python-doctr 0.11.0__py3-none-any.whl → 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- doctr/__init__.py +0 -1
- doctr/datasets/__init__.py +1 -5
- doctr/datasets/coco_text.py +139 -0
- doctr/datasets/cord.py +2 -1
- doctr/datasets/datasets/__init__.py +1 -6
- doctr/datasets/datasets/pytorch.py +2 -2
- doctr/datasets/funsd.py +2 -2
- doctr/datasets/generator/__init__.py +1 -6
- doctr/datasets/ic03.py +1 -1
- doctr/datasets/ic13.py +2 -1
- doctr/datasets/iiit5k.py +4 -1
- doctr/datasets/imgur5k.py +9 -2
- doctr/datasets/ocr.py +1 -1
- doctr/datasets/recognition.py +1 -1
- doctr/datasets/svhn.py +1 -1
- doctr/datasets/svt.py +2 -2
- doctr/datasets/synthtext.py +15 -2
- doctr/datasets/utils.py +7 -6
- doctr/datasets/vocabs.py +1100 -54
- doctr/file_utils.py +2 -92
- doctr/io/elements.py +37 -3
- doctr/io/image/__init__.py +1 -7
- doctr/io/image/pytorch.py +1 -1
- doctr/models/_utils.py +4 -4
- doctr/models/classification/__init__.py +1 -0
- doctr/models/classification/magc_resnet/__init__.py +1 -6
- doctr/models/classification/magc_resnet/pytorch.py +3 -4
- doctr/models/classification/mobilenet/__init__.py +1 -6
- doctr/models/classification/mobilenet/pytorch.py +15 -1
- doctr/models/classification/predictor/__init__.py +1 -6
- doctr/models/classification/predictor/pytorch.py +2 -2
- doctr/models/classification/resnet/__init__.py +1 -6
- doctr/models/classification/resnet/pytorch.py +26 -3
- doctr/models/classification/textnet/__init__.py +1 -6
- doctr/models/classification/textnet/pytorch.py +11 -2
- doctr/models/classification/vgg/__init__.py +1 -6
- doctr/models/classification/vgg/pytorch.py +16 -1
- doctr/models/classification/vip/__init__.py +1 -0
- doctr/models/classification/vip/layers/__init__.py +1 -0
- doctr/models/classification/vip/layers/pytorch.py +615 -0
- doctr/models/classification/vip/pytorch.py +505 -0
- doctr/models/classification/vit/__init__.py +1 -6
- doctr/models/classification/vit/pytorch.py +12 -3
- doctr/models/classification/zoo.py +7 -8
- doctr/models/detection/_utils/__init__.py +1 -6
- doctr/models/detection/core.py +1 -1
- doctr/models/detection/differentiable_binarization/__init__.py +1 -6
- doctr/models/detection/differentiable_binarization/base.py +7 -16
- doctr/models/detection/differentiable_binarization/pytorch.py +13 -4
- doctr/models/detection/fast/__init__.py +1 -6
- doctr/models/detection/fast/base.py +6 -17
- doctr/models/detection/fast/pytorch.py +17 -8
- doctr/models/detection/linknet/__init__.py +1 -6
- doctr/models/detection/linknet/base.py +5 -15
- doctr/models/detection/linknet/pytorch.py +12 -3
- doctr/models/detection/predictor/__init__.py +1 -6
- doctr/models/detection/predictor/pytorch.py +1 -1
- doctr/models/detection/zoo.py +15 -32
- doctr/models/factory/hub.py +9 -22
- doctr/models/kie_predictor/__init__.py +1 -6
- doctr/models/kie_predictor/pytorch.py +3 -7
- doctr/models/modules/layers/__init__.py +1 -6
- doctr/models/modules/layers/pytorch.py +52 -4
- doctr/models/modules/transformer/__init__.py +1 -6
- doctr/models/modules/transformer/pytorch.py +2 -2
- doctr/models/modules/vision_transformer/__init__.py +1 -6
- doctr/models/predictor/__init__.py +1 -6
- doctr/models/predictor/base.py +3 -8
- doctr/models/predictor/pytorch.py +3 -6
- doctr/models/preprocessor/__init__.py +1 -6
- doctr/models/preprocessor/pytorch.py +27 -32
- doctr/models/recognition/__init__.py +1 -0
- doctr/models/recognition/crnn/__init__.py +1 -6
