pytme 0.1.5__cp311-cp311-macosx_14_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pytme-0.1.5.data/scripts/estimate_ram_usage.py +81 -0
- pytme-0.1.5.data/scripts/match_template.py +744 -0
- pytme-0.1.5.data/scripts/postprocess.py +279 -0
- pytme-0.1.5.data/scripts/preprocess.py +93 -0
- pytme-0.1.5.data/scripts/preprocessor_gui.py +729 -0
- pytme-0.1.5.dist-info/LICENSE +153 -0
- pytme-0.1.5.dist-info/METADATA +69 -0
- pytme-0.1.5.dist-info/RECORD +63 -0
- pytme-0.1.5.dist-info/WHEEL +5 -0
- pytme-0.1.5.dist-info/entry_points.txt +6 -0
- pytme-0.1.5.dist-info/top_level.txt +2 -0
- scripts/__init__.py +0 -0
- scripts/estimate_ram_usage.py +81 -0
- scripts/match_template.py +744 -0
- scripts/match_template_devel.py +788 -0
- scripts/postprocess.py +279 -0
- scripts/preprocess.py +93 -0
- scripts/preprocessor_gui.py +729 -0
- tme/__init__.py +6 -0
- tme/__version__.py +1 -0
- tme/analyzer.py +1144 -0
- tme/backends/__init__.py +134 -0
- tme/backends/cupy_backend.py +309 -0
- tme/backends/matching_backend.py +1154 -0
- tme/backends/npfftw_backend.py +763 -0
- tme/backends/pytorch_backend.py +526 -0
- tme/data/__init__.py +0 -0
- tme/data/c48n309.npy +0 -0
- tme/data/c48n527.npy +0 -0
- tme/data/c48n9.npy +0 -0
- tme/data/c48u1.npy +0 -0
- tme/data/c48u1153.npy +0 -0
- tme/data/c48u1201.npy +0 -0
- tme/data/c48u1641.npy +0 -0
- tme/data/c48u181.npy +0 -0
- tme/data/c48u2219.npy +0 -0
- tme/data/c48u27.npy +0 -0
- tme/data/c48u2947.npy +0 -0
- tme/data/c48u3733.npy +0 -0
- tme/data/c48u4749.npy +0 -0
- tme/data/c48u5879.npy +0 -0
- tme/data/c48u7111.npy +0 -0
- tme/data/c48u815.npy +0 -0
- tme/data/c48u83.npy +0 -0
- tme/data/c48u8649.npy +0 -0
- tme/data/c600v.npy +0 -0
- tme/data/c600vc.npy +0 -0
- tme/data/metadata.yaml +80 -0
- tme/data/quat_to_numpy.py +42 -0
- tme/data/scattering_factors.pickle +0 -0
- tme/density.py +2314 -0
- tme/extensions.cpython-311-darwin.so +0 -0
- tme/helpers.py +881 -0
- tme/matching_data.py +377 -0
- tme/matching_exhaustive.py +1553 -0
- tme/matching_memory.py +382 -0
- tme/matching_optimization.py +1123 -0
- tme/matching_utils.py +1180 -0
- tme/parser.py +429 -0
- tme/preprocessor.py +1291 -0
- tme/scoring.py +866 -0
- tme/structure.py +1428 -0
- tme/types.py +10 -0
tme/scoring.py
ADDED
@@ -0,0 +1,866 @@
|
|
1
|
+
from copy import deepcopy
|
2
|
+
from typing import Tuple, Callable, Dict
|
3
|
+
from joblib import Parallel, delayed
|
4
|
+
|
5
|
+
import numpy as np
|
6
|
+
|
7
|
+
from . import Preprocessor
|
8
|
+
from .matching_data import MatchingData
|
9
|
+
from .backends import backend
|
10
|
+
from .types import NDArray, CallbackClass
|
11
|
+
from .matching_memory import CCMemoryUsage
|
12
|
+
from .analyzer import MaxScoreOverRotations
|
13
|
+
from .matching_exhaustive import register_matching_exhaustive, device_memory_handler
|
14
|
+
from .matching_utils import apply_convolution_mode, conditional_execute
|
15
|
+
|
16
|
+
|
17
|
+
|
18
|
+
from scipy.interpolate import RegularGridInterpolator
|
19
|
+
class ExtractProjection:
|
20
|
+
def __init__(self, data: NDArray, interpolation_method: str = "linear"):
|
21
|
+
if not np.all(np.iscomplex(data)):
|
22
|
+
data = np.fft.fftshift(np.fft.fftn(data))
|
23
|
+
|
24
|
+
self.create_point_cloud(data.shape)
|
25
|
+
|
26
|
+
self._interpolator = RegularGridInterpolator(
|
27
|
+
tuple(np.linspace(0, 1, x) for x in data.shape),
|
28
|
+
data,
|
29
|
+
method=interpolation_method,
|
30
|
+
bounds_error=False,
|
31
|
+
fill_value=0,
|
32
|
+
)
|
33
|
+
|
34
|
+
def __call__(
|
35
|
+
self,
|
36
|
+
rotation_matrix: NDArray,
|
37
|
+
return_rfft: bool = False,
|
38
|
+
center_zero_frequency: bool = False,
|
39
|
+
) -> NDArray:
|
40
|
+
self._rotate_points(rotation_matrix=rotation_matrix)
|
41
|
+
fourier_slice = self._interpolator(self._point_cloud_transform.T)
|
42
|
+
fourier_slice = fourier_slice.reshape(self._data_shape[:-1])
|
43
|
+
|
44
|
+
if not center_zero_frequency:
|
45
|
+
fourier_slice = np.fft.ifftshift(fourier_slice)
|
46
|
+
|
47
|
+
if return_rfft:
|
48
|
+
cutoff = fourier_slice.shape[-1] // 2 + 1
|
49
|
+
fourier_slice = fourier_slice[..., :cutoff]
|
50
|
+
|
51
|
+
return fourier_slice
|
52
|
+
|
53
|
+
def create_point_cloud(self, shape : NDArray) -> None:
|
54
|
+
temp = np.ones(shape[:-1])
|
55
|
+
point_cloud = np.vstack(
|
56
|
+
[
|
57
|
+
np.array(np.where(temp > 0)),
|
58
|
+
np.full(temp.size, fill_value=shape[-1] // 2),
|
59
|
+
]
|
60
|
+
)
|
61
|
+
point_cloud = np.divide(point_cloud, np.array(shape)[..., None])
|
62
|
+
self._data_shape = np.array(shape)
