleTilt",
|
326
327
|
"_rlnAnglePsi",
|
328
|
+
"_rlnClassNumber",
|
327
329
|
]
|
328
330
|
if source_path is not None:
|
329
331
|
header.append("_rlnMicrographName")
|
@@ -339,6 +341,7 @@ class Orientations:
|
|
339
341
|
for index, (translation, rotation, score, detail) in enumerate(self):
|
340
342
|
line = [str(x) for x in translation]
|
341
343
|
line.extend([str(x) for x in rotation])
|
344
|
+
line.extend([str(detail)])
|
342
345
|
|
343
346
|
if source_path is not None:
|
344
347
|
line.append(source_path)
|
@@ -489,9 +492,12 @@ class Orientations:
|
|
489
492
|
def _from_star(
|
490
493
|
cls, filename: str, delimiter: str = "\t"
|
491
494
|
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
|
492
|
-
|
495
|
+
parser = StarParser(filename, delimiter=delimiter)
|
496
|
+
|
497
|
+
ret = parser.get("data_particles", None)
|
498
|
+
if ret is None:
|
499
|
+
ret = parser.get("data_", None)
|
493
500
|
|
494
|
-
ret = ret.get("data_particles", None)
|
495
501
|
if ret is None:
|
496
502
|
raise ValueError(f"No data_particles section found in {filename}.")
|
497
503
|
|
@@ -500,13 +506,20 @@ class Orientations:
|
|
500
506
|
)
|
501
507
|
translation = translation.astype(np.float32).T
|
502
508
|
|
509
|
+
default_angle = np.zeros(translation.shape[0], dtype=np.float32)
|
510
|
+
for x in ("_rlnAngleRot", "_rlnAngleTilt", "_rlnAnglePsi"):
|
511
|
+
if x not in ret:
|
512
|
+
ret[x] = default_angle
|
513
|
+
|
503
514
|
rotation = np.vstack(
|
504
515
|
(ret["_rlnAngleRot"], ret["_rlnAngleTilt"], ret["_rlnAnglePsi"])
|
505
516
|
)
|
506
517
|
rotation = rotation.astype(np.float32).T
|
507
518
|
|
508
519
|
default = np.zeros(translation.shape[0])
|
509
|
-
|
520
|
+
|
521
|
+
scores = ret.get("_pytmeScore", default)
|
522
|
+
return translation, rotation, scores, default
|
510
523
|
|
511
524
|
@staticmethod
|
512
525
|
def _from_tbl(
|
tme/parser.py
CHANGED
@@ -1,8 +1,9 @@
|
|
1
|
-
"""
|
1
|
+
"""
|
2
|
+
Implements parsers for atomic structure file formats.
|
2
3
|
|
3
|
-
|
4
|
+
Copyright (c) 2023 European Molecular Biology Laboratory
|
4
5
|
|
5
|
-
|
6
|
+
Author: Valentin Maurer <valentin.maurer@embl-hamburg.de>
|
6
7
|
"""
|
7
8
|
|
8
9
|
import re
|
@@ -15,7 +16,14 @@ from typing import List, Dict, Union
|
|
15
16
|
|
16
17
|
import numpy as np
|
17
18
|
|
18
|
-
__all__ = [
|
19
|
+
__all__ = [
|
20
|
+
"PDBParser",
|
21
|
+
"MMCIFParser",
|
22
|
+
"GROParser",
|
23
|
+
"StarParser",
|
24
|
+
"XMLParser",
|
25
|
+
"MDOCParser",
|
26
|
+
]
|
19
27
|
|
20
28
|
|
21
29
|
class Parser(ABC):
|
@@ -84,6 +92,34 @@ class Parser(ABC):
|
|
84
92
|
"""
|
85
93
|
return key in self._data
|
86
94
|
|
95
|
+
def __repr__(self) -> str:
|
96
|
+
"""
|
97
|
+
String representation of the Parser showing available keys and their lengths.
|
98
|
+
|
99
|
+
Returns
|
100
|
+
-------
|
101
|
+
str
|
102
|
+
A formatted string showing each key and the length of its value.