- doctr/models/recognition/crnn/pytorch.py +16 -7
- doctr/models/recognition/master/__init__.py +1 -6
- doctr/models/recognition/master/pytorch.py +15 -6
- doctr/models/recognition/parseq/__init__.py +1 -6
- doctr/models/recognition/parseq/pytorch.py +26 -8
- doctr/models/recognition/predictor/__init__.py +1 -6
- doctr/models/recognition/predictor/_utils.py +100 -47
- doctr/models/recognition/predictor/pytorch.py +4 -5
- doctr/models/recognition/sar/__init__.py +1 -6
- doctr/models/recognition/sar/pytorch.py +13 -4
- doctr/models/recognition/utils.py +56 -47
- doctr/models/recognition/viptr/__init__.py +1 -0
- doctr/models/recognition/viptr/pytorch.py +277 -0
- doctr/models/recognition/vitstr/__init__.py +1 -6
- doctr/models/recognition/vitstr/pytorch.py +13 -4
- doctr/models/recognition/zoo.py +13 -8
- doctr/models/utils/__init__.py +1 -6
- doctr/models/utils/pytorch.py +29 -19
- doctr/transforms/functional/__init__.py +1 -6
- doctr/transforms/functional/pytorch.py +4 -4
- doctr/transforms/modules/__init__.py +1 -7
- doctr/transforms/modules/base.py +26 -92
- doctr/transforms/modules/pytorch.py +28 -26
- doctr/utils/data.py +1 -1
- doctr/utils/geometry.py +7 -11
- doctr/utils/visualization.py +1 -1
- doctr/version.py +1 -1
- {python_doctr-0.11.0.dist-info → python_doctr-1.0.0.dist-info}/METADATA +22 -63
- python_doctr-1.0.0.dist-info/RECORD +149 -0
- {python_doctr-0.11.0.dist-info → python_doctr-1.0.0.dist-info}/WHEEL +1 -1
- doctr/datasets/datasets/tensorflow.py +0 -59
- doctr/datasets/generator/tensorflow.py +0 -58
- doctr/datasets/loader.py +0 -94
- doctr/io/image/tensorflow.py +0 -101
- doctr/models/classification/magc_resnet/tensorflow.py +0 -196
- doctr/models/classification/mobilenet/tensorflow.py +0 -433
- doctr/models/classification/predictor/tensorflow.py +0 -60
- doctr/models/classification/resnet/tensorflow.py +0 -397
- doctr/models/classification/textnet/tensorflow.py +0 -266
- doctr/models/classification/vgg/tensorflow.py +0 -116
- doctr/models/classification/vit/tensorflow.py +0 -192
- doctr/models/detection/_utils/tensorflow.py +0 -34
- doctr/models/detection/differentiable_binarization/tensorflow.py +0 -414
- doctr/models/detection/fast/tensorflow.py +0 -419
- doctr/models/detection/linknet/tensorflow.py +0 -369
- doctr/models/detection/predictor/tensorflow.py +0 -70
- doctr/models/kie_predictor/tensorflow.py +0 -187
- doctr/models/modules/layers/tensorflow.py +0 -171
- doctr/models/modules/transformer/tensorflow.py +0 -235
- doctr/models/modules/vision_transformer/tensorflow.py +0 -100
- doctr/models/predictor/tensorflow.py +0 -155
- doctr/models/preprocessor/tensorflow.py +0 -122
- doctr/models/recognition/crnn/tensorflow.py +0 -308
- doctr/models/recognition/master/tensorflow.py +0 -313
- doctr/models/recognition/parseq/tensorflow.py +0 -508
- doctr/models/recognition/predictor/tensorflow.py +0 -79
- doctr/models/recognition/sar/tensorflow.py +0 -416
- doctr/models/recognition/vitstr/tensorflow.py +0 -278
- doctr/models/utils/tensorflow.py +0 -182
- doctr/transforms/functional/tensorflow.py +0 -254
- doctr/transforms/modules/tensorflow.py +0 -562
- python_doctr-0.11.0.dist-info/RECORD +0 -173
- {python_doctr-0.11.0.dist-info → python_doctr-1.0.0.dist-info/licenses}/LICENSE +0 -0
- {python_doctr-0.11.0.dist-info → python_doctr-1.0.0.dist-info}/top_level.txt +0 -0
- {python_doctr-0.11.0.dist-info → python_doctr-1.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,562 +0,0 @@
