pytme 0.1.8__cp311-cp311-macosx_14_0_arm64.whl → 0.2.0__cp311-cp311-macosx_14_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pytme-0.2.0.data/scripts/match_template.py +1019 -0
- pytme-0.2.0.data/scripts/postprocess.py +570 -0
- {pytme-0.1.8.data → pytme-0.2.0.data}/scripts/preprocessor_gui.py +244 -60
- {pytme-0.1.8.dist-info → pytme-0.2.0.dist-info}/METADATA +3 -1
- pytme-0.2.0.dist-info/RECORD +72 -0
- {pytme-0.1.8.dist-info → pytme-0.2.0.dist-info}/WHEEL +1 -1
- scripts/extract_candidates.py +218 -0
- scripts/match_template.py +459 -218
- pytme-0.1.8.data/scripts/match_template.py → scripts/match_template_filters.py +459 -218
- scripts/postprocess.py +380 -435
- scripts/preprocessor_gui.py +244 -60
- scripts/refine_matches.py +218 -0
- tme/__init__.py +2 -1
- tme/__version__.py +1 -1
- tme/analyzer.py +533 -78
- tme/backends/cupy_backend.py +80 -15
- tme/backends/npfftw_backend.py +35 -6
- tme/backends/pytorch_backend.py +15 -7
- tme/density.py +173 -78
- tme/extensions.cpython-311-darwin.so +0 -0
- tme/matching_constrained.py +195 -0
- tme/matching_data.py +78 -32
- tme/matching_exhaustive.py +369 -221
- tme/matching_memory.py +1 -0
- tme/matching_optimization.py +753 -649
- tme/matching_utils.py +152 -8
- tme/orientations.py +561 -0
- tme/preprocessing/__init__.py +2 -0
- tme/preprocessing/_utils.py +176 -0
- tme/preprocessing/composable_filter.py +30 -0
- tme/preprocessing/compose.py +52 -0
- tme/preprocessing/frequency_filters.py +322 -0
- tme/preprocessing/tilt_series.py +967 -0
- tme/preprocessor.py +35 -25
- tme/structure.py +2 -37
- pytme-0.1.8.data/scripts/postprocess.py +0 -625
- pytme-0.1.8.dist-info/RECORD +0 -61
- {pytme-0.1.8.data → pytme-0.2.0.data}/scripts/estimate_ram_usage.py +0 -0
- {pytme-0.1.8.data → pytme-0.2.0.data}/scripts/preprocess.py +0 -0
- {pytme-0.1.8.dist-info → pytme-0.2.0.dist-info}/LICENSE +0 -0
- {pytme-0.1.8.dist-info → pytme-0.2.0.dist-info}/entry_points.txt +0 -0
- {pytme-0.1.8.dist-info → pytme-0.2.0.dist-info}/top_level.txt +0 -0
@@ -1,4 +1,4 @@
|
|
1
|
-
#!
|
1
|
+
#!python3
|
2
2
|
""" CLI interface for basic pyTME template matching functions.
|
3
3
|
|
4
4
|
Copyright (c) 2023 European Molecular Biology Laboratory
|
@@ -11,14 +11,16 @@ import warnings
|
|
11
11
|
import importlib.util
|
12
12
|
from sys import exit
|
13
13
|
from time import time
|
14
|
+
from typing import Tuple
|
14
15
|
from copy import deepcopy
|
15
|
-
from os.path import abspath
|
16
|
+
from os.path import abspath, exists
|
16
17
|
|
17
18
|
import numpy as np
|
18
19
|
|
19
|
-
from tme import Density,
|
20
|
+
from tme import Density, __version__
|
20
21
|
from tme.matching_utils import (
|
21
22
|
get_rotation_matrices,
|
23
|
+
get_rotations_around_vector,
|
22
24
|
compute_parallelization_schedule,
|
23
25
|
euler_from_rotationmatrix,
|
24
26
|
scramble_phases,
|
@@ -32,6 +34,7 @@ from tme.analyzer import (
|
|
32
34
|
PeakCallerMaximumFilter,
|
33
35
|
)
|
34
36
|
from tme.backends import backend
|
37
|
+
from tme.preprocessing import Compose
|
35
38
|
|
36
39
|
|
37
40
|
def get_func_fullname(func) -> str:
|
@@ -150,77 +153,291 @@ def crop_data(data: Density, cutoff: float, data_mask: Density = None) -> bool:
|
|
150
153
|
return True
|
151
154
|
|
152
155
|
|
156
|
+
def parse_rotation_logic(args, ndim):
|
157
|
+
if args.angular_sampling is not None:
|
158
|
+
rotations = get_rotation_matrices(
|
159
|
+
angular_sampling=args.angular_sampling,
|
160
|
+
dim=ndim,
|
161
|
+
use_optimized_set=not args.no_use_optimized_set,
|
162
|
+
)
|
163
|
+
if args.angular_sampling >= 180:
|
164
|
+
rotations = np.eye(ndim).reshape(1, ndim, ndim)
|
165
|
+