|
63
|
+
self._ifft_shift = np.where(
|
64
|
+
self._data_shape % 2 == 0,
|
65
|
+
self._data_shape // 2,
|
66
|
+
(self._data_shape - 1) // 2,
|
67
|
+
)[..., None]
|
68
|
+
self._point_cloud_center = point_cloud.mean(axis=1)[..., None]
|
69
|
+
self._point_cloud = np.subtract(point_cloud, self._point_cloud_center)
|
70
|
+
self._point_cloud_transform = np.empty(
|
71
|
+
self._point_cloud.shape, dtype=np.float32
|
72
|
+
)
|
73
|
+
|
74
|
+
def _rotate_points(self, rotation_matrix: NDArray) -> None:
|
75
|
+
np.matmul(rotation_matrix, self._point_cloud, out=self._point_cloud_transform)
|
76
|
+
np.add(
|
77
|
+
self._point_cloud_transform,
|
78
|
+
self._point_cloud_center,
|
79
|
+
out=self._point_cloud_transform,
|
80
|
+
)
|
81
|
+
|
82
|
+
def corr2_setup(
|
83
|
+
rfftn: Callable,
|
84
|
+
irfftn: Callable,
|
85
|
+
template: NDArray,
|
86
|
+
template_mask: NDArray,
|
87
|
+
target: NDArray,
|
88
|
+
fast_shape: Tuple[int],
|
89
|
+
fast_ft_shape: Tuple[int],
|
90
|
+
real_dtype: type,
|
91
|
+
complex_dtype: type,
|
92
|
+
shared_memory_handler: Callable,
|
93
|
+
callback_class: Callable,
|
94
|
+
callback_class_args: Dict,
|
95
|
+
**kwargs,
|
96
|
+
) -> Dict:
|
97
|
+
"""
|
98
|
+
Setup to compute a normalized cross-correlation score of a target f a template g
|
99
|
+
and a mask m:
|
100
|
+
|
101
|
+
.. math::
|
102
|
+
|
103
|
+
\\frac{CC(f, \\frac{g*m - \\overline{g*m}}{\\sigma_{g*m}})}
|
104
|
+
{N_m * \\sqrt{
|
105
|
+
\\frac{CC(f^2, m)}{N_m} - (\\frac{CC(f, m)}{N_m})^2}
|
106
|
+
}
|
107
|
+
|
108
|
+
Where:
|
109
|
+
|
110
|
+
.. math::
|
111
|
+
|
112
|
+
CC(f,g) = \\mathcal{F}^{-1}(\\mathcal{F}(f) \\cdot \\mathcal{F}(g)^*)
|
113
|
+
|
114
|
+
and Nm is the number of voxels within the template mask m.
|
115
|
+
|
116
|
+
References
|
117
|
+
----------
|
118
|
+
.. [1] W. Wan, S. Khavnekar, J. Wagner, P. Erdmann, and W. Baumeister
|
119
|
+
Microsc. Microanal. 26, 2516 (2020)
|
120
|
+
.. [2] T. Hrabe, Y. Chen, S. Pfeffer, L. Kuhn Cuellar, A.-V. Mangold,
|
121
|
+
and F. Förster, J. Struct. Biol. 178, 177 (2012).
|
122
|
+
|
123
|
+
See Also
|
124
|
+
--------
|
125
|
+
:py:meth:`flc_scoring`
|
126
|
+
"""
|
127
|
+
target_pad = backend.topleft_pad(target, fast_shape)
|
128
|
+
|
129
|
+
# Target and squared target window sums
|
130
|
+
ft_target = backend.preallocate_array(fast_ft_shape, complex_dtype)
|
131
|
+
ft_target2 = backend.preallocate_array(fast_ft_shape, complex_dtype)
|
132
|
+
rfftn(target_pad, ft_target)
|
133
|
+
rfftn(backend.square(target_pad), ft_target2)
|
134
|
+
|
135
|
+
# Convert arrays used in subsequent fitting to SharedMemory objects
|
136
|
+
ft_target = backend.arr_to_sharedarr(
|
137
|
+
arr=ft_target, shared_memory_handler=shared_memory_handler
|
138
|
+
)
|
139
|
+
ft_target2 = backend.arr_to_sharedarr(
|
140
|
+
arr=ft_target2, shared_memory_handler=shared_memory_handler
|
141
|
+
)
|
142
|
+
|
143
|
+
template_buffer = backend.arr_to_sharedarr(
|
144
|
+
arr=template, shared_memory_handler=shared_memory_handler
|
145
|
+
)
|
146
|
+
template_mask_buffer = backend.arr_to_sharedarr(
|
147
|
+
arr=template_mask, shared_memory_handler=shared_memory_handler
|
148
|
+
)
|
149
|
+
|
150
|
+
template_tuple = (template_buffer, template.shape, real_dtype)
|
151
|
+
template_mask_tuple = (template_mask_buffer, template_mask.shape, real_dtype)
|
152
|
+
|
153
|
+
target_ft_tuple = (ft_target, fast_ft_shape, complex_dtype)
|
154
|
+
target_ft2_tuple = (ft_target2, fast_ft_shape, complex_dtype)
|
155
|
+
|
156
|
+
ret = {
|
157
|
+
"template": template_tuple,
|
158
|
+
"template_mask": template_mask_tuple,
|
159
|
+
"ft_target": target_ft_tuple,
|
160
|
+
"ft_target2": target_ft2_tuple,
|
161
|
+
"targetshape": target.shape,
|
162
|
+
"templateshape": template.shape,
|
163
|
+
"fast_shape": fast_shape,
|
164
|
+
"fast_ft_shape": fast_ft_shape,
|
165
|
+
"real_dtype": real_dtype,
|
166
|
+
"complex_dtype": complex_dtype,
|
167
|
+
"callback_class": callback_class,
|
168
|
+
"callback_class_args": callback_class_args,
|
169
|
+
}
|
170
|
+
|
171
|
+
return ret
|
172
|
+
|
173
|
+
|
174
|
+
def corr2_scoring(
|
175
|
+
template: Tuple[type, Tuple[int], type],
|
176
|
+
template_mask: Tuple[type, Tuple[int], type],
|
177
|
+
ft_target: Tuple[type, Tuple[int], type],
|
178
|
+
ft_target2: Tuple[type, Tuple[int], type],
|
179
|
+
template_filter: Tuple[type, Tuple[int], type],
|
180
|
+
targetshape: Tuple[int],
|
181
|
+
templateshape: Tuple[int],
|
182
|
+
fast_shape: Tuple[int],
|
183
|
+
fast_ft_shape: Tuple[int],
|
184
|
+
rotations: NDArray,
