python-doctr 0.8.1__py3-none-any.whl → 0.10.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- doctr/__init__.py +1 -1
- doctr/contrib/__init__.py +0 -0
- doctr/contrib/artefacts.py +131 -0
- doctr/contrib/base.py +105 -0
- doctr/datasets/cord.py +10 -1
- doctr/datasets/datasets/pytorch.py +2 -2
- doctr/datasets/funsd.py +11 -1
- doctr/datasets/generator/base.py +6 -5
- doctr/datasets/ic03.py +11 -1
- doctr/datasets/ic13.py +10 -1
- doctr/datasets/iiit5k.py +26 -16
- doctr/datasets/imgur5k.py +11 -2
- doctr/datasets/loader.py +1 -6
- doctr/datasets/sroie.py +11 -1
- doctr/datasets/svhn.py +11 -1
- doctr/datasets/svt.py +11 -1
- doctr/datasets/synthtext.py +11 -1
- doctr/datasets/utils.py +9 -3
- doctr/datasets/vocabs.py +15 -4
- doctr/datasets/wildreceipt.py +12 -1
- doctr/file_utils.py +45 -12
- doctr/io/elements.py +52 -10
- doctr/io/html.py +2 -2
- doctr/io/image/pytorch.py +6 -8
- doctr/io/image/tensorflow.py +1 -1
- doctr/io/pdf.py +5 -2
- doctr/io/reader.py +6 -0
- doctr/models/__init__.py +0 -1
- doctr/models/_utils.py +57 -20
- doctr/models/builder.py +73 -15
- doctr/models/classification/magc_resnet/tensorflow.py +13 -6
- doctr/models/classification/mobilenet/pytorch.py +47 -9
- doctr/models/classification/mobilenet/tensorflow.py +51 -14
- doctr/models/classification/predictor/pytorch.py +28 -17
- doctr/models/classification/predictor/tensorflow.py +26 -16
- doctr/models/classification/resnet/tensorflow.py +21 -8
- doctr/models/classification/textnet/pytorch.py +3 -3
- doctr/models/classification/textnet/tensorflow.py +11 -5
- doctr/models/classification/vgg/tensorflow.py +9 -3
- doctr/models/classification/vit/tensorflow.py +10 -4
- doctr/models/classification/zoo.py +55 -19
- doctr/models/detection/_utils/__init__.py +1 -0
- doctr/models/detection/_utils/base.py +66 -0
- doctr/models/detection/differentiable_binarization/base.py +4 -3
- doctr/models/detection/differentiable_binarization/pytorch.py +2 -2
- doctr/models/detection/differentiable_binarization/tensorflow.py +34 -12
- doctr/models/detection/fast/base.py +6 -5
- doctr/models/detection/fast/pytorch.py +4 -4
- doctr/models/detection/fast/tensorflow.py +15 -12
- doctr/models/detection/linknet/base.py +4 -3
- doctr/models/detection/linknet/tensorflow.py +23 -11
- doctr/models/detection/predictor/pytorch.py +15 -1
- doctr/models/detection/predictor/tensorflow.py +17 -3
- doctr/models/detection/zoo.py +7 -2
- doctr/models/factory/hub.py +8 -18
- doctr/models/kie_predictor/base.py +13 -3
- doctr/models/kie_predictor/pytorch.py +45 -20
- doctr/models/kie_predictor/tensorflow.py +44 -17
- doctr/models/modules/layers/pytorch.py +2 -3
- doctr/models/modules/layers/tensorflow.py +6 -8
- doctr/models/modules/transformer/pytorch.py +2 -2
- doctr/models/modules/transformer/tensorflow.py +0 -2
- doctr/models/modules/vision_transformer/pytorch.py +1 -1
- doctr/models/modules/vision_transformer/tensorflow.py +1 -1
- doctr/models/predictor/base.py +97 -58
- doctr/models/predictor/pytorch.py +35 -20
- doctr/models/predictor/tensorflow.py +35 -18
- doctr/models/preprocessor/pytorch.py +4 -4
- doctr/models/preprocessor/tensorflow.py +3 -2
- doctr/models/recognition/crnn/tensorflow.py +8 -6
- doctr/models/recognition/master/pytorch.py +2 -2
- doctr/models/recognition/master/tensorflow.py +9 -4
- doctr/models/recognition/parseq/pytorch.py +4 -3
- doctr/models/recognition/parseq/tensorflow.py +14 -11
- doctr/models/recognition/sar/pytorch.py +7 -6
- doctr/models/recognition/sar/tensorflow.py +10 -12
- doctr/models/recognition/vitstr/pytorch.py +1 -1
- doctr/models/recognition/vitstr/tensorflow.py +9 -4
- doctr/models/recognition/zoo.py +1 -1
- doctr/models/utils/pytorch.py +1 -1
- doctr/models/utils/tensorflow.py +15 -15
- doctr/models/zoo.py +2 -2
- doctr/py.typed +0 -0
- doctr/transforms/functional/base.py +1 -1
- doctr/transforms/functional/pytorch.py +5 -5
- doctr/transforms/modules/base.py +37 -15
- doctr/transforms/modules/pytorch.py +73 -14
- doctr/transforms/modules/tensorflow.py +78 -19
- doctr/utils/fonts.py +7 -5
- doctr/utils/geometry.py +141 -31
- doctr/utils/metrics.py +34 -175
- doctr/utils/reconstitution.py +212 -0