|
|
|
1
|
-
# Copyright (C) 2021-2025, Mindee.
|
|
2
|
-
|
|
3
|
-
# This program is licensed under the Apache License 2.0.
|
|
4
|
-
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
|
|
5
|
-
|
|
6
|
-
import random
|
|
7
|
-
from collections.abc import Callable, Iterable
|
|
8
|
-
from typing import Any
|
|
9
|
-
|
|
10
|
-
import numpy as np
|
|
11
|
-
import tensorflow as tf
|
|
12
|
-
|
|
13
|
-
from doctr.utils.repr import NestedObject
|
|
14
|
-
|
|
15
|
-
from ..functional.tensorflow import _gaussian_filter, random_shadow
|
|
16
|
-
|
|
17
|
-
__all__ = [
|
|
18
|
-
"Compose",
|
|
19
|
-
"Resize",
|
|
20
|
-
"Normalize",
|
|
21
|
-
"LambdaTransformation",
|
|
22
|
-
"ToGray",
|
|
23
|
-
"RandomBrightness",
|
|
24
|
-
"RandomContrast",
|
|
25
|
-
"RandomSaturation",
|
|
26
|
-
"RandomHue",
|
|
27
|
-
"RandomGamma",
|
|
28
|
-
"RandomJpegQuality",
|
|
29
|
-
"GaussianBlur",
|
|
30
|
-
"ChannelShuffle",
|
|
31
|
-
"GaussianNoise",
|
|
32
|
-
"RandomHorizontalFlip",
|
|
33
|
-
"RandomShadow",
|
|
34
|
-
"RandomResize",
|
|
35
|
-
]
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
class Compose(NestedObject):
|
|
39
|
-
"""Implements a wrapper that will apply transformations sequentially
|
|
40
|
-
|
|
41
|
-
>>> import tensorflow as tf
|
|
42
|
-
>>> from doctr.transforms import Compose, Resize
|
|
43
|
-
>>> transfos = Compose([Resize((32, 32))])
|
|
44
|
-
>>> out = transfos(tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1))
|
|
45
|
-
|
|
46
|
-
Args:
|
|
47
|
-
transforms: list of transformation modules
|
|
48
|
-
"""
|
|
49
|
-
|
|
50
|
-
_children_names: list[str] = ["transforms"]
|
|
51
|
-
|
|
52
|
-
def __init__(self, transforms: list[Callable[[Any], Any]]) -> None:
|
|
53
|
-
self.transforms = transforms
|
|
54
|
-
|
|
55
|
-
def __call__(self, x: Any) -> Any:
|
|
56
|
-
for t in self.transforms:
|
|
57
|
-
x = t(x)
|
|
58
|
-
|
|
59
|
-
return x
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
class Resize(NestedObject):
|
|
63
|
-
"""Resizes a tensor to a target size
|
|
64
|
-
|
|
65
|
-
>>> import tensorflow as tf
|
|
66
|
-
>>> from doctr.transforms import Resize
|
|
67
|
-
>>> transfo = Resize((32, 32))
|
|
68
|
-
>>> out = transfo(tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1))
|
|
69
|
-
|
|
70
|
-
Args:
|
|
71
|
-
output_size: expected output size
|
|
72
|
-
method: interpolation method
|
|
73
|
-
preserve_aspect_ratio: if `True`, preserve aspect ratio and pad the rest with zeros
|
|
74
|
-
symmetric_pad: if `True` while preserving aspect ratio, the padding will be done symmetrically
|
|
75
|
-
"""
|
|
76
|
-
|
|
77
|
-
def __init__(
|
|
78
|
-
self,
|
|
79
|
-
output_size: int | tuple[int, int],
|
|
80
|
-
method: str = "bilinear",
|
|
81
|
-
preserve_aspect_ratio: bool = False,
|
|
82
|
-
symmetric_pad: bool = False,
|
|
83
|
-
) -> None:
|
|
84
|
-
self.output_size = output_size
|
|
85
|
-
self.method = method
|
|
86
|
-
self.preserve_aspect_ratio = preserve_aspect_ratio
|
|
87
|
-
self.symmetric_pad = symmetric_pad
|
|
88
|
-
self.antialias = True
|
|
89
|
-
|
|
90
|
-
if isinstance(self.output_size, int):
|
|
91
|
-
self.wanted_size = (self.output_size, self.output_size)
|
|
92
|
-
elif isinstance(self.output_size, (tuple, list)):
|
|
93
|
-
self.wanted_size = self.output_size
|
|
94
|
-
else:
|
|
95
|
-
raise AssertionError("Output size should be either a list, a tuple or an int")
|
|
96
|
-
|
|
97
|
-
def extra_repr(self) -> str:
|
|
98
|
-
_repr = f"output_size={self.output_size}, method='{self.method}'"
|
|
99
|
-
if self.preserve_aspect_ratio:
|
|
100
|
-
_repr += f", preserve_aspect_ratio={self.preserve_aspect_ratio}, symmetric_pad={self.symmetric_pad}"
|
|
101
|
-
return _repr
|
|
102
|
-
|
|
103
|
-
def __call__(