|
185
|
+
real_dtype: type,
|
186
|
+
complex_dtype: type,
|
187
|
+
callback_class: CallbackClass,
|
188
|
+
callback_class_args: Dict,
|
189
|
+
interpolation_order: int,
|
190
|
+
**kwargs,
|
191
|
+
) -> CallbackClass:
|
192
|
+
template_buffer, template_shape, template_dtype = template
|
193
|
+
template_mask_buffer, *_ = template_mask
|
194
|
+
filter_buffer, filter_shape, filter_dtype = template_filter
|
195
|
+
|
196
|
+
ft_target_buffer, ft_target_shape, ft_target_dtype = ft_target
|
197
|
+
ft_target2_buffer, *_ = ft_target2
|
198
|
+
|
199
|
+
if callback_class is not None and isinstance(callback_class, type):
|
200
|
+
callback = callback_class(**callback_class_args)
|
201
|
+
elif not isinstance(callback_class, type):
|
202
|
+
callback = callback_class
|
203
|
+
|
204
|
+
# Retrieve objects from shared memory
|
205
|
+
template = backend.sharedarr_to_arr(template_shape, template_dtype, template_buffer)
|
206
|
+
template_mask = backend.sharedarr_to_arr(
|
207
|
+
template_shape, template_dtype, template_mask_buffer
|
208
|
+
)
|
209
|
+
ft_target = backend.sharedarr_to_arr(
|
210
|
+
ft_target_shape, ft_target_dtype, ft_target_buffer
|
211
|
+
)
|
212
|
+
ft_target2 = backend.sharedarr_to_arr(
|
213
|
+
ft_target_shape, ft_target_dtype, ft_target2_buffer
|
214
|
+
)
|
215
|
+
template_filter = backend.sharedarr_to_arr(
|
216
|
+
filter_shape, filter_dtype, filter_buffer
|
217
|
+
)
|
218
|
+
|
219
|
+
arr = backend.preallocate_array(fast_shape, real_dtype)
|
220
|
+
temp = backend.preallocate_array(fast_shape, real_dtype)
|
221
|
+
temp2 = backend.preallocate_array(fast_shape, real_dtype)
|
222
|
+
|
223
|
+
ft_temp = backend.preallocate_array(fast_ft_shape, complex_dtype)
|
224
|
+
ft_denom = backend.preallocate_array(fast_ft_shape, complex_dtype)
|
225
|
+
|
226
|
+
rfftn, irfftn = backend.build_fft(
|
227
|
+
fast_shape=fast_shape,
|
228
|
+
fast_ft_shape=fast_ft_shape,
|
229
|
+
real_dtype=real_dtype,
|
230
|
+
complex_dtype=complex_dtype,
|
231
|
+
fftargs=kwargs.get("fftargs", {}),
|
232
|
+
temp_real=arr,
|
233
|
+
temp_fft=ft_temp,
|
234
|
+
)
|
235
|
+
|
236
|
+
templateshape = list(templateshape)
|
237
|
+
templateshape[-1] = 1
|
238
|
+
|
239
|
+
subset = [slice(0, x) for x in templateshape]
|
240
|
+
subset.pop(-1)
|
241
|
+
subset = tuple(subset)
|
242
|
+
temp_shape = list(fast_shape)
|
243
|
+
temp_shape[-1] = template.shape[-1]
|
244
|
+
rotation_out = backend.preallocate_array(temp_shape, real_dtype)
|
245
|
+
|
246
|
+
from time import time
|
247
|
+
|
248
|
+
for index in range(rotations.shape[0]):
|
249
|
+
start = time()
|
250
|
+
rotation = rotations[index]
|
251
|
+
backend.fill(arr, 0)
|
252
|
+
backend.fill(temp, 0)
|
253
|
+
backend.fill(rotation_out, 0)
|
254
|
+
|
255
|
+
backend.rotate_array(
|
256
|
+
arr=template,
|
257
|
+
rotation_matrix=rotation,
|
258
|
+
out=rotation_out,
|
259
|
+
use_geometric_center=False,
|
260
|
+
order=1,
|
261
|
+
)
|
262
|
+
projection = backend.sum(rotation_out, axis=-1)
|
263
|
+
arr[..., 0] = projection
|
264
|
+
|
265
|
+
projection_mask = backend.full(templateshape, dtype=real_dtype, fill_value=1)
|
266
|
+
backend.fill(temp, 0)
|
267
|
+
temp = backend.topleft_pad(projection_mask, temp.shape)
|
268
|
+
|
269
|
+
template_mean = backend.mean(projection[subset])
|
270
|
+
template_volume = backend.prod(projection[subset].shape)
|
271
|
+
template_ssd = backend.sum(
|
272
|
+
backend.square(backend.subtract(projection[subset], template_mean))
|
273
|
+
)
|
274
|
+
|
275
|
+
rfftn(temp, ft_temp)
|
276
|
+
backend.multiply(ft_target, ft_temp, out=ft_denom)
|
277
|
+
irfftn(ft_denom, temp)
|
278
|
+
|
279
|
+
numerator = backend.multiply(temp, template_mean)
|
280
|
+
|
281
|
+
backend.square(temp, out=temp)
|
282
|
+
backend.divide(temp, template_volume, out=temp)
|
283
|
+
backend.multiply(ft_target2, ft_temp, out=ft_denom)
|
284
|
+
irfftn(ft_denom, temp2)
|
285
|
+
|
286
|
+
backend.subtract(temp2, temp, out=temp)
|
287
|
+
backend.multiply(temp, template_ssd, out=temp)
|
288
|
+
backend.maximum(temp, 0.0, out=temp)
|
289
|
+
backend.sqrt(temp, out=temp)
|
290
|
+
|
291
|
+
denominator_mask = temp > backend.eps(temp.dtype)
|
292
|
+
inv_denominator = backend.preallocate_array(fast_shape, real_dtype)
|
293
|
+
inv_denominator[denominator_mask] = 1 / temp[denominator_mask]
|
294
|
+
|
295
|
+
rfftn(arr, ft_temp)
|
296
|
+
backend.multiply(ft_target, ft_temp, out=ft_temp)
|
297
|
+
irfftn(ft_temp, arr)
|
298
|
+
|
299
|
+
backend.subtract(arr, numerator, out=arr)
|
300
|
+