return rotations
|
166
|
+
|
167
|
+
if args.axis_sampling is None:
|
168
|
+
args.axis_sampling = args.cone_sampling
|
169
|
+
|
170
|
+
rotations = get_rotations_around_vector(
|
171
|
+
cone_angle=args.cone_angle,
|
172
|
+
cone_sampling=args.cone_sampling,
|
173
|
+
axis_angle=args.axis_angle,
|
174
|
+
axis_sampling=args.axis_sampling,
|
175
|
+
n_symmetry=args.axis_symmetry,
|
176
|
+
)
|
177
|
+
return rotations
|
178
|
+
|
179
|
+
|
180
|
+
# TODO: Think about whether wedge mask should also be added to target
|
181
|
+
def setup_filter(args, template: Density, target: Density) -> Tuple[Compose, Compose]:
|
182
|
+
from tme.preprocessing import LinearWhiteningFilter, BandPassFilter
|
183
|
+
from tme.preprocessing.tilt_series import (
|
184
|
+
Wedge,
|
185
|
+
WedgeReconstructed,
|
186
|
+
ReconstructFromTilt,
|
187
|
+
)
|
188
|
+
|
189
|
+
template_filter, target_filter = [], []
|
190
|
+
if args.tilt_angles is not None:
|
191
|
+
try:
|
192
|
+
wedge = Wedge.from_file(args.tilt_angles)
|
193
|
+
wedge.weight_type = args.tilt_weighting
|
194
|
+
if args.tilt_weighting in ("angle", None) and args.ctf_file is None:
|
195
|
+
wedge = WedgeReconstructed(
|
196
|
+
angles=wedge.angles, weight_wedge=args.tilt_weighting == "angle"
|
197
|
+
)
|
198
|
+
except FileNotFoundError:
|
199
|
+
tilt_step, create_continuous_wedge = None, True
|
200
|
+
tilt_start, tilt_stop = args.tilt_angles.split(",")
|
201
|
+
if ":" in tilt_stop:
|
202
|
+
create_continuous_wedge = False
|
203
|
+
tilt_stop, tilt_step = tilt_stop.split(":")
|
204
|
+
tilt_start, tilt_stop = float(tilt_start), float(tilt_stop)
|
205
|
+
tilt_angles = (tilt_start, tilt_stop)
|
206
|
+
if tilt_step is not None:
|
207
|
+
tilt_step = float(tilt_step)
|
208
|
+
tilt_angles = np.arange(
|
209
|
+
-tilt_start, tilt_stop + tilt_step, tilt_step
|
210
|
+
).tolist()
|
211
|
+
|
212
|
+
if args.tilt_weighting is not None and tilt_step is None:
|
213
|
+
raise ValueError(
|
214
|
+
"Tilt weighting is not supported for continuous wedges."
|
215
|
+
)
|
216
|
+
if args.tilt_weighting not in ("angle", None):
|
217
|
+
raise ValueError(
|
218
|
+
"Tilt weighting schemes other than 'angle' or 'None' require "
|
219
|
+
"a specification of electron doses."
|
220
|
+
)
|
221
|
+
|
222
|
+
wedge = Wedge(
|
223
|
+
angles=tilt_angles,
|
224
|
+
opening_axis=args.wedge_axes[0],
|
225
|
+
tilt_axis=args.wedge_axes[1],
|
226
|
+
shape=None,
|
227
|
+
weight_type=None,
|
228
|
+
weights=np.ones_like(tilt_angles),
|
229
|
+
)
|
230
|
+
if args.tilt_weighting in ("angle", None) and args.ctf_file is None:
|
231
|
+
wedge = WedgeReconstructed(
|
232
|
+
angles=tilt_angles,
|
233
|
+
weight_wedge=args.tilt_weighting == "angle",
|
234
|
+
create_continuous_wedge=create_continuous_wedge,
|
235
|
+
)
|
236
|
+
|
237
|
+
wedge.opening_axis = args.wedge_axes[0]
|
238
|
+
wedge.tilt_axis = args.wedge_axes[1]
|
239
|
+
wedge.sampling_rate = template.sampling_rate
|
240
|
+
template_filter.append(wedge)
|
241
|
+
if not isinstance(wedge, WedgeReconstructed):
|
242
|
+
template_filter.append(ReconstructFromTilt(
|
243
|
+
reconstruction_filter = args.reconstruction_filter
|
244
|
+
))
|
245
|
+
|
246
|
+
if args.ctf_file is not None:
|
247
|
+
from tme.preprocessing.tilt_series import CTF
|
248
|
+
|
249
|
+
ctf = CTF.from_file(args.ctf_file)
|
250
|
+
n_tilts_ctfs, n_tils_angles = len(ctf.defocus_x), len(wedge.angles)
|
251
|
+
if n_tilts_ctfs != n_tils_angles:
|
252
|
+
raise ValueError(
|
253
|
+
f"CTF file contains {n_tilts_ctfs} micrographs, but match_template "
|
254
|
+
f"recieved {n_tils_angles} tilt angles. Expected one angle "
|
255
|
+
"per micrograph."