- doctr/utils/visualization.py +5 -118
- doctr/version.py +1 -1
- {python_doctr-0.8.1.dist-info → python_doctr-0.10.0.dist-info}/METADATA +85 -81
- python_doctr-0.10.0.dist-info/RECORD +173 -0
- {python_doctr-0.8.1.dist-info → python_doctr-0.10.0.dist-info}/WHEEL +1 -1
- doctr/models/artefacts/__init__.py +0 -2
- doctr/models/artefacts/barcode.py +0 -74
- doctr/models/artefacts/face.py +0 -63
- doctr/models/obj_detection/__init__.py +0 -1
- doctr/models/obj_detection/faster_rcnn/__init__.py +0 -4
- doctr/models/obj_detection/faster_rcnn/pytorch.py +0 -81
- python_doctr-0.8.1.dist-info/RECORD +0 -173
- {python_doctr-0.8.1.dist-info → python_doctr-0.10.0.dist-info}/LICENSE +0 -0
- {python_doctr-0.8.1.dist-info → python_doctr-0.10.0.dist-info}/top_level.txt +0 -0
- {python_doctr-0.8.1.dist-info → python_doctr-0.10.0.dist-info}/zip-safe +0 -0
|
@@ -10,12 +10,17 @@ from typing import Any, Dict, List, Optional, Tuple
|
|
|
10
10
|
|
|
11
11
|
import numpy as np
|
|
12
12
|
import tensorflow as tf
|
|
13
|
-
from tensorflow import
|
|
14
|
-
from tensorflow.keras import layers
|
|
13
|
+
from tensorflow.keras import Model, Sequential, layers, losses
|
|
15
14
|
from tensorflow.keras.applications import ResNet50
|
|
16
15
|
|
|
17
16
|
from doctr.file_utils import CLASS_NAME
|
|
18
|
-
from doctr.models.utils import
|
|
17
|
+
from doctr.models.utils import (
|
|
18
|
+
IntermediateLayerGetter,
|
|
19
|
+
_bf16_to_float32,
|
|
20
|
+
_build_model,
|
|
21
|
+
conv_sequence,
|
|
22
|
+
load_pretrained_params,
|
|
23
|
+
)
|
|
19
24
|
from doctr.utils.repr import NestedObject
|
|
20
25
|
|
|
21
26
|
from ...classification import mobilenet_v3_large
|
|
@@ -29,13 +34,13 @@ default_cfgs: Dict[str, Dict[str, Any]] = {
|
|
|
29
34
|
"mean": (0.798, 0.785, 0.772),
|
|
30
35
|
"std": (0.264, 0.2749, 0.287),
|
|
31
36
|
"input_shape": (1024, 1024, 3),
|
|
32
|
-
"url": "https://doctr-static.mindee.com/models?id=v0.
|
|
37
|
+
"url": "https://doctr-static.mindee.com/models?id=v0.9.0/db_resnet50-649fa22b.weights.h5&src=0",
|
|
33
38
|
},
|
|
34
39
|
"db_mobilenet_v3_large": {
|
|
35
40
|
"mean": (0.798, 0.785, 0.772),
|
|
36
41
|
"std": (0.264, 0.2749, 0.287),
|
|
37
42
|
"input_shape": (1024, 1024, 3),
|
|
38
|
-
"url": "https://doctr-static.mindee.com/models?id=v0.
|
|
43
|
+
"url": "https://doctr-static.mindee.com/models?id=v0.9.0/db_mobilenet_v3_large-ee2e1dbe.weights.h5&src=0",
|
|
39
44
|
},
|
|
40
45
|
}
|
|
41
46
|
|
|
@@ -81,7 +86,7 @@ class FeaturePyramidNetwork(layers.Layer, NestedObject):
|
|
|
81
86
|
if dilation_factor > 1:
|
|
82
87
|
_layers.append(layers.UpSampling2D(size=(dilation_factor, dilation_factor), interpolation="nearest"))
|
|
83
88
|
|
|
84
|
-
module =
|
|
89
|
+
module = Sequential(_layers)
|
|
85
90
|
|
|
86
91
|
return module
|
|
87
92
|
|
|
@@ -104,7 +109,7 @@ class FeaturePyramidNetwork(layers.Layer, NestedObject):
|
|
|
104
109
|
return layers.concatenate(results)
|
|
105
110
|
|
|
106
111
|
|
|
107
|
-
class DBNet(_DBNet,
|
|
112
|
+
class DBNet(_DBNet, Model, NestedObject):
|
|
108
113
|
"""DBNet as described in `"Real-time Scene Text Detection with Differentiable Binarization"
|
|
109
114
|
<https://arxiv.org/pdf/1911.08947.pdf>`_.
|
|
110
115
|
|
|
@@ -147,14 +152,14 @@ class DBNet(_DBNet, keras.Model, NestedObject):
|
|
|
147
152
|
_inputs = [layers.Input(shape=in_shape[1:]) for in_shape in self.feat_extractor.output_shape]
|
|
148
153
|
output_shape = tuple(self.fpn(_inputs).shape)
|
|
149
154
|
|
|
150
|
-
self.probability_head =
|
|
155
|
+
self.probability_head = Sequential([
|
|
151
156
|
*conv_sequence(64, "relu", True, kernel_size=3, input_shape=output_shape[1:]),
|
|
152
157
|
layers.Conv2DTranspose(64, 2, strides=2, use_bias=False, kernel_initializer="he_normal"),
|
|
153
158
|
layers.BatchNormalization(),
|
|
154
159
|
layers.Activation("relu"),
|
|
155
160
|
layers.Conv2DTranspose(num_classes, 2, strides=2, kernel_initializer="he_normal"),
|
|
156
161
|
])
|
|
157
|
-
self.threshold_head =
|
|
162
|
+
self.threshold_head = Sequential([
|
|
158
163
|
*conv_sequence(64, "relu", True, kernel_size=3, input_shape=output_shape[1:]),
|
|
159
164
|