backend.multiply(arr, inv_denominator, out=arr)
|
301
|
+
|
302
|
+
convolution_mode = kwargs.get("convolution_mode", "full")
|
303
|
+
score = apply_convolution_mode(
|
304
|
+
arr, convolution_mode=convolution_mode, s1=targetshape, s2=templateshape
|
305
|
+
)
|
306
|
+
print(time() - start)
|
307
|
+
if callback_class is not None:
|
308
|
+
callback(
|
309
|
+
score,
|
310
|
+
rotation_matrix=rotation,
|
311
|
+
rotation_index=index,
|
312
|
+
**callback_class_args,
|
313
|
+
)
|
314
|
+
|
315
|
+
return callback
|
316
|
+
|
317
|
+
|
318
|
+
def corr3_setup(
|
319
|
+
rfftn: Callable,
|
320
|
+
irfftn: Callable,
|
321
|
+
template: NDArray,
|
322
|
+
template_mask: NDArray,
|
323
|
+
target: NDArray,
|
324
|
+
fast_shape: Tuple[int],
|
325
|
+
fast_ft_shape: Tuple[int],
|
326
|
+
real_dtype: type,
|
327
|
+
complex_dtype: type,
|
328
|
+
shared_memory_handler: Callable,
|
329
|
+
callback_class: Callable,
|
330
|
+
callback_class_args: Dict,
|
331
|
+
**kwargs,
|
332
|
+
) -> Dict:
|
333
|
+
target_pad = backend.topleft_pad(target, fast_shape)
|
334
|
+
|
335
|
+
# The exact composition of the denominator is debatable
|
336
|
+
# scikit-image match_template multiplies the running sum of the target
|
337
|
+
# with a scaling factor derived from the template. This is probably appropriate
|
338
|
+
# in pattern matching situations where the template exists in the target
|
339
|
+
template_mask = backend.preallocate_array(
|
340
|
+
(*template_mask.shape[:-1], 1), real_dtype
|
341
|
+
)
|
342
|
+
template_mask[:] = 1
|
343
|
+
window_template = backend.topleft_pad(template_mask, fast_shape)
|
344
|
+
ft_window_template = backend.preallocate_array(fast_ft_shape, complex_dtype)
|
345
|
+
rfftn(window_template, ft_window_template)
|
346
|
+
window_template = None
|
347
|
+
|
348
|
+
# Target and squared target window sums
|
349
|
+
ft_target = backend.preallocate_array(fast_ft_shape, complex_dtype)
|
350
|
+
ft_target2 = backend.preallocate_array(fast_ft_shape, complex_dtype)
|
351
|
+
denominator = backend.preallocate_array(fast_shape, real_dtype)
|
352
|
+
target_window_sum = backend.preallocate_array(fast_shape, real_dtype)
|
353
|
+
rfftn(target_pad, ft_target)
|
354
|
+
|
355
|
+
rfftn(backend.square(target_pad), ft_target2)
|
356
|
+
backend.multiply(ft_target2, ft_window_template, out=ft_target2)
|
357
|
+
irfftn(ft_target2, denominator)
|
358
|
+
|
359
|
+
backend.multiply(ft_target, ft_window_template, out=ft_window_template)
|
360
|
+
irfftn(ft_window_template, target_window_sum)
|
361
|
+
|
362
|
+
target_pad, ft_target2, ft_window_template = None, None, None
|
363
|
+
|
364
|
+
projection = template.sum(axis=-1)
|
365
|
+
# Normalizing constants
|
366
|
+
template_mean = backend.mean(projection)
|
367
|
+
template_volume = np.prod(projection.shape)
|
368
|
+
template_ssd = backend.sum(
|
369
|
+
backend.square(backend.subtract(projection, template_mean))
|
370
|
+
)
|
371
|
+
|
372
|
+
# Final numerator is score - numerator2
|
373
|
+
numerator2 = backend.multiply(target_window_sum, template_mean)
|
374
|
+
|
375
|
+
# Compute denominator
|
376
|
+
backend.multiply(target_window_sum, target_window_sum, out=target_window_sum)
|
377
|
+
backend.divide(target_window_sum, template_volume, out=target_window_sum)
|
378
|
+
|
379
|
+
backend.subtract(denominator, target_window_sum, out=denominator)
|
380
|
+
backend.multiply(denominator, template_ssd, out=denominator)
|
381
|
+
backend.maximum(denominator, 0, out=denominator)
|
382
|
+
backend.sqrt(denominator, out=denominator)
|
383
|
+
target_window_sum = None
|
384
|
+
|
385
|
+
# Invert denominator to compute final score as product
|
386
|
+
denominator_mask = denominator > backend.eps(denominator.dtype)
|
387
|
+
inv_denominator = backend.preallocate_array(fast_shape, real_dtype)
|
388
|
+
inv_denominator[denominator_mask] = 1 / denominator[denominator_mask]
|
389
|
+
|
390
|
+
# Convert arrays used in subsequent fitting to SharedMemory objects
|
391
|
+
template_buffer = backend.arr_to_sharedarr(
|
392
|
+
arr=template, shared_memory_handler=shared_memory_handler
|
393
|
+
)
|
394
|
+
target_ft_buffer = backend.arr_to_sharedarr(
|
395
|
+
arr=ft_target, shared_memory_handler=shared_memory_handler
|
396
|
+
)
|
397
|
+
inv_denominator_buffer = backend.arr_to_sharedarr(
|
398
|
+
arr=inv_denominator, shared_memory_handler=shared_memory_handler
|
399
|
+
)
|
400
|
+
numerator2_buffer = backend.arr_to_sharedarr(
|
401
|
+
arr=numerator2, shared_memory_handler=shared_memory_handler
|
402
|
+
)
|
403
|
+
|
404
|
+