|
256
|
+
)
|
257
|
+
ctf.angles = wedge.angles
|
258
|
+
ctf.opening_axis, ctf.tilt_axis = args.wedge_axes
|
259
|
+
|
260
|
+
if isinstance(template_filter[-1], ReconstructFromTilt):
|
261
|
+
template_filter.insert(-1, ctf)
|
262
|
+
else:
|
263
|
+
template_filter.insert(0, ctf)
|
264
|
+
template_filter.insert(1, ReconstructFromTilt(
|
265
|
+
reconstruction_filter = args.reconstruction_filter
|
266
|
+
))
|
267
|
+
|
268
|
+
if args.lowpass or args.highpass is not None:
|
269
|
+
lowpass, highpass = args.lowpass, args.highpass
|
270
|
+
if args.pass_format == "voxel":
|
271
|
+
if lowpass is not None:
|
272
|
+
lowpass = np.max(np.multiply(lowpass, template.sampling_rate))
|
273
|
+
if highpass is not None:
|
274
|
+
highpass = np.max(np.multiply(highpass, template.sampling_rate))
|
275
|
+
elif args.pass_format == "frequency":
|
276
|
+
if lowpass is not None:
|
277
|
+
lowpass = np.max(np.divide(template.sampling_rate, lowpass))
|
278
|
+
if highpass is not None:
|
279
|
+
highpass = np.max(np.divide(template.sampling_rate, highpass))
|
280
|
+
|
281
|
+
bandpass = BandPassFilter(
|
282
|
+
use_gaussian=args.no_pass_smooth,
|
283
|
+
lowpass=lowpass,
|
284
|
+
highpass=highpass,
|
285
|
+
sampling_rate=template.sampling_rate,
|
286
|
+
)
|
287
|
+
template_filter.append(bandpass)
|
288
|
+
target_filter.append(bandpass)
|
289
|
+
|
290
|
+
if args.whiten_spectrum:
|
291
|
+
whitening_filter = LinearWhiteningFilter()
|
292
|
+
template_filter.append(whitening_filter)
|
293
|
+
target_filter.append(whitening_filter)
|
294
|
+
|
295
|
+
template_filter = Compose(template_filter) if len(template_filter) else None
|
296
|
+
target_filter = Compose(target_filter) if len(target_filter) else None
|
297
|
+
|
298
|
+
return template_filter, target_filter
|
299
|
+
|
300
|
+
|
153
301
|
def parse_args():
|
154
302
|
parser = argparse.ArgumentParser(description="Perform template matching.")
|
155
|
-
|
303
|
+
|
304
|
+
io_group = parser.add_argument_group("Input / Output")
|
305
|
+
io_group.add_argument(
|
156
306
|
"-m",
|
157
307
|
"--target",
|
158
308
|
dest="target",
|
159
309
|
type=str,
|
160
310
|
required=True,
|
161
|
-
help="Path to a target in CCP4/MRC format
|
311
|
+
help="Path to a target in CCP4/MRC, EM, H5 or another format supported by "
|
312
|
+
"tme.density.Density.from_file "
|
313
|
+
"https://kosinskilab.github.io/pyTME/reference/api/tme.density.Density.from_file.html",
|
162
314
|
)
|
163
|
-
|
315
|
+
io_group.add_argument(
|
164
316
|
"--target_mask",
|
165
317
|
dest="target_mask",
|
166
318
|
type=str,
|
167
319
|
required=False,
|
168
|
-
help="Path to a mask for the target
|
169
|
-
)
|
170
|
-
parser.add_argument(
|
171
|
-
"--cutoff_target",
|
172
|
-
dest="cutoff_target",
|
173
|
-
type=float,
|
174
|
-
required=False,
|
175
|
-
help="Target contour level (used for cropping).",
|
176
|
-
default=None,
|
320
|
+
help="Path to a mask for the target in a supported format (see target).",
|
177
321
|
)
|
178
|
-
|
179
|
-
"--cutoff_template",
|
180
|
-
dest="cutoff_template",
|
181
|
-
type=float,
|
182
|
-
required=False,
|
183
|
-
help="Template contour level (used for cropping).",
|
184
|
-
default=None,
|
185
|
-
)
|
186
|
-
parser.add_argument(
|
187
|
-
"--no_centering",
|
188
|
-
dest="no_centering",
|
189
|
-
action="store_true",
|
190
|
-
help="If set, assumes the template is centered and omits centering.",
|
191
|
-
)
|
192
|
-
parser.add_argument(
|
322
|
+
io_group.add_argument(
|
193
323
|
"-i",
|
194
324
|
"--template",
|
195
325
|
dest="template",
|
196
326
|
type=str,
|
197
327
|
required=True,
|
198
|
-
help="Path to a template in PDB/MMCIF or
|
328
|
+
help="Path to a template in PDB/MMCIF or other supported formats (see target).",
|
199
329
|
)
|
200
|
-
|
330
|
+
io_group.add_argument(
|
201
331
|
"--template_mask",
|
202
332
|
dest="template_mask",
|
203
333
|
type=str,
|
204
334
|
required=False,
|
205
|
-
help="Path to a mask for the template in
|
335
|
+
help="Path to a mask for the template in a supported format (see target).",
|
206
336
|
)
|
207
|
-
|
337
|
+
io_group.add_argument(
|
208
338
|
"-o",
|
339
|
+
"--output",
|
209
340
|
dest="output",
|
210
341
|
type=str,
|
211
342
|
required=False,
|
212
343
|
default="output.pickle",
|
213
|
-
help="Path to output pickle file.",
|
344
|
+
help="Path to the output pickle file.",