layers.Conv2DTranspose(64, 2, strides=2, use_bias=False, kernel_initializer="he_normal"),
|
|
160
165
|
layers.BatchNormalization(),
|
|
@@ -206,7 +211,7 @@ class DBNet(_DBNet, keras.Model, NestedObject):
|
|
|
206
211
|
|
|
207
212
|
# Focal loss
|
|
208
213
|
focal_scale = 10.0
|
|
209
|
-
bce_loss =
|
|
214
|
+
bce_loss = losses.binary_crossentropy(seg_target[..., None], out_map[..., None], from_logits=True)
|
|
210
215
|
|
|
211
216
|
# Convert logits to prob, compute gamma factor
|
|
212
217
|
p_t = (seg_target * prob_map) + ((1 - seg_target) * (1 - prob_map))
|
|
@@ -305,9 +310,16 @@ def _db_resnet(
|
|
|
305
310
|
|
|
306
311
|
# Build the model
|
|
307
312
|
model = DBNet(feat_extractor, cfg=_cfg, **kwargs)
|
|
313
|
+
_build_model(model)
|
|
314
|
+
|
|
308
315
|
# Load pretrained parameters
|
|
309
316
|
if pretrained:
|
|
310
|
-
|
|
317
|
+
# The given class_names differs from the pretrained model => skip the mismatching layers for fine tuning
|
|
318
|
+
load_pretrained_params(
|
|
319
|
+
model,
|
|
320
|
+
_cfg["url"],
|
|
321
|
+
skip_mismatch=kwargs["class_names"] != default_cfgs[arch].get("class_names", [CLASS_NAME]),
|
|
322
|
+
)
|
|
311
323
|
|
|
312
324
|
return model
|
|
313
325
|
|
|
@@ -326,6 +338,10 @@ def _db_mobilenet(
|
|
|
326
338
|
# Patch the config
|
|
327
339
|
_cfg = deepcopy(default_cfgs[arch])
|
|
328
340
|
_cfg["input_shape"] = input_shape or _cfg["input_shape"]
|
|
341
|
+
if not kwargs.get("class_names", None):
|
|
342
|
+
kwargs["class_names"] = default_cfgs[arch].get("class_names", [CLASS_NAME])
|
|
343
|
+
else:
|
|
344
|
+
kwargs["class_names"] = sorted(kwargs["class_names"])
|
|
329
345
|
|
|
330
346
|
# Feature extractor
|
|
331
347
|
feat_extractor = IntermediateLayerGetter(
|
|
@@ -339,9 +355,15 @@ def _db_mobilenet(
|
|
|
339
355
|
|
|
340
356
|
# Build the model
|
|
341
357
|
model = DBNet(feat_extractor, cfg=_cfg, **kwargs)
|
|
358
|
+
_build_model(model)
|
|
342
359
|
# Load pretrained parameters
|
|
343
360
|
if pretrained:
|
|
344
|
-
|
|
361
|
+
# The given class_names differs from the pretrained model => skip the mismatching layers for fine tuning
|
|
362
|
+
load_pretrained_params(
|
|
363
|
+
model,
|
|
364
|
+
_cfg["url"],
|
|
365
|
+
skip_mismatch=kwargs["class_names"] != default_cfgs[arch].get("class_names", [CLASS_NAME]),
|
|
366
|
+
)
|
|
345
367
|
|
|
346
368
|
return model
|
|
347
369
|
|
|
@@ -31,7 +31,7 @@ class FASTPostProcessor(DetectionPostProcessor):
|
|
|
31
31
|
|
|
32
32
|
def __init__(
|
|
33
33
|
self,
|
|
34
|
-
bin_thresh: float = 0.
|
|
34
|
+
bin_thresh: float = 0.1,
|
|
35
35
|
box_thresh: float = 0.1,
|
|
36
36
|
assume_straight_pages: bool = True,
|
|
37
37
|
) -> None:
|
|
@@ -111,7 +111,7 @@ class FASTPostProcessor(DetectionPostProcessor):
|
|
|
111
111
|
contours, _ = cv2.findContours(bitmap.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
|
112
112
|
for contour in contours:
|
|
113
113
|
# Check whether smallest enclosing bounding box is not too small
|
|
114
|
-
if np.any(contour[:, 0].max(axis=0) - contour[:, 0].min(axis=0) < 2):
|
|
114
|
+
if np.any(contour[:, 0].max(axis=0) - contour[:, 0].min(axis=0) < 2): # type: ignore[index]
|
|
115
115
|
continue
|
|
116
116
|
# Compute objectness
|
|
117
117
|
if self.assume_straight_pages:
|
|
@@ -138,10 +138,11 @@ class FASTPostProcessor(DetectionPostProcessor):
|
|
|
138
138
|
# compute relative box to get rid of img shape
|
|
139
139
|
_box[:, 0] /= width
|
|
140
140
|
_box[:, 1] /= height
|
|
141
|
-
|
|
141
|
+
# Add score to box as (0, score)
|
|
142
|
+
boxes.append(np.vstack([_box, np.array([0.0, score])]))
|
|
142
143
|
|
|
143
144
|
if not self.assume_straight_pages:
|
|
144
|
-
return np.clip(np.asarray(boxes), 0, 1) if len(boxes) > 0 else np.zeros((0,
|
|
145
|
+
return np.clip(np.asarray(boxes), 0, 1) if len(boxes) > 0 else np.zeros((0, 5, 2), dtype=pred.dtype)
|
|
145
146
|
else:
|
|
146
147
|
return np.clip(np.asarray(boxes), 0, 1) if len(boxes) > 0 else np.zeros((0, 5), dtype=pred.dtype)
|
|
147
148
|
|
|
@@ -153,7 +154,7 @@ class _FAST(BaseModel):
|
|
|
153
154
|
|
|
154
155
|
min_size_box: int = 3
|
|
155
156
|
assume_straight_pages: bool = True
|
|
156
|
-
shrink_ratio = 0.