template_tuple = (template_buffer, deepcopy(template.shape), real_dtype)
|
405
|
+
target_ft_tuple = (target_ft_buffer, fast_ft_shape, complex_dtype)
|
406
|
+
|
407
|
+
inv_denominator_tuple = (inv_denominator_buffer, fast_shape, real_dtype)
|
408
|
+
numerator2_tuple = (numerator2_buffer, fast_shape, real_dtype)
|
409
|
+
|
410
|
+
ft_target, inv_denominator, numerator2 = None, None, None
|
411
|
+
|
412
|
+
ret = {
|
413
|
+
"template": template_tuple,
|
414
|
+
"ft_target": target_ft_tuple,
|
415
|
+
"inv_denominator": inv_denominator_tuple,
|
416
|
+
"numerator2": numerator2_tuple,
|
417
|
+
"targetshape": deepcopy(target.shape),
|
418
|
+
"templateshape": deepcopy(template.shape),
|
419
|
+
"fast_shape": fast_shape,
|
420
|
+
"fast_ft_shape": fast_ft_shape,
|
421
|
+
"real_dtype": real_dtype,
|
422
|
+
"complex_dtype": complex_dtype,
|
423
|
+
"callback_class": callback_class,
|
424
|
+
"callback_class_args": callback_class_args,
|
425
|
+
"template_mean": kwargs.get("template_mean", template_mean),
|
426
|
+
}
|
427
|
+
|
428
|
+
return ret
|
429
|
+
|
430
|
+
|
431
|
+
def corr3_scoring(
|
432
|
+
template: Tuple[type, Tuple[int], type],
|
433
|
+
ft_target: Tuple[type, Tuple[int], type],
|
434
|
+
inv_denominator: Tuple[type, Tuple[int], type],
|
435
|
+
numerator2: Tuple[type, Tuple[int], type],
|
436
|
+
template_filter: Tuple[type, Tuple[int], type],
|
437
|
+
targetshape: Tuple[int],
|
438
|
+
templateshape: Tuple[int],
|
439
|
+
fast_shape: Tuple[int],
|
440
|
+
fast_ft_shape: Tuple[int],
|
441
|
+
rotations: NDArray,
|
442
|
+
real_dtype: type,
|
443
|
+
complex_dtype: type,
|
444
|
+
callback_class: CallbackClass,
|
445
|
+
callback_class_args: Dict,
|
446
|
+
interpolation_order: int,
|
447
|
+
convolution_mode: str = "full",
|
448
|
+
**kwargs,
|
449
|
+
) -> CallbackClass:
|
450
|
+
template_buffer, template_shape, template_dtype = template
|
451
|
+
ft_target_buffer, ft_target_shape, ft_target_dtype = ft_target
|
452
|
+
inv_denominator_buffer, inv_denominator_pointer_shape, _ = inv_denominator
|
453
|
+
numerator2_buffer, numerator2_shape, _ = numerator2
|
454
|
+
filter_buffer, filter_shape, filter_dtype = template_filter
|
455
|
+
|
456
|
+
if callback_class is not None and isinstance(callback_class, type):
|
457
|
+
callback = callback_class(**callback_class_args)
|
458
|
+
elif not isinstance(callback_class, type):
|
459
|
+
callback = callback_class
|
460
|
+
|
461
|
+
# Retrieve objects from shared memory
|
462
|
+
template = backend.sharedarr_to_arr(template_shape, template_dtype, template_buffer)
|
463
|
+
ft_target = backend.sharedarr_to_arr(
|
464
|
+
ft_target_shape, ft_target_dtype, ft_target_buffer
|
465
|
+
)
|
466
|
+
inv_denominator = backend.sharedarr_to_arr(
|
467
|
+
inv_denominator_pointer_shape, template_dtype, inv_denominator_buffer
|
468
|
+
)
|
469
|
+
numerator2 = backend.sharedarr_to_arr(
|
470
|
+
numerator2_shape, template_dtype, numerator2_buffer
|
471
|
+
)
|
472
|
+
template_filter = backend.sharedarr_to_arr(
|
473
|
+
filter_shape, filter_dtype, filter_buffer
|
474
|
+
)
|
475
|
+
|
476
|
+
arr = backend.preallocate_array(fast_shape, real_dtype)
|
477
|
+
ft_temp = backend.preallocate_array(fast_ft_shape, complex_dtype)
|
478
|
+
|
479
|
+
rfftn, irfftn = backend.build_fft(
|
480
|
+
fast_shape=fast_shape,
|
481
|
+
fast_ft_shape=fast_ft_shape,
|
482
|
+
real_dtype=real_dtype,
|
483
|
+
complex_dtype=complex_dtype,
|
484
|
+
fftargs=kwargs.get("fftargs", {}),
|
485
|
+
temp_real=arr,
|
486
|
+
temp_fft=ft_temp,
|
487
|
+
)
|
488
|
+
|
489
|
+
norm_numerator = (backend.sum(numerator2) != 0) & (backend.size(numerator2) != 1)
|
490
|
+
norm_denominator = (backend.sum(inv_denominator) != 1) & (
|
491
|
+
backend.size(inv_denominator) != 1
|
492
|
+
)
|
493
|
+
filter_template = backend.size(template_filter) != 0
|
494
|
+
|
495
|
+
norm_func_numerator = conditional_execute(backend.subtract, norm_numerator)
|
496
|
+
norm_func_denominator = conditional_execute(backend.multiply, norm_denominator)
|
497
|
+
template_filter_func = conditional_execute(backend.multiply, filter_template)
|
498
|
+
|
499
|
+
rotation_out = backend.preallocate_array(
|
500
|
+
(*fast_shape[:-1], template.shape[-1]), real_dtype
|
501
|
+
)
|
502
|
+
templateshape = list(templateshape)
|
503
|
+
templateshape[-1] = 1
|
504
|
+
from time import time
|
505
|
+
|
506
|
+
for index in range(rotations.shape[0]):
|
507
|
+
start = time()
|
508
|
+
rotation = rotations[index]
|
509
|
+
backend.fill(arr, 0)
|
510
|
+
backend.rotate_array(
|
511
|
+
arr=template,
|
512
|
+
rotation_matrix=rotation,