|
345
|
+
)
|
346
|
+
io_group.add_argument(
|
347
|
+
"--invert_target_contrast",
|
348
|
+
dest="invert_target_contrast",
|
349
|
+
action="store_true",
|
350
|
+
default=False,
|
351
|
+
help="Invert the target's contrast and rescale linearly between zero and one. "
|
352
|
+
"This option is intended for targets where templates to-be-matched have "
|
353
|
+
"negative values, e.g. tomograms.",
|
354
|
+
)
|
355
|
+
io_group.add_argument(
|
356
|
+
"--scramble_phases",
|
357
|
+
dest="scramble_phases",
|
358
|
+
action="store_true",
|
359
|
+
default=False,
|
360
|
+
help="Phase scramble the template to generate a noise score background.",
|
214
361
|
)
|
215
|
-
|
362
|
+
|
363
|
+
scoring_group = parser.add_argument_group("Scoring")
|
364
|
+
scoring_group.add_argument(
|
216
365
|
"-s",
|
217
366
|
dest="score",
|
218
367
|
type=str,
|
219
368
|
default="FLCSphericalMask",
|
369
|
+
choices=list(MATCHING_EXHAUSTIVE_REGISTER.keys()),
|
220
370
|
help="Template matching scoring function.",
|
221
|
-
choices=MATCHING_EXHAUSTIVE_REGISTER.keys(),
|
222
371
|
)
|
223
|
-
|
372
|
+
scoring_group.add_argument(
|
373
|
+
"-p",
|
374
|
+
dest="peak_calling",
|
375
|
+
action="store_true",
|
376
|
+
default=False,
|
377
|
+
help="Perform peak calling instead of score aggregation.",
|
378
|
+
)
|
379
|
+
|
380
|
+
angular_group = parser.add_argument_group("Angular Sampling")
|
381
|
+
angular_exclusive = angular_group.add_mutually_exclusive_group(required=True)
|
382
|
+
|
383
|
+
angular_exclusive.add_argument(
|
384
|
+
"-a",
|
385
|
+
dest="angular_sampling",
|
386
|
+
type=check_positive,
|
387
|
+
default=None,
|
388
|
+
help="Angular sampling rate using optimized rotational sets."
|
389
|
+
"A lower number yields more rotations. Values >= 180 sample only the identity.",
|
390
|
+
)
|
391
|
+
angular_exclusive.add_argument(
|
392
|
+
"--cone_angle",
|
393
|
+
dest="cone_angle",
|
394
|
+
type=check_positive,
|
395
|
+
default=None,
|
396
|
+
help="Half-angle of the cone to be sampled in degrees. Allows to sample a "
|
397
|
+
"narrow interval around a known orientation, e.g. for surface oversampling.",
|
398
|
+
)
|
399
|
+
angular_group.add_argument(
|
400
|
+
"--cone_sampling",
|
401
|
+
dest="cone_sampling",
|
402
|
+
type=check_positive,
|
403
|
+
default=None,
|
404
|
+
help="Sampling rate of the cone in degrees.",
|
405
|
+
)
|
406
|
+
angular_group.add_argument(
|
407
|
+
"--axis_angle",
|
408
|
+
dest="axis_angle",
|
409
|
+
type=check_positive,
|
410
|
+
default=360.0,
|
411
|
+
required=False,
|
412
|
+
help="Sampling angle along the z-axis of the cone. Defaults to 360.",
|
413
|
+
)
|
414
|
+
angular_group.add_argument(
|
415
|
+
"--axis_sampling",
|
416
|
+
dest="axis_sampling",
|
417
|
+
type=check_positive,
|
418
|
+
default=None,
|
419
|
+
required=False,
|
420
|
+
help="Sampling rate along the z-axis of the cone. Defaults to --cone_sampling.",
|
421
|
+
)
|
422
|
+
angular_group.add_argument(
|
423
|
+
"--axis_symmetry",
|
424
|
+
dest="axis_symmetry",
|
425
|
+
type=check_positive,
|
426
|
+
default=1,
|
427
|
+
required=False,
|
428
|
+
help="N-fold symmetry around z-axis of the cone.",
|
429
|
+
)
|
430
|
+
angular_group.add_argument(
|
431
|
+
"--no_use_optimized_set",
|
432
|
+
dest="no_use_optimized_set",
|
433
|
+
action="store_true",
|
434
|
+
default=False,
|
435
|
+
required=False,
|
436
|
+
help="Whether to use random uniform instead of optimized rotation sets.",
|
437
|
+
)
|
438
|
+
|
439
|
+
computation_group = parser.add_argument_group("Computation")
|
440
|
+
computation_group.add_argument(
|
224
441
|
"-n",
|
225
442
|
dest="cores",
|
226
443
|
required=False,
|
@@ -228,7 +445,24 @@ def parse_args():
|
|
228
445
|
default=4,
|
229
446
|
help="Number of cores used for template matching.",
|
230
447
|
)
|
231
|
-
|
448
|
+
computation_group.add_argument(
|
449
|
+
"--use_gpu",
|
450
|
+
dest="use_gpu",
|
451
|
+
action="store_true",
|
452
|
+
default=False,
|
453
|
+
help="Whether to perform computations on the GPU.",
|
454
|
+
)
|
455
|
+
computation_group.add_argument(
|
456
|
+
"--gpu_indices",
|
457
|
+
dest="gpu_indices",
|
458
|
+
type=str,
|
459
|
+
default=None,
|
460
|
+
help="Comma-separated list of GPU indices to use. For example,"
|
461
|
+
" 0,1 for the first and second GPU. Only used if --use_gpu is set."