|
|
157
|
+
shrink_ratio = 0.4
|
|
157
158
|
|
|
158
159
|
def build_target(
|
|
159
160
|
self,
|
|
@@ -26,19 +26,19 @@ default_cfgs: Dict[str, Dict[str, Any]] = {
|
|
|
26
26
|
"input_shape": (3, 1024, 1024),
|
|
27
27
|
"mean": (0.798, 0.785, 0.772),
|
|
28
28
|
"std": (0.264, 0.2749, 0.287),
|
|
29
|
-
"url":
|
|
29
|
+
"url": "https://doctr-static.mindee.com/models?id=v0.8.1/fast_tiny-1acac421.pt&src=0",
|
|
30
30
|
},
|
|
31
31
|
"fast_small": {
|
|
32
32
|
"input_shape": (3, 1024, 1024),
|
|
33
33
|
"mean": (0.798, 0.785, 0.772),
|
|
34
34
|
"std": (0.264, 0.2749, 0.287),
|
|
35
|
-
"url":
|
|
35
|
+
"url": "https://doctr-static.mindee.com/models?id=v0.8.1/fast_small-10952cc1.pt&src=0",
|
|
36
36
|
},
|
|
37
37
|
"fast_base": {
|
|
38
38
|
"input_shape": (3, 1024, 1024),
|
|
39
39
|
"mean": (0.798, 0.785, 0.772),
|
|
40
40
|
"std": (0.264, 0.2749, 0.287),
|
|
41
|
-
"url":
|
|
41
|
+
"url": "https://doctr-static.mindee.com/models?id=v0.8.1/fast_base-688a8b34.pt&src=0",
|
|
42
42
|
},
|
|
43
43
|
}
|
|
44
44
|
|
|
@@ -119,7 +119,7 @@ class FAST(_FAST, nn.Module):
|
|
|
119
119
|
def __init__(
|
|
120
120
|
self,
|
|
121
121
|
feat_extractor: IntermediateLayerGetter,
|
|
122
|
-
bin_thresh: float = 0.
|
|
122
|
+
bin_thresh: float = 0.1,
|
|
123
123
|
box_thresh: float = 0.1,
|
|
124
124
|
dropout_prob: float = 0.1,
|
|
125
125
|
pooling_size: int = 4, # different from paper performs better on close text-rich images
|
|
@@ -10,11 +10,10 @@ from typing import Any, Dict, List, Optional, Tuple, Union
|
|
|
10
10
|
|
|
11
11
|
import numpy as np
|
|
12
12
|
import tensorflow as tf
|
|
13
|
-
from tensorflow import
|
|
14
|
-
from tensorflow.keras import Sequential, layers
|
|
13
|
+
from tensorflow.keras import Model, Sequential, layers
|
|
15
14
|
|
|
16
15
|
from doctr.file_utils import CLASS_NAME
|
|
17
|
-
from doctr.models.utils import IntermediateLayerGetter, _bf16_to_float32, load_pretrained_params
|
|
16
|
+
from doctr.models.utils import IntermediateLayerGetter, _bf16_to_float32, _build_model, load_pretrained_params
|
|
18
17
|
from doctr.utils.repr import NestedObject
|
|
19
18
|
|
|
20
19
|
from ...classification import textnet_base, textnet_small, textnet_tiny
|
|
@@ -29,19 +28,19 @@ default_cfgs: Dict[str, Dict[str, Any]] = {
|
|
|
29
28
|
"input_shape": (1024, 1024, 3),
|
|
30
29
|
"mean": (0.798, 0.785, 0.772),
|
|
31
30
|
"std": (0.264, 0.2749, 0.287),
|
|
32
|
-
"url":
|
|
31
|
+
"url": "https://doctr-static.mindee.com/models?id=v0.9.0/fast_tiny-d7379d7b.weights.h5&src=0",
|
|
33
32
|
},
|
|
34
33
|
"fast_small": {
|
|
35
34
|
"input_shape": (1024, 1024, 3),
|
|
36
35
|
"mean": (0.798, 0.785, 0.772),
|
|
37
36
|
"std": (0.264, 0.2749, 0.287),
|
|
38
|
-
"url":
|
|
37
|
+
"url": "https://doctr-static.mindee.com/models?id=v0.9.0/fast_small-44b27eb6.weights.h5&src=0",
|
|
39
38
|
},
|
|
40
39
|
"fast_base": {
|
|
41
40
|
"input_shape": (1024, 1024, 3),
|
|
42
41
|
"mean": (0.798, 0.785, 0.772),
|
|
43
42
|
"std": (0.264, 0.2749, 0.287),
|
|
44
|
-
"url":
|
|
43
|
+
"url": "https://doctr-static.mindee.com/models?id=v0.9.0/fast_base-f2c6c736.weights.h5&src=0",
|
|
45
44
|
},
|
|
46
45
|
}
|
|
47
46
|
|
|
@@ -100,7 +99,7 @@ class FastHead(Sequential):
|
|
|
100
99
|
super().__init__(_layers)
|
|
101
100
|
|
|
102
101
|
|
|
103
|
-
class FAST(_FAST,
|
|
102
|
+
class FAST(_FAST, Model, NestedObject):
|
|
104
103
|
"""FAST as described in `"FAST: Faster Arbitrarily-Shaped Text Detector with Minimalist Kernel Representation"
|
|
105
104
|
<https://arxiv.org/pdf/2111.02394.pdf>`_.
|
|
106
105
|
|
|
@@ -122,7 +121,7 @@ class FAST(_FAST, keras.Model, NestedObject):
|
|
|
122
121
|
def __init__(
|
|
123
122
|
self,
|
|
124
123
|
feature_extractor: IntermediateLayerGetter,
|
|
125
|
-
bin_thresh: float = 0.