|
513
|
+
out=rotation_out,
|
514
|
+
use_geometric_center=False,
|
515
|
+
order=interpolation_order,
|
516
|
+
)
|
517
|
+
projection = backend.sum(rotation_out, axis=-1)
|
518
|
+
arr[..., 0] = projection
|
519
|
+
print(arr.shape)
|
520
|
+
|
521
|
+
rfftn(arr, ft_temp)
|
522
|
+
template_filter_func(ft_temp, template_filter, out=ft_temp)
|
523
|
+
|
524
|
+
backend.multiply(ft_target, ft_temp, out=ft_temp)
|
525
|
+
irfftn(ft_temp, arr)
|
526
|
+
|
527
|
+
norm_func_numerator(arr, numerator2, out=arr)
|
528
|
+
norm_func_denominator(arr, inv_denominator, out=arr)
|
529
|
+
|
530
|
+
score = apply_convolution_mode(
|
531
|
+
arr, convolution_mode=convolution_mode, s1=targetshape, s2=templateshape
|
532
|
+
)
|
533
|
+
print(time() - start)
|
534
|
+
if callback_class is not None:
|
535
|
+
callback(
|
536
|
+
score,
|
537
|
+
rotation_matrix=rotation,
|
538
|
+
rotation_index=index,
|
539
|
+
**callback_class_args,
|
540
|
+
)
|
541
|
+
|
542
|
+
return callback
|
543
|
+
|
544
|
+
|
545
|
+
|
546
|
+
def corr4_scoring(
|
547
|
+
template: Tuple[type, Tuple[int], type],
|
548
|
+
ft_target: Tuple[type, Tuple[int], type],
|
549
|
+
inv_denominator: Tuple[type, Tuple[int], type],
|
550
|
+
numerator2: Tuple[type, Tuple[int], type],
|
551
|
+
template_filter: Tuple[type, Tuple[int], type],
|
552
|
+
targetshape: Tuple[int],
|
553
|
+
templateshape: Tuple[int],
|
554
|
+
fast_shape: Tuple[int],
|
555
|
+
fast_ft_shape: Tuple[int],
|
556
|
+
rotations: NDArray,
|
557
|
+
real_dtype: type,
|
558
|
+
complex_dtype: type,
|
559
|
+
callback_class: CallbackClass,
|
560
|
+
callback_class_args: Dict,
|
561
|
+
interpolation_order: int,
|
562
|
+
convolution_mode: str = "full",
|
563
|
+
**kwargs,
|
564
|
+
) -> CallbackClass:
|
565
|
+
template_buffer, template_shape, template_dtype = template
|
566
|
+
ft_target_buffer, ft_target_shape, ft_target_dtype = ft_target
|
567
|
+
inv_denominator_buffer, inv_denominator_pointer_shape, _ = inv_denominator
|
568
|
+
numerator2_buffer, numerator2_shape, _ = numerator2
|
569
|
+
filter_buffer, filter_shape, filter_dtype = template_filter
|
570
|
+
|
571
|
+
if callback_class is not None and isinstance(callback_class, type):
|
572
|
+
callback = callback_class(**callback_class_args)
|
573
|
+
elif not isinstance(callback_class, type):
|
574
|
+
callback = callback_class
|
575
|
+
|
576
|
+
# Retrieve objects from shared memory
|
577
|
+
template = backend.sharedarr_to_arr(template_shape, template_dtype, template_buffer)
|
578
|
+
ft_target = backend.sharedarr_to_arr(
|
579
|
+
ft_target_shape, ft_target_dtype, ft_target_buffer
|
580
|
+
)
|
581
|
+
inv_denominator = backend.sharedarr_to_arr(
|
582
|
+
inv_denominator_pointer_shape, template_dtype, inv_denominator_buffer
|
583
|
+
)
|
584
|
+
numerator2 = backend.sharedarr_to_arr(
|
585
|
+
numerator2_shape, template_dtype, numerator2_buffer
|
586
|
+
)
|
587
|
+
template_filter = backend.sharedarr_to_arr(
|
588
|
+
filter_shape, filter_dtype, filter_buffer
|
589
|
+
)
|
590
|
+
|
591
|
+
arr = backend.preallocate_array(fast_shape, real_dtype)
|
592
|
+
ft_temp = backend.preallocate_array(fast_ft_shape, complex_dtype)
|
593
|
+
|
594
|
+
rfftn, irfftn = backend.build_fft(
|
595
|
+
fast_shape=fast_shape,
|
596
|
+
fast_ft_shape=fast_ft_shape,
|
597
|
+
real_dtype=real_dtype,
|
598
|
+
complex_dtype=complex_dtype,
|
599
|
+
fftargs=kwargs.get("fftargs", {}),
|
600
|
+
temp_real=arr,
|
601
|
+
temp_fft=ft_temp,
|
602
|
+
)
|
603
|
+
|
604
|
+
norm_numerator = (backend.sum(numerator2) != 0) & (backend.size(numerator2) != 1)
|
605
|
+
norm_denominator = (backend.sum(inv_denominator) != 1) & (
|
606
|
+
backend.size(inv_denominator) != 1
|
607
|
+
)
|
608
|
+
filter_template = backend.size(template_filter) != 0
|
609
|
+
|
610
|
+
norm_func_numerator = conditional_execute(backend.subtract, norm_numerator)
|
611
|
+
norm_func_denominator = conditional_execute(backend.multiply, norm_denominator)
|
612
|
+
template_filter_func = conditional_execute(backend.multiply, filter_template)
|
613
|
+
|
614
|
+
rotation_out = backend.preallocate_array(
|
615
|
+
(*fast_shape[:-1], template.shape[-1]), real_dtype
|
616
|
+
)
|
617
|
+
templateshape = list(templateshape)
|
618
|
+
templateshape[-1] = 1
|
619
|
+
from time import time
|
620
|
+
|
621
|
+
extractor = ExtractProjection(template)
|
622
|
+
extractor.create_point_cloud(fast_shape)
|
623
|
+
print(fast_shape)
|
624
|
+
|
625
|
+
for index in range(rotations.shape[0]):
|
626
|
+
start = time()
|
627
|
+
rotation = rotations[index]
|
628
|
+
|
629