|
462
|
+
" If not provided but --use_gpu is set, CUDA_VISIBLE_DEVICES will"
|
463
|
+
" be respected.",
|
464
|
+
)
|
465
|
+
computation_group.add_argument(
|
232
466
|
"-r",
|
233
467
|
"--ram",
|
234
468
|
dest="memory",
|
@@ -237,168 +471,186 @@ def parse_args():
|
|
237
471
|
default=None,
|
238
472
|
help="Amount of memory that can be used in bytes.",
|
239
473
|
)
|
240
|
-
|
474
|
+
computation_group.add_argument(
|
241
475
|
"--memory_scaling",
|
242
476
|
dest="memory_scaling",
|
243
477
|
required=False,
|
244
|
-
type=
|
478
|
+
type=float,
|
245
479
|
default=0.85,
|
246
|
-
help="Fraction of available memory that can be used."
|
247
|
-
"
|
480
|
+
help="Fraction of available memory that can be used. Defaults to 0.85 and is "
|
481
|
+
"ignored if --ram is set",
|
248
482
|
)
|
249
|
-
|
250
|
-
"
|
251
|
-
dest="
|
252
|
-
|
253
|
-
|
254
|
-
help="Angular sampling rate for template matching. "
|
255
|
-
"A lower number yields more rotations. Values >= 180 sample only the identity.",
|
483
|
+
computation_group.add_argument(
|
484
|
+
"--temp_directory",
|
485
|
+
dest="temp_directory",
|
486
|
+
default=None,
|
487
|
+
help="Directory for temporary objects. Faster I/O improves runtime.",
|
256
488
|
)
|
257
|
-
|
258
|
-
|
259
|
-
|
260
|
-
|
261
|
-
|
262
|
-
|
489
|
+
|
490
|
+
filter_group = parser.add_argument_group("Filters")
|
491
|
+
filter_group.add_argument(
|
492
|
+
"--lowpass",
|
493
|
+
dest="lowpass",
|
494
|
+
type=float,
|
495
|
+
required=False,
|
496
|
+
help="Resolution to lowpass filter template and target to in the same unit "
|
497
|
+
"as the sampling rate of template and target (typically Ångstrom).",
|
263
498
|
)
|
264
|
-
|
265
|
-
"--
|
266
|
-
dest="
|
499
|
+
filter_group.add_argument(
|
500
|
+
"--highpass",
|
501
|
+
dest="highpass",
|
502
|
+
type=float,
|
503
|
+
required=False,
|
504
|
+
help="Resolution to highpass filter template and target to in the same unit "
|
505
|
+
"as the sampling rate of template and target (typically Ångstrom).",
|
506
|
+
)
|
507
|
+
filter_group.add_argument(
|
508
|
+
"--no_pass_smooth",
|
509
|
+
dest="no_pass_smooth",
|
510
|
+
action="store_false",
|
511
|
+
default=True,
|
512
|
+
help="Whether a hard edge filter should be used for --lowpass and --highpass."
|
513
|
+
)
|
514
|
+
filter_group.add_argument(
|
515
|
+
"--pass_format",
|
516
|
+
dest="pass_format",
|
517
|
+
type=str,
|
518
|
+
required=False,
|
519
|
+
choices=["sampling_rate", "voxel", "frequency"],
|
520
|
+
help="How values passed to --lowpass and --highpass should be interpreted. "
|
521
|
+
"By default, they are assumed to be in units of sampling rate, e.g. Ångstrom."
|
522
|
+
)
|
523
|
+
filter_group.add_argument(
|
524
|
+
"--whiten_spectrum",
|
525
|
+
dest="whiten_spectrum",
|
267
526
|
action="store_true",
|
268
|
-
default=
|
269
|
-
help="
|
527
|
+
default=None,
|
528
|
+
help="Apply spectral whitening to template and target based on target spectrum.",
|
270
529
|
)
|
271
|
-
|
272
|
-
"--
|
273
|
-
dest="
|
530
|
+
filter_group.add_argument(
|
531
|
+
"--wedge_axes",
|
532
|
+
dest="wedge_axes",
|
274
533
|
type=str,
|
534
|
+
required=False,
|
275
535
|
default=None,
|
276
|
-
help="
|
277
|
-
"
|
278
|
-
" If not provided but --use_gpu is set, CUDA_VISIBLE_DEVICES will"
|
279
|
-
" be respected.",
|
536
|
+
help="Indices of wedge opening and tilt axis, e.g. 0,2 for a wedge that is open "
|
537
|
+
"in z-direction and tilted over the x axis.",
|
280
538
|
)
|
281
|
-
|
282
|
-
"--
|
283
|
-
dest="
|
539
|
+
filter_group.add_argument(
|
540
|
+
"--tilt_angles",
|
541
|
+
dest="tilt_angles",
|
542
|
+
type=str,
|
543
|
+
required=False,
|
544
|
+
default=None,
|
545
|
+
help="Path to a tab-separated file containing the column angles and optionally "
|
546
|
+
" weights, or comma separated start and stop stage tilt angle, e.g. 50,45, which "
|
547
|
+
" yields a continuous wedge mask. Alternatively, a tilt step size can be "
|
548
|
+
"specified like 50,45:5.0 to sample 5.0 degree tilt angle steps.",
|
549
|
+
)
|
550
|
+
filter_group.add_argument(
|
551
|
+
"--tilt_weighting",
|
552
|
+
dest="tilt_weighting",
|
553
|
+
type=str,
|
554
|
+
required=False,
|
555
|
+
choices=["angle", "relion", "grigorieff"],
|
556
|
+
default=None,
|
557
|
+
help="Weighting scheme used to reweight individual tilts. Available options: "
|
558
|
+
"angle (cosine based weighting), "
|
559
|
+
"relion (relion formalism for wedge weighting) requires,"
|
560
|
+
"grigorieff (exposure filter as defined in Grant and Grigorieff 2015)."