|
103
|
+
"""
|
104
|
+
if not self._data:
|
105
|
+
return f"{self.__class__.__name__}(empty)"
|
106
|
+
|
107
|
+
lines = [f"{self.__class__.__name__}:"]
|
108
|
+
try:
|
109
|
+
for key, value in sorted(self._data.items()):
|
110
|
+
if isinstance(value, (list, tuple)):
|
111
|
+
lines.append(f" {key}: length {len(value)}")
|
112
|
+
elif isinstance(value, dict):
|
113
|
+
lines.append(f" {key}: dict with {len(value)} keys")
|
114
|
+
elif isinstance(value, str):
|
115
|
+
lines.append(f" {key}: str")
|
116
|
+
else:
|
117
|
+
lines.append(f" {key}: {type(value).__name__}")
|
118
|
+
except Exception:
|
119
|
+
pass
|
120
|
+
|
121
|
+
return "\n".join(lines)
|
122
|
+
|
87
123
|
def get(self, key, default=None):
|
88
124
|
"""
|
89
125
|
Retrieve a value from the internal data using a given key. If the
|
@@ -247,19 +283,6 @@ class MMCIFParser(Parser):
|
|
247
283
|
"""
|
248
284
|
|
249
285
|
def parse_input(self, lines: deque) -> Dict:
|
250
|
-
"""
|
251
|
-
Parse a list of lines from an MMCIF file and convert the data into a dictionary.
|
252
|
-
|
253
|
-
Parameters
|
254
|
-
----------
|
255
|
-
lines : deque of str
|
256
|
-
The lines of an MMCIF file to parse.
|
257
|
-
|
258
|
-
Returns
|
259
|
-
-------
|
260
|
-
dict
|
261
|
-
A dictionary containing the parsed data from the MMCIF file.
|
262
|
-
"""
|
263
286
|
lines = self._consolidate_strings(lines)
|
264
287
|
blocks = self._split_in_blocks(lines)
|
265
288
|
mmcif_dict = {}
|
@@ -448,21 +471,6 @@ class GROParser(Parser):
|
|
448
471
|
"""
|
449
472
|
|
450
473
|
def parse_input(self, lines, **kwargs) -> Dict:
|
451
|
-
"""
|
452
|
-
Parse a list of lines from a GRO file and convert the data into a dictionary.
|
453
|
-
|
454
|
-
Parameters
|
455
|
-
----------
|
456
|
-
lines : deque of str
|
457
|
-
The lines of a GRO file to parse.
|
458
|
-
kwargs : Dict, optional
|
459
|
-
Optional keyword arguments.
|
460
|
-
|
461
|
-
Returns
|
462
|
-
-------
|
463
|
-
dict
|
464
|
-
A dictionary containing the parsed data from the GRO file.
|
465
|
-
"""
|
466
474
|
data = {
|
467
475
|
"title": [],
|
468
476
|
"num_atoms": [],
|
@@ -560,7 +568,7 @@ class StarParser(MMCIFParser):
|
|
560
568
|
.. [1] https://www.iucr.org/__data/assets/file/0013/11416/star.5.html
|
561
569
|
"""
|
562
570
|
|
563
|
-
def parse_input(self, lines: List[str], delimiter: str =
|
571
|
+
def parse_input(self, lines: List[str], delimiter: str = None) -> Dict:
|
564
572
|
pattern = re.compile(r"\s*#.*")
|
565
573
|
|
566
574
|
ret, category, block = {}, None, []
|
@@ -683,3 +691,76 @@ class XMLParser(Parser):
|
|
683
691
|
pass
|
684
692
|
|
685
693
|
return value_str
|
694
|
+
|
695
|
+
|
696
|
+
class MDOCParser(Parser):
|
697
|
+
"""
|
698
|
+
Convert MDOC file (SerialEM metadata) into a dictionary representation.
|
699
|
+
|
700
|
+
MDOC files contain global parameters and per-tilt metadata for cryo-ET
|
701
|
+
tilt series, with sections marked by [ZValue = N] for individual tilts.