|
|
124
|
+
bin_thresh: float = 0.1,
|
|
126
125
|
box_thresh: float = 0.1,
|
|
127
126
|
dropout_prob: float = 0.1,
|
|
128
127
|
pooling_size: int = 4, # different from paper performs better on close text-rich images
|
|
@@ -334,12 +333,16 @@ def _fast(
|
|
|
334
333
|
|
|
335
334
|
# Build the model
|
|
336
335
|
model = FAST(feat_extractor, cfg=_cfg, **kwargs)
|
|
336
|
+
_build_model(model)
|
|
337
|
+
|
|
337
338
|
# Load pretrained parameters
|
|
338
339
|
if pretrained:
|
|
339
|
-
|
|
340
|
-
|
|
341
|
-
|
|
342
|
-
|
|
340
|
+
# The given class_names differs from the pretrained model => skip the mismatching layers for fine tuning
|
|
341
|
+
load_pretrained_params(
|
|
342
|
+
model,
|
|
343
|
+
_cfg["url"],
|
|
344
|
+
skip_mismatch=kwargs["class_names"] != default_cfgs[arch].get("class_names", [CLASS_NAME]),
|
|
345
|
+
)
|
|
343
346
|
|
|
344
347
|
return model
|
|
345
348
|
|
|
@@ -111,7 +111,7 @@ class LinkNetPostProcessor(DetectionPostProcessor):
|
|
|
111
111
|
contours, _ = cv2.findContours(bitmap.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
|
112
112
|
for contour in contours:
|
|
113
113
|
# Check whether smallest enclosing bounding box is not too small
|
|
114
|
-
if np.any(contour[:, 0].max(axis=0) - contour[:, 0].min(axis=0) < 2):
|
|
114
|
+
if np.any(contour[:, 0].max(axis=0) - contour[:, 0].min(axis=0) < 2): # type: ignore[index]
|
|
115
115
|
continue
|
|
116
116
|
# Compute objectness
|
|
117
117
|
if self.assume_straight_pages:
|
|
@@ -138,10 +138,11 @@ class LinkNetPostProcessor(DetectionPostProcessor):
|
|
|
138
138
|
# compute relative box to get rid of img shape
|
|
139
139
|
_box[:, 0] /= width
|
|
140
140
|
_box[:, 1] /= height
|
|
141
|
-
|
|
141
|
+
# Add score to box as (0, score)
|
|
142
|
+
boxes.append(np.vstack([_box, np.array([0.0, score])]))
|
|
142
143
|
|
|
143
144
|
if not self.assume_straight_pages:
|
|
144
|
-
return np.clip(np.asarray(boxes), 0, 1) if len(boxes) > 0 else np.zeros((0,
|
|
145
|
+
return np.clip(np.asarray(boxes), 0, 1) if len(boxes) > 0 else np.zeros((0, 5, 2), dtype=pred.dtype)
|
|
145
146
|
else:
|
|
146
147
|
return np.clip(np.asarray(boxes), 0, 1) if len(boxes) > 0 else np.zeros((0, 5), dtype=pred.dtype)
|
|
147
148
|
|
|
@@ -10,12 +10,17 @@ from typing import Any, Dict, List, Optional, Tuple
|
|
|
10
10
|
|
|
11
11
|
import numpy as np
|
|
12
12
|
import tensorflow as tf
|
|
13
|
-
from tensorflow import
|
|
14
|
-
from tensorflow.keras import Model, Sequential, layers
|
|
13
|
+
from tensorflow.keras import Model, Sequential, layers, losses
|
|
15
14
|
|
|
16
15
|
from doctr.file_utils import CLASS_NAME
|
|
17
16
|
from doctr.models.classification import resnet18, resnet34, resnet50
|
|
18
|
-
from doctr.models.utils import
|
|
17
|
+
from doctr.models.utils import (
|
|
18
|
+
IntermediateLayerGetter,
|
|
19
|
+
_bf16_to_float32,
|
|
20
|
+
_build_model,
|
|
21
|
+
conv_sequence,
|
|
22
|
+
load_pretrained_params,
|
|
23
|
+
)
|
|
19
24
|
from doctr.utils.repr import NestedObject
|
|
20
25
|
|
|
21
26
|
from .base import LinkNetPostProcessor, _LinkNet
|
|
@@ -27,19 +32,19 @@ default_cfgs: Dict[str, Dict[str, Any]] = {
|
|
|
27
32
|
"mean": (0.798, 0.785, 0.772),
|
|
28
33
|
"std": (0.264, 0.2749, 0.287),
|
|
29
34
|
"input_shape": (1024, 1024, 3),
|
|
30
|
-
"url": "https://doctr-static.mindee.com/models?id=v0.
|
|
35
|
+
"url": "https://doctr-static.mindee.com/models?id=v0.9.0/linknet_resnet18-615a82c5.weights.h5&src=0",
|
|
31
36
|
},
|
|
32
37
|
"linknet_resnet34": {
|
|
33
38
|
"mean": (0.798, 0.785, 0.772),
|
|
34
39
|
"std": (0.264, 0.2749, 0.287),
|
|
35
40
|
"input_shape": (1024, 1024, 3),
|
|
36
|
-
"url": "https://doctr-static.mindee.com/models?id=v0.
|
|
41
|
+
"url": "https://doctr-static.mindee.com/models?id=v0.9.0/linknet_resnet34-9d772be5.weights.h5&src=0",
|
|
37
42
|
},
|
|
38
43
|
"linknet_resnet50": {
|
|
39
44
|
"mean": (0.798, 0.785, 0.772),
|
|
40
45
|
"std": (0.264, 0.2749, 0.287),
|
|
41
46
|
"input_shape": (1024, 1024, 3),
|
|
42
|
-
"url": "https://doctr-static.mindee.com/models?id=v0.
|
|
47
|
+
"url": "https://doctr-static.mindee.com/models?id=v0.9.0/linknet_resnet50-6bf6c8b5.weights.h5&src=0",
|
|
43
48
|
},
|
|
44
49
|
}
|
|
45
50
|
|
|
@@ -80,17 +85,17 @@ class LinkNetFPN(Model, NestedObject):
|
|
|
80
85
|
for in_chan, out_chan, s, in_shape in zip(i_chans, o_chans, strides, in_shapes[::-1])
|
|
81
86
|
]
|
|
82
87
|
|
|
83
|
-
def call(self, x: List[tf.Tensor]) -> tf.Tensor:
|
|
88
|
+
def call(self, x: List[tf.Tensor], **kwargs: Any) -> tf.Tensor:
|
|
84
89
|
out = 0
|
|
85
90
|
for decoder, fmap in zip(self.decoders, x[::-1]):
|
|
86
|
-
out = decoder(out + fmap)
|
|
91
|
+
out = decoder(out + fmap, **kwargs)
|
|
87
92
|
return out
|
|
88
93
|
|
|
89
94
|
def extra_repr(self) -> str:
|
|
90
95
|
return f"out_chans={self.out_chans}"
|
|
91
96
|
|
|
92
97
|
|
|
93
|
-
class LinkNet(_LinkNet,
|
|
98
|
+
class LinkNet(_LinkNet, Model):
|
|
94
99
|
"""LinkNet as described in `"LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation"
|
|
95
100
|
<https://arxiv.org/pdf/1707.03718.pdf>`_.