|
561
|
+
"relion and grigorieff require electron doses in --tilt_angles weights column.",
|
562
|
+
)
|
563
|
+
# filter_group.add_argument(
|
564
|
+
# "--ctf_file",
|
565
|
+
# dest="ctf_file",
|
566
|
+
# type=str,
|
567
|
+
# required=False,
|
568
|
+
# default=None,
|
569
|
+
# help="Path to a file with CTF parameters from CTFFIND4.",
|
570
|
+
# )
|
571
|
+
filter_group.add_argument(
|
572
|
+
"--reconstruction_filter",
|
573
|
+
dest="reconstruction_filter",
|
574
|
+
type=str,
|
575
|
+
required=False,
|
576
|
+
choices = ["ram-lak", "ramp", "shepp-logan", "cosine", "hamming"],
|
577
|
+
default=None,
|
578
|
+
help="Filter applied when reconstructing (N+1)-D from N-D filters.",
|
579
|
+
)
|
580
|
+
|
581
|
+
performance_group = parser.add_argument_group("Performance")
|
582
|
+
performance_group.add_argument(
|
583
|
+
"--cutoff_target",
|
584
|
+
dest="cutoff_target",
|
585
|
+
type=float,
|
586
|
+
required=False,
|
587
|
+
default=None,
|
588
|
+
help="Target contour level (used for cropping).",
|
589
|
+
)
|
590
|
+
performance_group.add_argument(
|
591
|
+
"--cutoff_template",
|
592
|
+
dest="cutoff_template",
|
593
|
+
type=float,
|
594
|
+
required=False,
|
595
|
+
default=None,
|
596
|
+
help="Template contour level (used for cropping).",
|
597
|
+
)
|
598
|
+
performance_group.add_argument(
|
599
|
+
"--no_centering",
|
600
|
+
dest="no_centering",
|
284
601
|
action="store_true",
|
285
|
-
|
286
|
-
help="Invert the target contrast via multiplication with negative one and"
|
287
|
-
" linear rescaling between zero and one. Note that this might lead to"
|
288
|
-
" different baseline scores of individual target splits when using"
|
289
|
-
" unnormalized scores. This option is intended for targets, where the"
|
290
|
-
" object to-be-matched has negative values, i.e. tomograms.",
|
602
|
+
help="Assumes the template is already centered and omits centering.",
|
291
603
|
)
|
292
|
-
|
604
|
+
performance_group.add_argument(
|
293
605
|
"--no_edge_padding",
|
294
606
|
dest="no_edge_padding",
|
295
607
|
action="store_true",
|
296
608
|
default=False,
|
297
|
-
help="Whether to pad the edges of the target.
|
298
|
-
" has a well defined bounding box, e.g. a
|
609
|
+
help="Whether to not pad the edges of the target. Can be set if the target"
|
610
|
+
" has a well defined bounding box, e.g. a masked reconstruction.",
|
299
611
|
)
|
300
|
-
|
612
|
+
performance_group.add_argument(
|
301
613
|
"--no_fourier_padding",
|
302
614
|
dest="no_fourier_padding",
|
303
615
|
action="store_true",
|
304
616
|
default=False,
|
305
|
-
help="Whether input arrays should be zero-padded to
|
306
|
-
"
|
307
|
-
"
|
617
|
+
help="Whether input arrays should not be zero-padded to full convolution shape "
|
618
|
+
"for numerical stability. When working with very large targets, e.g. tomograms, "
|
619
|
+
"it is safe to use this flag and benefit from the performance gain.",
|
308
620
|
)
|
309
|
-
|
310
|
-
"--scramble_phases",
|
311
|
-
dest="scramble_phases",
|
312
|
-
action="store_true",
|
313
|
-
default=False,
|
314
|
-
help="Whether to phase scramble the template for subsequent normalization.",
|
315
|
-
)
|
316
|
-
parser.add_argument(
|
621
|
+
performance_group.add_argument(
|
317
622
|
"--interpolation_order",
|
318
623
|
dest="interpolation_order",
|
319
624
|
required=False,
|
320
625
|
type=int,
|
321
626
|
default=3,
|
322
|
-
help="Spline interpolation used
|
323
|
-
"
|
627
|
+
help="Spline interpolation used for template rotations. If less than zero "
|
628
|
+
"no interpolation is performed.",
|
324
629
|
)
|
325
|
-
|
630
|
+
performance_group.add_argument(
|
326
631
|
"--use_mixed_precision",
|
327
632
|
dest="use_mixed_precision",
|
328
633
|
action="store_true",
|
329
634
|
default=False,
|
330
635
|
help="Use float16 for real values operations where possible.",
|
331
636
|
)
|
332
|
-
|
637
|
+
performance_group.add_argument(
|
333
638
|
"--use_memmap",
|
334
639
|
dest="use_memmap",
|
335
640
|
action="store_true",
|
336
641
|
default=False,
|
337
|
-
help="Use memmaps to offload large data objects to disk.