|
+
ft_temp[..., :] = extractor(rotation)[..., None]
|
630
|
+
template_filter_func(ft_temp, template_filter, out=ft_temp)
|
631
|
+
|
632
|
+
print(ft_temp.shape, ft_target.shape)
|
633
|
+
backend.multiply(ft_target, ft_temp, out=ft_temp)
|
634
|
+
irfftn(ft_temp, arr)
|
635
|
+
print(arr.max())
|
636
|
+
|
637
|
+
norm_func_numerator(arr, numerator2, out=arr)
|
638
|
+
norm_func_denominator(arr, inv_denominator, out=arr)
|
639
|
+
|
640
|
+
score = apply_convolution_mode(
|
641
|
+
arr, convolution_mode=convolution_mode, s1=targetshape, s2=templateshape
|
642
|
+
)
|
643
|
+
print(time() - start)
|
644
|
+
if callback_class is not None:
|
645
|
+
callback(
|
646
|
+
score,
|
647
|
+
rotation_matrix=rotation,
|
648
|
+
rotation_index=index,
|
649
|
+
**callback_class_args,
|
650
|
+
)
|
651
|
+
|
652
|
+
return callback
|
653
|
+
|
654
|
+
|
655
|
+
@device_memory_handler
|
656
|
+
def scan(
|
657
|
+
matching_data: MatchingData,
|
658
|
+
matching_setup: Callable,
|
659
|
+
matching_score: Callable,
|
660
|
+
n_jobs: int = 4,
|
661
|
+
callback_class: CallbackClass = None,
|
662
|
+
callback_class_args: Dict = {},
|
663
|
+
fftargs: Dict = {},
|
664
|
+
pad_fourier: bool = True,
|
665
|
+
interpolation_order: int = 3,
|
666
|
+
jobs_per_callback_class: int = 8,
|
667
|
+
**kwargs,
|
668
|
+
) -> Tuple:
|
669
|
+
"""
|
670
|
+
Perform template matching between target and template and sample
|
671
|
+
different rotations of template.
|
672
|
+
|
673
|
+
Parameters
|
674
|
+
----------
|
675
|
+
matching_data : MatchingData
|
676
|
+
Template matching data.
|
677
|
+
matching_setup : Callable
|
678
|
+
Function pointer to setup function.
|
679
|
+
matching_score : Callable
|
680
|
+
Function pointer to scoring function.
|
681
|
+
n_jobs : int, optional
|
682
|
+
Number of parallel jobs. Default is 4.
|
683
|
+
callback_class : type, optional
|
684
|
+
Analyzer class pointer to operate on computed scores.
|
685
|
+
callback_class_args : dict, optional
|
686
|
+
Arguments passed to the callback_class. Default is an empty dictionary.
|
687
|
+
fftargs : dict, optional
|
688
|
+
Arguments for the FFT operations. Default is an empty dictionary.
|
689
|
+
pad_fourier: bool, optional
|
690
|
+
Whether to pad target and template to the full convolution shape.
|
691
|
+
interpolation_order : int, optional
|
692
|
+
Order of spline interpolation for rotations.
|
693
|
+
jobs_per_callback_class : int, optional
|
694
|
+
How many jobs should be processed by a single callback_class instance,
|
695
|
+
if ones is provided.
|
696
|
+
**kwargs : various
|
697
|
+
Additional arguments.
|
698
|
+
|
699
|
+
Returns
|
700
|
+
-------
|
701
|
+
Tuple
|
702
|
+
The merged results from callback_class if provided otherwise None.
|
703
|
+
"""
|
704
|
+
matching_data.to_backend()
|
705
|
+
fourier_pad = matching_data._templateshape
|
706
|
+
fourier_pad = list(matching_data._templateshape)
|
707
|
+
fourier_pad[-1] = 1
|
708
|
+
print("make sure to remove this")
|
709
|
+
fourier_shift = backend.zeros(len(fourier_pad))
|
710
|
+
if not pad_fourier:
|
711
|
+
fourier_pad = backend.full(shape=fourier_shift.shape, fill_value=1, dtype=int)
|
712
|
+
fourier_shift = 1 - backend.astype(
|
713
|
+
backend.divide(matching_data._templateshape, 2), int
|
714
|
+
)
|
715
|
+
callback_class_args["fourier_shift"] = fourier_shift
|
716
|
+
|
717
|
+
_, fast_shape, fast_ft_shape = backend.compute_convolution_shapes(
|
718
|
+
matching_data._target.shape, fourier_pad
|
719
|
+
)
|
720
|
+
rfftn, irfftn = backend.build_fft(
|
721
|
+
fast_shape=fast_shape,
|
722
|
+
fast_ft_shape=fast_ft_shape,
|
723
|
+
real_dtype=matching_data._default_dtype,
|
724
|
+
complex_dtype=matching_data._complex_dtype,
|
725
|
+
fftargs=fftargs,
|
726
|
+
)
|
727
|
+
setup = matching_setup(
|
728
|
+
rfftn=rfftn,
|
729
|
+
irfftn=irfftn,
|
730
|
+
template=matching_data.template,
|
731
|
+
template_mask=matching_data.template_mask,
|
732
|
+
target=matching_data.target,
|
733
|
+
target_mask=matching_data.target_mask,
|
734
|
+
fast_shape=fast_shape,
|
735
|
+
fast_ft_shape=fast_ft_shape,
|
736
|
+
real_dtype=matching_data._default_dtype,
|
737
|
+
complex_dtype=matching_data._complex_dtype,
|
738
|
+
callback_class=callback_class,
|
739
|
+
callback_class_args=callback_class_args,
|
740
|
+
**kwargs,
|
741
|
+
)
|
742
|
+
rfftn, irfftn = None, None
|
743
|
+
|
744
|
+
template_filter, preprocessor = None, Preprocessor()
|
745
|
+
for method, parameters in matching_data.template_filter.items():
|
746
|
+
parameters["shape"] = fast_shape
|