|
702
|
+
"""
|
703
|
+
|
704
|
+
def parse_input(self, lines: deque, **kwargs) -> Dict:
|
705
|
+
data = {}
|
706
|
+
global_params = {}
|
707
|
+
in_zvalue_section = False
|
708
|
+
zvalue_pattern = re.compile(r"\[ZValue\s*=\s*(\d+)\]")
|
709
|
+
section_pattern = re.compile(r"\[T\s*=\s*(.*?)\]")
|
710
|
+
|
711
|
+
if not lines:
|
712
|
+
return data
|
713
|
+
|
714
|
+
while lines:
|
715
|
+
line = lines.popleft().strip()
|
716
|
+
|
717
|
+
if not line:
|
718
|
+
continue
|
719
|
+
|
720
|
+
# Check for ZValue section header
|
721
|
+
zvalue_match = zvalue_pattern.match(line)
|
722
|
+
if zvalue_match:
|
723
|
+
in_zvalue_section = True
|
724
|
+
|
725
|
+
zvalue = int(zvalue_match.group(1))
|
726
|
+
if "ZValue" not in data:
|
727
|
+
data["ZValue"] = []
|
728
|
+
data["ZValue"].append(zvalue)
|
729
|
+
continue
|
730
|
+
|
731
|
+
# Check for T section header (comments/metadata)
|
732
|
+
section_match = section_pattern.match(line)
|
733
|
+
if section_match:
|
734
|
+
section_content = section_match.group(1)
|
735
|
+
if "sections" not in global_params:
|
736
|
+
global_params["sections"] = []
|
737
|
+
global_params["sections"].append(section_content)
|
738
|
+
continue
|
739
|
+
|
740
|
+
# Parse key-value pairs
|
741
|
+
if "=" in line:
|
742
|
+
try:
|
743
|
+
key, value = line.split("=", 1)
|
744
|
+
key = key.strip()
|
745
|
+
value = value.strip()
|
746
|
+
|
747
|
+
try:
|
748
|
+
if "." not in value and "e" not in value.lower():
|
749
|
+
parsed_value = int(value)
|
750
|
+
else:
|
751
|
+
parsed_value = float(value)
|
752
|
+
except ValueError:
|
753
|
+
parsed_value = value
|
754
|
+
|
755
|
+
if not in_zvalue_section:
|
756
|
+
global_params[key] = parsed_value
|
757
|
+
else:
|
758
|
+
if key not in data:
|
759
|
+
data[key] = []
|
760
|
+
data[key].append(parsed_value)
|
761
|
+
|
762
|
+
except ValueError:
|
763
|
+
continue
|
764
|
+
|
765
|
+
data.update(global_params)
|
766
|
+
return data
|
tme/preprocessor.py
CHANGED
@@ -1,8 +1,9 @@
|
|
1
|
-
"""
|
1
|
+
"""
|
2
|
+
Implements Preprocessor class for filtering operations.
|
2
3
|
|
3
|
-
|
4
|
+
Copyright (c) 2023 European Molecular Biology Laboratory
|
4
5
|
|
5
|
-
|
6
|
+
Author: Valentin Maurer <valentin.maurer@embl-hamburg.de>
|
6
7
|
"""
|
7
8
|
|
8
9
|
import os
|
@@ -669,9 +670,9 @@ class Preprocessor:
|
|
669
670
|
NDArray
|
670
671
|
Bandpass filtered.
|
671
672
|
"""
|
672
|
-
from .filters import
|
673
|
+
from .filters import BandPassReconstructed
|
673
674
|
|
674
|
-
return
|
675
|
+
return BandPassReconstructed(
|
675
676
|
sampling_rate=sampling_rate,
|
676
677
|
lowpass=lowpass,
|
677
678
|
highpass=highpass,
|
tme/rotations.py
CHANGED
@@ -1,8 +1,9 @@
|
|
1
|
-
"""
|
1
|
+
"""
|
2
|
+
Implements various means of generating rotation matrices.
|
2
3
|
|
3
|
-
|
4
|
+
Copyright (c) 2023-2025 European Molecular Biology Laboratory
|
4
5
|
|
5
|
-
|
6
|
+
Author: Valentin Maurer <valentin.maurer@embl-hamburg.de>
|
6
7
|
"""
|
7
8
|
|
8
9
|
import yaml
|
@@ -183,12 +184,14 @@ def euler_to_rotationmatrix(angles: Tuple[float], seq: str = "zyz") -> NDArray:
|
|
183
184
|
NDArray
|
184
185
|
The generated rotation matrix.
|
185
186
|
"""
|
187
|
+
angles = np.asarray(angles)
|
188
|
+
|
186
189
|
n_angles = len(angles)
|
187
|
-
|
188
|
-
|
189
|
-
|
190
|
+
if angles.ndim == 2:
|
191
|
+
n_angles = angles.shape[1]
|
192
|
+
|
190
193
|
rotation_matrix = Rotation.from_euler(
|
191
|
-
seq=
|
194
|
+
seq=seq[:n_angles], angles=angles, degrees=True
|
192
195
|
)
|
193
196
|
return rotation_matrix.as_matrix().astype(np.float32)
|
194
197
|
|
tme/structure.py
CHANGED
@@ -1,8 +1,9 @@
|
|
1
|
-
"""
|
1
|
+
"""
|
2
|
+
Implements class Structure to represent atomic structures.
|
2
3
|
|
3
|
-
|
4
|
+
Copyright (c) 2023 European Molecular Biology Laboratory
|
4
5
|
|
5
|
-
|
6
|
+
Author: Valentin Maurer <valentin.maurer@embl-hamburg.de>
|
6
7
|
"""
|
7
8
|
|
8
9
|
import warnings
|