|
338
|
-
"
|
339
|
-
)
|
340
|
-
parser.add_argument(
|
341
|
-
"--temp_directory",
|
342
|
-
dest="temp_directory",
|
343
|
-
default=None,
|
344
|
-
help="Directory for temporary objects. Faster I/O typically improves runtime.",
|
345
|
-
)
|
346
|
-
parser.add_argument(
|
347
|
-
"--gaussian_sigma",
|
348
|
-
dest="gaussian_sigma",
|
349
|
-
type=float,
|
350
|
-
required=False,
|
351
|
-
help="Sigma parameter for Gaussian filtering the template.",
|
352
|
-
)
|
353
|
-
parser.add_argument(
|
354
|
-
"--bandpass_band",
|
355
|
-
dest="bandpass_band",
|
356
|
-
type=str,
|
357
|
-
required=False,
|
358
|
-
help="Comma separated start and stop frequency for bandpass filtering the"
|
359
|
-
" template, e.g. 0.1, 0.5",
|
360
|
-
)
|
361
|
-
parser.add_argument(
|
362
|
-
"--bandpass_smooth",
|
363
|
-
dest="bandpass_smooth",
|
364
|
-
type=float,
|
365
|
-
required=False,
|
366
|
-
default=None,
|
367
|
-
help="Smooth parameter for the bandpass filter.",
|
368
|
-
)
|
369
|
-
parser.add_argument(
|
370
|
-
"--tilt_range",
|
371
|
-
dest="tilt_range",
|
372
|
-
type=str,
|
373
|
-
required=False,
|
374
|
-
help="Comma separated start and stop stage tilt angle, e.g. '50,45'. Used"
|
375
|
-
" to create a wedge mask to be applied to the template.",
|
642
|
+
help="Use memmaps to offload large data objects to disk. "
|
643
|
+
"Particularly useful for large inputs in combination with --use_gpu.",
|
376
644
|
)
|
377
|
-
|
378
|
-
|
379
|
-
|
380
|
-
|
381
|
-
|
382
|
-
default=None,
|
383
|
-
help="Step size between tilts, e.g. '5'. When set the wedge mask"
|
384
|
-
" reflects the individual tilts, otherwise a continuous mask is used.",
|
385
|
-
)
|
386
|
-
parser.add_argument(
|
387
|
-
"--wedge_axes",
|
388
|
-
dest="wedge_axes",
|
389
|
-
type=str,
|
645
|
+
|
646
|
+
analyzer_group = parser.add_argument_group("Analyzer")
|
647
|
+
analyzer_group.add_argument(
|
648
|
+
"--score_threshold",
|
649
|
+
dest="score_threshold",
|
390
650
|
required=False,
|
391
|
-
default="0,2",
|
392
|
-
help="Axis index of wedge opening and tilt axis, e.g. 0,2 for a wedge that is open in"
|
393
|
-
" z and tilted over x.",
|
394
|
-
)
|
395
|
-
parser.add_argument(
|
396
|
-
"--wedge_smooth",
|
397
|
-
dest="wedge_smooth",
|
398
651
|
type=float,
|
399
|
-
|
400
|
-
|
401
|
-
help="Gaussian sigma used to smooth the wedge mask.",
|
652
|
+
default=0,
|
653
|
+
help="Minimum template matching scores to consider for analysis.",
|
402
654
|
)
|
403
655
|
|
404
656
|
args = parser.parse_args()
|
@@ -406,6 +658,8 @@ def parse_args():
|
|
406
658
|
if args.interpolation_order < 0:
|
407
659
|
args.interpolation_order = None
|
408
660
|
|
661
|
+
args.ctf_file = None
|
662
|
+
|
409
663
|
if args.temp_directory is None:
|
410
664
|
default = abspath(".")
|
411
665
|
if os.environ.get("TMPDIR", None) is not None:
|
@@ -438,6 +692,21 @@ def parse_args():
|
|
438
692
|
int(x) for x in os.environ["CUDA_VISIBLE_DEVICES"].split(",")
|
439
693
|
]
|
440
694
|
|
695
|
+
if args.tilt_angles is not None:
|
696
|
+
if args.wedge_axes is None:
|
697
|
+
raise ValueError("Need to specify --wedge_axes when --tilt_angles is set.")
|
698
|
+
if not exists(args.tilt_angles):
|
699
|
+
try:
|
700
|
+
float(args.tilt_angles.split(",")[0])
|
701
|
+
except ValueError:
|
702
|
+
raise ValueError(f"{args.tilt_angles} is not a file nor a range.")
|
703
|
+
|
704
|
+
if args.ctf_file is not None and args.tilt_angles is None:
|
705
|
+
raise ValueError("Need to specify --tilt_angles when --ctf_file is set.")