|
|
96
101
|
|
|
@@ -187,7 +192,7 @@ class LinkNet(_LinkNet, keras.Model):
|
|
|
187
192
|
seg_mask = tf.convert_to_tensor(seg_mask, dtype=tf.bool)
|
|
188
193
|
seg_mask = tf.cast(seg_mask, tf.float32)
|
|
189
194
|
|
|
190
|
-
bce_loss =
|
|
195
|
+
bce_loss = losses.binary_crossentropy(seg_target[..., None], out_map[..., None], from_logits=True)
|
|
191
196
|
proba_map = tf.sigmoid(out_map)
|
|
192
197
|
|
|
193
198
|
# Focal loss
|
|
@@ -275,9 +280,16 @@ def _linknet(
|
|
|
275
280
|
|
|
276
281
|
# Build the model
|
|
277
282
|
model = LinkNet(feat_extractor, cfg=_cfg, **kwargs)
|
|
283
|
+
_build_model(model)
|
|
284
|
+
|
|
278
285
|
# Load pretrained parameters
|
|
279
286
|
if pretrained:
|
|
280
|
-
|
|
287
|
+
# The given class_names differs from the pretrained model => skip the mismatching layers for fine tuning
|
|
288
|
+
load_pretrained_params(
|
|
289
|
+
model,
|
|
290
|
+
_cfg["url"],
|
|
291
|
+
skip_mismatch=kwargs["class_names"] != default_cfgs[arch].get("class_names", [CLASS_NAME]),
|
|
292
|
+
)
|
|
281
293
|
|
|
282
294
|
return model
|
|
283
295
|
|
|
@@ -9,6 +9,7 @@ import numpy as np
|
|
|
9
9
|
import torch
|
|
10
10
|
from torch import nn
|
|
11
11
|
|
|
12
|
+
from doctr.models.detection._utils import _remove_padding
|
|
12
13
|
from doctr.models.preprocessor import PreProcessor
|
|
13
14
|
from doctr.models.utils import set_device_and_dtype
|
|
14
15
|
|
|
@@ -40,6 +41,11 @@ class DetectionPredictor(nn.Module):
|
|
|
40
41
|
return_maps: bool = False,
|
|
41
42
|
**kwargs: Any,
|
|
42
43
|
) -> Union[List[Dict[str, np.ndarray]], Tuple[List[Dict[str, np.ndarray]], List[np.ndarray]]]:
|
|
44
|
+
# Extract parameters from the preprocessor
|
|
45
|
+
preserve_aspect_ratio = self.pre_processor.resize.preserve_aspect_ratio
|
|
46
|
+
symmetric_pad = self.pre_processor.resize.symmetric_pad
|
|
47
|
+
assume_straight_pages = self.model.assume_straight_pages
|
|
48
|
+
|
|
43
49
|
# Dimension check
|
|
44
50
|
if any(page.ndim != 3 for page in pages):
|
|
45
51
|
raise ValueError("incorrect input shape: all pages are expected to be multi-channel 2D images.")
|
|
@@ -52,7 +58,15 @@ class DetectionPredictor(nn.Module):
|
|
|
52
58
|
predicted_batches = [
|
|
53
59
|
self.model(batch, return_preds=True, return_model_output=True, **kwargs) for batch in processed_batches
|
|
54
60
|
]
|
|
55
|
-
|
|
61
|
+
# Remove padding from loc predictions
|
|
62
|
+
preds = _remove_padding(
|
|
63
|
+
pages, # type: ignore[arg-type]
|
|
64
|
+
[pred for batch in predicted_batches for pred in batch["preds"]],
|
|
65
|
+
preserve_aspect_ratio=preserve_aspect_ratio,
|
|
66
|
+
symmetric_pad=symmetric_pad,
|
|
67
|
+
assume_straight_pages=assume_straight_pages,
|
|
68
|
+
)
|
|
69
|
+
|
|
56
70
|
if return_maps:
|
|
57
71
|
seg_maps = [
|
|
58
72
|
pred.permute(1, 2, 0).detach().cpu().numpy() for batch in predicted_batches for pred in batch["out_map"]
|
|
@@ -7,8 +7,9 @@ from typing import Any, Dict, List, Tuple, Union
|
|
|
7
7
|
|
|
8
8
|
import numpy as np
|
|
9
9
|
import tensorflow as tf
|
|
10
|
-
from tensorflow import
|
|
10
|
+
from tensorflow.keras import Model
|
|
11
11
|
|
|
12
|
+
from doctr.models.detection._utils import _remove_padding
|
|
12
13
|
from doctr.models.preprocessor import PreProcessor
|
|
13
14
|
from doctr.utils.repr import NestedObject
|
|
14
15
|
|
|
@@ -29,7 +30,7 @@ class DetectionPredictor(NestedObject):
|
|
|
29
30
|
def __init__(
|
|
30
31
|
self,
|
|
31
32
|
pre_processor: PreProcessor,
|
|
32
|
-
model:
|
|
33
|
+
model: Model,
|
|
33
34
|
) -> None:
|
|
34
35
|
self.pre_processor = pre_processor
|
|
35
36
|
self.model = model
|
|
@@ -40,6 +41,11 @@ class DetectionPredictor(NestedObject):
|
|
|
40
41
|
return_maps: bool = False,
|
|
41
42
|
**kwargs: Any,
|
|
42
43
|
) -> Union[List[Dict[str, np.ndarray]], Tuple[List[Dict[str, np.ndarray]], List[np.ndarray]]]:
|
|
44
|
+
# Extract parameters from the preprocessor
|
|
45
|
+
preserve_aspect_ratio = self.pre_processor.resize.preserve_aspect_ratio
|
|
46
|
+
symmetric_pad = self.pre_processor.resize.symmetric_pad
|
|
47
|
+
assume_straight_pages = self.model.assume_straight_pages
|
|
48
|
+
|
|
43
49
|
# Dimension check
|
|
44
50
|
if any(page.ndim != 3 for page in pages):
|
|
45
51
|
raise ValueError("incorrect input shape: all pages are expected to be multi-channel 2D images.")