747
|
+
parameters["omit_negative_frequencies"] = True
|
748
|
+
out = preprocessor.apply_method(method=method, parameters=parameters)
|
749
|
+
if template_filter is None:
|
750
|
+
template_filter = out
|
751
|
+
np.multiply(template_filter, out, out=template_filter)
|
752
|
+
|
753
|
+
if template_filter is None:
|
754
|
+
template_filter = backend.full(
|
755
|
+
shape=(1,), fill_value=1, dtype=backend._default_dtype
|
756
|
+
)
|
757
|
+
else:
|
758
|
+
template_filter = backend.to_backend_array(template_filter)
|
759
|
+
|
760
|
+
template_filter = backend.astype(template_filter, backend._default_dtype)
|
761
|
+
template_filter_buffer = backend.arr_to_sharedarr(
|
762
|
+
arr=template_filter,
|
763
|
+
shared_memory_handler=kwargs.get("shared_memory_handler", None),
|
764
|
+
)
|
765
|
+
setup["template_filter"] = (
|
766
|
+
template_filter_buffer,
|
767
|
+
template_filter.shape,
|
768
|
+
template_filter.dtype,
|
769
|
+
)
|
770
|
+
|
771
|
+
callback_class_args["translation_offset"] = backend.astype(
|
772
|
+
matching_data._translation_offset, int
|
773
|
+
)
|
774
|
+
callback_class_args["thread_safe"] = n_jobs > 1
|
775
|
+
callback_class_args["gpu_index"] = kwargs.get("gpu_index", -1)
|
776
|
+
|
777
|
+
n_callback_classes = max(n_jobs // jobs_per_callback_class, 1)
|
778
|
+
callback_class = setup.pop("callback_class", callback_class)
|
779
|
+
callback_class_args = setup.pop("callback_class_args", callback_class_args)
|
780
|
+
callback_classes = [callback_class for _ in range(n_callback_classes)]
|
781
|
+
if callback_class == MaxScoreOverRotations:
|
782
|
+
score_space_shape = backend.subtract(
|
783
|
+
matching_data.target.shape,
|
784
|
+
matching_data._target_pad,
|
785
|
+
)
|
786
|
+
callback_classes = [
|
787
|
+
class_name(
|
788
|
+
score_space_shape=score_space_shape,
|
789
|
+
score_space_dtype=matching_data._default_dtype,
|
790
|
+
shared_memory_handler=kwargs.get("shared_memory_handler", None),
|
791
|
+
rotation_space_dtype=backend._default_dtype_int,
|
792
|
+
**callback_class_args,
|
793
|
+
)
|
794
|
+
for class_name in callback_classes
|
795
|
+
]
|
796
|
+
|
797
|
+
matching_data._target, matching_data._template = None, None
|
798
|
+
matching_data._target_mask, matching_data._template_mask = None, None
|
799
|
+
|
800
|
+
setup["fftargs"] = fftargs.copy()
|
801
|
+
convolution_mode = "same"
|
802
|
+
if backend.sum(matching_data._target_pad) > 0:
|
803
|
+
convolution_mode = "valid"
|
804
|
+
setup["convolution_mode"] = convolution_mode
|
805
|
+
setup["interpolation_order"] = interpolation_order
|
806
|
+
rotation_list = matching_data._split_rotations_on_jobs(n_jobs)
|
807
|
+
|
808
|
+
backend.free_cache()
|
809
|
+
|
810
|
+
def _run_scoring(backend_name, backend_args, rotations, **kwargs):
|
811
|
+
from tme.backends import backend
|
812
|
+
|
813
|
+
backend.change_backend(backend_name, **backend_args)
|
814
|
+
return matching_score(rotations=rotations, **kwargs)
|
815
|
+
|
816
|
+
callbacks = Parallel(n_jobs=n_jobs)(
|
817
|
+
delayed(_run_scoring)(
|
818
|
+
backend_name=backend._backend_name,
|
819
|
+
backend_args=backend._backend_args,
|
820
|
+
rotations=rotation,
|
821
|
+
callback_class=callback_classes[index % n_callback_classes],
|
822
|
+
callback_class_args=callback_class_args,
|
823
|
+
**setup,
|
824
|
+
)
|
825
|
+
for index, rotation in enumerate(rotation_list)
|
826
|
+
)
|
827
|
+
|
828
|
+
callbacks = [
|
829
|
+
tuple(callback)
|
830
|
+
for callback in callbacks[0:n_callback_classes]
|
831
|
+
if callback is not None
|
832
|
+
]
|
833
|
+
backend.free_cache()
|
834
|
+
|
835
|
+
merged_callback = None
|
836
|
+
if callback_class is not None:
|
837
|
+
merged_callback = callback_class.merge(
|
838
|
+
callbacks,
|
839
|
+
**callback_class_args,
|
840
|
+
score_indices=matching_data.indices,
|
841
|
+
inner_merge=True,
|
842
|
+
)
|
843
|
+
|
844
|
+
return merged_callback
|
845
|
+
|
846
|
+
|
847
|
+
register_matching_exhaustive(
|
848
|
+
matching = "CC2",
|
849
|
+
matching_setup = corr2_setup,
|
850
|
+
matching_scoring = corr2_scoring,
|
851
|
+
memory_class = CCMemoryUsage)
|
852
|
+
|
853
|
+
register_matching_exhaustive(
|
854
|
+
matching = "CC3",
|
855
|
+
matching_setup = corr3_setup,
|
856
|
+
matching_scoring = corr3_scoring,
|
857
|
+
memory_class = CCMemoryUsage
|
858
|
+
)
|
859
|
+
|
860
|
+
|
861
|
+
register_matching_exhaustive(
|
862
|
+
matching = "CC4",
|
863
|
+
matching_setup = corr3_setup,
|
864
|
+
matching_scoring = corr4_scoring,
|
865
|
+
memory_class = CCMemoryUsage
|
866
|
+
)
|