|
706
|
+
|
707
|
+
if args.wedge_axes is not None:
|
708
|
+
args.wedge_axes = tuple(int(i) for i in args.wedge_axes.split(","))
|
709
|
+
|
441
710
|
return args
|
442
711
|
|
443
712
|
|
@@ -514,51 +783,6 @@ def main():
|
|
514
783
|
},
|
515
784
|
)
|
516
785
|
|
517
|
-
template_filter = {}
|
518
|
-
if args.gaussian_sigma is not None:
|
519
|
-
template.data = Preprocessor().gaussian_filter(
|
520
|
-
sigma=args.gaussian_sigma, template=template.data
|
521
|
-
)
|
522
|
-
|
523
|
-
if args.bandpass_band is not None:
|
524
|
-
bandpass_start, bandpass_stop = [
|
525
|
-
float(x) for x in args.bandpass_band.split(",")
|
526
|
-
]
|
527
|
-
if args.bandpass_smooth is None:
|
528
|
-
args.bandpass_smooth = 0
|
529
|
-
|
530
|
-
template_filter["bandpass_mask"] = {
|
531
|
-
"minimum_frequency": bandpass_start,
|
532
|
-
"maximum_frequency": bandpass_stop,
|
533
|
-
"gaussian_sigma": args.bandpass_smooth,
|
534
|
-
}
|
535
|
-
|
536
|
-
if args.tilt_range is not None:
|
537
|
-
args.wedge_smooth if args.wedge_smooth is not None else 0
|
538
|
-
tilt_start, tilt_stop = [float(x) for x in args.tilt_range.split(",")]
|
539
|
-
opening_axis, tilt_axis = [int(x) for x in args.wedge_axes.split(",")]
|
540
|
-
|
541
|
-
if args.tilt_step is not None:
|
542
|
-
template_filter["step_wedge_mask"] = {
|
543
|
-
"start_tilt": tilt_start,
|
544
|
-
"stop_tilt": tilt_stop,
|
545
|
-
"tilt_step": args.tilt_step,
|
546
|
-
"sigma": args.wedge_smooth,
|
547
|
-
"opening_axis": opening_axis,
|
548
|
-
"tilt_axis": tilt_axis,
|
549
|
-
"omit_negative_frequencies": True,
|
550
|
-
}
|
551
|
-
else:
|
552
|
-
template_filter["continuous_wedge_mask"] = {
|
553
|
-
"start_tilt": tilt_start,
|
554
|
-
"stop_tilt": tilt_stop,
|
555
|
-
"tilt_axis": tilt_axis,
|
556
|
-
"opening_axis": opening_axis,
|
557
|
-
"infinite_plane": True,
|
558
|
-
"sigma": args.wedge_smooth,
|
559
|
-
"omit_negative_frequencies": True,
|
560
|
-
}
|
561
|
-
|
562
786
|
if template_mask is None:
|
563
787
|
template_mask = template.empty
|
564
788
|
if not args.no_centering:
|
@@ -672,21 +896,13 @@ def main():
|
|
672
896
|
)
|
673
897
|
exit(-1)
|
674
898
|
|
675
|
-
analyzer_args = {
|
676
|
-
"score_threshold": 0,
|
677
|
-
"number_of_peaks": 1000,
|
678
|
-
"convolution_mode": "valid",
|
679
|
-
"use_memmap": args.use_memmap,
|
680
|
-
}
|
681
|
-
|
682
899
|
matching_setup, matching_score = MATCHING_EXHAUSTIVE_REGISTER[args.score]
|
683
900
|
matching_data = MatchingData(target=target, template=template.data)
|
684
|
-
matching_data.rotations =
|
685
|
-
|
686
|
-
)
|
687
|
-
|
688
|
-
|
689
|
-
matching_data.rotations = np.eye(ndim).reshape(1, ndim, ndim)
|
901
|
+
matching_data.rotations = parse_rotation_logic(args=args, ndim=target.data.ndim)
|
902
|
+
|
903
|
+
template_filter, target_filter = setup_filter(args, template, target)
|
904
|
+
matching_data.template_filter = template_filter
|
905
|
+
matching_data.target_filter = target_filter
|
690
906
|
|
691
907
|
matching_data.template_filter = template_filter
|
692
908
|
matching_data._invert_target = args.invert_target_contrast
|
@@ -724,10 +940,35 @@ def main():
|
|
724
940
|
label_width=max(len(key) for key in options.keys()) + 2,
|
725
941
|
)
|
726
942
|
|
727
|
-
|
943
|
+
filter_args = {
|
944
|
+
"Lowpass": args.lowpass,
|
945
|
+
"Highpass": args.highpass,
|
946
|
+
"Smooth Pass": args.no_pass_smooth,
|
947
|
+
"Pass Format" : args.pass_format,
|
948
|
+
"Spectral Whitening": args.whiten_spectrum,
|
949
|
+
"Wedge Axes": args.wedge_axes,
|
950
|
+
"Tilt Angles": args.tilt_angles,
|
951
|
+
"Tilt Weighting": args.tilt_weighting,
|
952
|
+
"CTF": args.ctf_file,
|
953
|
+
}
|
954
|
+
filter_args = {k: v for k, v in filter_args.items() if v is not None}
|
955
|
+
if len(filter_args):
|
956
|
+
print_block(
|
957
|
+
name="Filters",
|
958
|
+
data=filter_args,
|
959
|
+
label_width=max(len(key) for key in options.keys()) + 2,
|
960
|
+
)
|
961
|
+
|
962
|
+
analyzer_args = {
|
963
|
+
"score_threshold": args.score_threshold,
|
964
|
+
"number_of_peaks": 1000,
|
965
|
+
"convolution_mode": "valid",
|
966
|
+
"use_memmap": args.use_memmap,
|
967
|
+
}
|
968
|
+
analyzer_args = {"Analyzer": callback_class, **analyzer_args}
|
728
969
|
print_block(
|
729
970
|
name="Score Analysis Options",
|
730
|
-
data=
|
971
|
+
data=analyzer_args,
|
731
972
|
label_width=max(len(key) for key in options.keys()) + 2,
|
732
973
|
)
|
733
974
|
print("\n" + "-" * 80)
|