|
|
@@ -50,7 +56,15 @@ class DetectionPredictor(NestedObject):
|
|
|
50
56
|
for batch in processed_batches
|
|
51
57
|
]
|
|
52
58
|
|
|
53
|
-
|
|
59
|
+
# Remove padding from loc predictions
|
|
60
|
+
preds = _remove_padding(
|
|
61
|
+
pages,
|
|
62
|
+
[pred for batch in predicted_batches for pred in batch["preds"]],
|
|
63
|
+
preserve_aspect_ratio=preserve_aspect_ratio,
|
|
64
|
+
symmetric_pad=symmetric_pad,
|
|
65
|
+
assume_straight_pages=assume_straight_pages,
|
|
66
|
+
)
|
|
67
|
+
|
|
54
68
|
if return_maps:
|
|
55
69
|
seg_maps = [pred.numpy() for batch in predicted_batches for pred in batch["out_map"]]
|
|
56
70
|
return preds, seg_maps
|
doctr/models/detection/zoo.py
CHANGED
|
@@ -8,6 +8,7 @@ from typing import Any, List
|
|
|
8
8
|
from doctr.file_utils import is_tf_available, is_torch_available
|
|
9
9
|
|
|
10
10
|
from .. import detection
|
|
11
|
+
from ..detection.fast import reparameterize
|
|
11
12
|
from ..preprocessor import PreProcessor
|
|
12
13
|
from .predictor import DetectionPredictor
|
|
13
14
|
|
|
@@ -51,18 +52,22 @@ def _predictor(arch: Any, pretrained: bool, assume_straight_pages: bool = True,
|
|
|
51
52
|
pretrained_backbone=kwargs.get("pretrained_backbone", True),
|
|
52
53
|
assume_straight_pages=assume_straight_pages,
|
|
53
54
|
)
|
|
55
|
+
# Reparameterize FAST models by default to lower inference latency and memory usage
|
|
56
|
+
if isinstance(_model, detection.FAST):
|
|
57
|
+
_model = reparameterize(_model)
|
|
54
58
|
else:
|
|
55
59
|
if not isinstance(arch, (detection.DBNet, detection.LinkNet, detection.FAST)):
|
|
56
60
|
raise ValueError(f"unknown architecture: {type(arch)}")
|
|
57
61
|
|
|
58
62
|
_model = arch
|
|
59
63
|
_model.assume_straight_pages = assume_straight_pages
|
|
64
|
+
_model.postprocessor.assume_straight_pages = assume_straight_pages
|
|
60
65
|
|
|
61
66
|
kwargs.pop("pretrained_backbone", None)
|
|
62
67
|
|
|
63
68
|
kwargs["mean"] = kwargs.get("mean", _model.cfg["mean"])
|
|
64
69
|
kwargs["std"] = kwargs.get("std", _model.cfg["std"])
|
|
65
|
-
kwargs["batch_size"] = kwargs.get("batch_size",
|
|
70
|
+
kwargs["batch_size"] = kwargs.get("batch_size", 2)
|
|
66
71
|
predictor = DetectionPredictor(
|
|
67
72
|
PreProcessor(_model.cfg["input_shape"][:-1] if is_tf_available() else _model.cfg["input_shape"][1:], **kwargs),
|
|
68
73
|
_model,
|
|
@@ -71,7 +76,7 @@ def _predictor(arch: Any, pretrained: bool, assume_straight_pages: bool = True,
|
|
|
71
76
|
|
|
72
77
|
|
|
73
78
|
def detection_predictor(
|
|
74
|
-
arch: Any = "
|
|
79
|
+
arch: Any = "fast_base",
|
|
75
80
|
pretrained: bool = False,
|
|
76
81
|
assume_straight_pages: bool = True,
|
|
77
82
|
**kwargs: Any,
|
doctr/models/factory/hub.py
CHANGED
|
@@ -20,7 +20,6 @@ from huggingface_hub import (
|
|
|
20
20
|
get_token_permission,
|
|
21
21
|
hf_hub_download,
|
|
22
22
|
login,
|
|
23
|
-
snapshot_download,
|
|
24
23
|
)
|
|
25
24
|
|
|
26
25
|
from doctr import models
|
|
@@ -33,10 +32,9 @@ __all__ = ["login_to_hub", "push_to_hf_hub", "from_hub", "_save_model_and_config
|
|
|
33
32
|
|
|
34
33
|
|
|
35
34
|
AVAILABLE_ARCHS = {
|
|
36
|
-
"classification": models.classification.zoo.ARCHS,
|
|
35
|
+
"classification": models.classification.zoo.ARCHS + models.classification.zoo.ORIENTATION_ARCHS,
|
|
37
36
|
"detection": models.detection.zoo.ARCHS,
|
|
38
37
|
"recognition": models.recognition.zoo.ARCHS,
|
|
39
|
-
"obj_detection": ["fasterrcnn_mobilenet_v3_large_fpn"] if is_torch_available() else None,
|
|
40
38
|
}
|
|
41
39
|
|
|
42
40
|
|
|
@@ -75,7 +73,7 @@ def _save_model_and_config_for_hf_hub(model: Any, save_dir: str, arch: str, task
|
|
|
75
73
|
weights_path = save_directory / "pytorch_model.bin"
|
|
76
74
|
torch.save(model.state_dict(), weights_path)
|
|
77
75
|
elif is_tf_available():
|
|
78
|
-
weights_path = save_directory / "tf_model
|
|
76
|
+
weights_path = save_directory / "tf_model.weights.h5"
|
|
79
77
|
model.save_weights(str(weights_path))
|
|
80
78
|
|
|
81
79
|
config_path = save_directory / "config.json"
|
|
@@ -110,8 +108,8 @@ def push_to_hf_hub(model: Any, model_name: str, task: str, **kwargs) -> None: #
|
|
|
110
108
|
|
|
111
109
|
if run_config is None and arch is None:
|
|
112
110
|
raise ValueError("run_config or arch must be specified")
|
|
113
|
-
if task not in ["classification", "detection", "recognition"
|
|
114
|
-
raise ValueError("task must be one of classification, detection, recognition
|
|
111
|
+
if task not in ["classification", "detection", "recognition"]:
|
|
112
|
+
raise ValueError("task must be one of classification, detection, recognition")
|
|
115
113
|
|
|
116
114
|
# default readme
|
|
117
115
|
readme = textwrap.dedent(
|
|
@@ -165,7 +163,7 @@ def push_to_hf_hub(model: Any, model_name: str, task: str, **kwargs) -> None: #
|
|
|
165
163
|
\n{json.dumps(vars(run_config), indent=2, ensure_ascii=False)}"""
|
|
166
164
|
)
|
|
167
165
|
|
|
168
|
-
if arch not in AVAILABLE_ARCHS[task]:
|
|
166
|
+
if arch not in AVAILABLE_ARCHS[task]:
|
|
169
167
|
raise ValueError(
|
|
170
168
|
f"Architecture: {arch} for task: {task} not found.\
|
|
171
169
|
\nAvailable architectures: {AVAILABLE_ARCHS}"
|
|
@@ -175,7 +173,7 @@ def push_to_hf_hub(model: Any, model_name: str, task: str, **kwargs) -> None: #
|
|
|
175
173
|
|
|
176
174
|
local_cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "huggingface", "hub", model_name)
|
|
177
175
|
repo_url = HfApi().create_repo(model_name, token=get_token(), exist_ok=False)
|
|
178
|
-
repo = Repository(local_dir=local_cache_dir, clone_from=repo_url
|
|
176
|
+
repo = Repository(local_dir=local_cache_dir, clone_from=repo_url)
|
|
179
177
|
|
|
180
178
|
with repo.commit(commit_message):
|
|
181
179
|
_save_model_and_config_for_hf_hub(model, repo.local_dir, arch=arch, task=task)
|
|
@@ -217,14 +215,6 @@ def from_hub(repo_id: str, **kwargs: Any):
|
|
|
217
215
|
model = models.detection.__dict__[arch](pretrained=False)
|
|
218
216
|
elif task == "recognition":
|
|
219
217
|
model = models.recognition.__dict__[arch](pretrained=False, input_shape=cfg["input_shape"], vocab=cfg["vocab"])
|
|
220
|
-
elif task == "obj_detection" and is_torch_available():
|
|
221
|
-
model = models.obj_detection.__dict__[arch](
|
|
222
|
-
pretrained=False,
|
|
223
|
-
image_mean=cfg["mean"],
|
|
224
|
-
image_std=cfg["std"],
|
|
225
|
-
max_size=cfg["input_shape"][-1],
|
|
226
|
-
num_classes=len(cfg["classes"]),
|
|
227
|
-
)
|
|
228
218
|
|
|
229
219
|
# update model cfg
|
|
230
220
|
model.cfg = cfg
|
|
@@ -234,7 +224,7 @@ def from_hub(repo_id: str, **kwargs: Any):
|
|
|
234
224
|
state_dict = torch.load(hf_hub_download(repo_id, filename="pytorch_model.bin", **kwargs), map_location="cpu")
|
|
235
225
|
model.load_state_dict(state_dict)
|
|
236
226
|
else: # tf
|
|
237
|
-
|
|
238
|
-
model.load_weights(
|
|
227
|
+
weights = hf_hub_download(repo_id, filename="tf_model.weights.h5", **kwargs)
|
|
228
|
+
model.load_weights(weights)
|
|
239
229
|
|
|
240
230
|
return model
|
|
@@ -7,7 +7,7 @@ from typing import Any, Optional
|
|
|
7
7
|
|
|
8
8
|
from doctr.models.builder import KIEDocumentBuilder
|
|
9
9
|
|
|
10
|
-
from ..classification.predictor import
|
|
10
|
+
from ..classification.predictor import OrientationPredictor
|
|
11
11
|
from ..predictor.base import _OCRPredictor
|
|
12
12
|
|
|
13
13
|
__all__ = ["_KIEPredictor"]
|
|
@@ -25,10 +25,13 @@ class _KIEPredictor(_OCRPredictor):
|
|
|
25
25
|
accordingly. Doing so will improve performances for documents with page-uniform rotations.
|
|
26
26
|
preserve_aspect_ratio: if True, resize preserving the aspect ratio (with padding)
|
|
27
27
|
symmetric_pad: if True and preserve_aspect_ratio is True, pas the image symmetrically.
|
|
28
|
+
detect_orientation: if True, the estimated general page orientation will be added to the predictions for each
|
|
29
|
+
page. Doing so will slightly deteriorate the overall latency.
|
|
28
30
|
kwargs: keyword args of `DocumentBuilder`
|
|
29
31
|
"""
|
|
30
32
|
|
|
31
|
-
crop_orientation_predictor: Optional[
|
|
33
|
+
crop_orientation_predictor: Optional[OrientationPredictor]
|
|
34
|
+
page_orientation_predictor: Optional[OrientationPredictor]
|
|
32
35
|
|
|
33
36
|
def __init__(
|
|
34
37
|
self,
|
|
@@ -36,8 +39,15 @@ class _KIEPredictor(_OCRPredictor):
|
|
|
36
39
|
straighten_pages: bool = False,
|
|
37
40
|
preserve_aspect_ratio: bool = True,
|
|
38
41
|
symmetric_pad: bool = True,
|
|
42
|
+
detect_orientation: bool = False,
|
|
39
43
|
**kwargs: Any,
|
|
40
44
|
) -> None:
|
|
41
|
-
super().__init__(
|
|
45
|
+
super().__init__(
|
|
46
|
+
assume_straight_pages, straighten_pages, preserve_aspect_ratio, symmetric_pad, detect_orientation, **kwargs
|
|
47
|
+
)
|
|
48
|
+
|
|
49
|
+
# Remove the following arguments from kwargs after initialization of the parent class
|
|
50
|
+
kwargs.pop("disable_page_orientation", None)
|
|
51
|
+
kwargs.pop("disable_crop_orientation", None)
|
|
42
52
|
|
|
43
53
|
self.doc_builder: KIEDocumentBuilder = KIEDocumentBuilder(**kwargs)
|