|
|
104
|
-
self,
|
|
105
|
-
img: tf.Tensor,
|
|
106
|
-
target: np.ndarray | None = None,
|
|
107
|
-
) -> tf.Tensor | tuple[tf.Tensor, np.ndarray]:
|
|
108
|
-
input_dtype = img.dtype
|
|
109
|
-
self.output_size = (
|
|
110
|
-
(self.output_size, self.output_size) if isinstance(self.output_size, int) else self.output_size
|
|
111
|
-
)
|
|
112
|
-
|
|
113
|
-
img = tf.image.resize(img, self.wanted_size, self.method, self.preserve_aspect_ratio, self.antialias)
|
|
114
|
-
# It will produce an un-padded resized image, with a side shorter than wanted if we preserve aspect ratio
|
|
115
|
-
raw_shape = img.shape[:2]
|
|
116
|
-
if self.symmetric_pad:
|
|
117
|
-
half_pad = (int((self.output_size[0] - img.shape[0]) / 2), 0)
|
|
118
|
-
if self.preserve_aspect_ratio:
|
|
119
|
-
if isinstance(self.output_size, (tuple, list)):
|
|
120
|
-
# In that case we need to pad because we want to enforce both width and height
|
|
121
|
-
if not self.symmetric_pad:
|
|
122
|
-
half_pad = (0, 0)
|
|
123
|
-
elif self.output_size[0] == img.shape[0]:
|
|
124
|
-
half_pad = (0, int((self.output_size[1] - img.shape[1]) / 2))
|
|
125
|
-
# Pad image
|
|
126
|
-
img = tf.image.pad_to_bounding_box(img, *half_pad, *self.output_size)
|
|
127
|
-
|
|
128
|
-
# In case boxes are provided, resize boxes if needed (for detection task if preserve aspect ratio)
|
|
129
|
-
if target is not None:
|
|
130
|
-
if self.symmetric_pad:
|
|
131
|
-
offset = half_pad[0] / img.shape[0], half_pad[1] / img.shape[1]
|
|
132
|
-
|
|
133
|
-
if self.preserve_aspect_ratio:
|
|
134
|
-
# Get absolute coords
|
|
135
|
-
if target.shape[1:] == (4,):
|
|
136
|
-
if isinstance(self.output_size, (tuple, list)) and self.symmetric_pad:
|
|
137
|
-
target[:, [0, 2]] = offset[1] + target[:, [0, 2]] * raw_shape[1] / img.shape[1]
|
|
138
|
-
target[:, [1, 3]] = offset[0] + target[:, [1, 3]] * raw_shape[0] / img.shape[0]
|
|
139
|
-
else:
|
|
140
|
-
target[:, [0, 2]] *= raw_shape[1] / img.shape[1]
|
|
141
|
-
target[:, [1, 3]] *= raw_shape[0] / img.shape[0]
|
|
142
|
-
elif target.shape[1:] == (4, 2):
|
|
143
|
-
if isinstance(self.output_size, (tuple, list)) and self.symmetric_pad:
|
|
144
|
-
target[..., 0] = offset[1] + target[..., 0] * raw_shape[1] / img.shape[1]
|
|
145
|
-
target[..., 1] = offset[0] + target[..., 1] * raw_shape[0] / img.shape[0]
|
|
146
|
-
else:
|
|
147
|
-
target[..., 0] *= raw_shape[1] / img.shape[1]
|
|
148
|
-
target[..., 1] *= raw_shape[0] / img.shape[0]
|
|
149
|
-
else:
|
|
150
|
-
raise AssertionError("Boxes should be in the format (n_boxes, 4, 2) or (n_boxes, 4)")
|
|
151
|
-
|
|
152
|
-
return tf.cast(img, dtype=input_dtype), np.clip(target, 0, 1)
|
|
153
|
-
|
|
154
|
-
return tf.cast(img, dtype=input_dtype)
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
class Normalize(NestedObject):
|
|
158
|
-
"""Normalize a tensor to a Gaussian distribution for each channel
|
|
159
|
-
|
|
160
|
-
>>> import tensorflow as tf
|
|
161
|
-
>>> from doctr.transforms import Normalize
|
|
162
|
-
>>> transfo = Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
|
163
|
-
>>> out = transfo(tf.random.uniform(shape=[8, 64, 64, 3], minval=0, maxval=1))
|
|
164
|
-
|
|
165
|
-
Args:
|
|
166
|
-
mean: average value per channel
|
|
167
|
-
std: standard deviation per channel
|
|
168
|
-
"""
|
|
169
|
-
|
|
170
|
-
def __init__(self, mean: tuple[float, float, float], std: tuple[float, float, float]) -> None:
|
|
171
|
-
self.mean = tf.constant(mean)
|
|
172
|
-
self.std = tf.constant(std)
|
|
173
|
-
|
|
174
|
-
def extra_repr(self) -> str:
|
|
175
|
-
return f"mean={self.mean.numpy().tolist()}, std={self.std.numpy().tolist()}"
|
|
176
|
-
|
|
177
|
-
def __call__(self, img: tf.Tensor) -> tf.Tensor:
|
|
178
|
-
img -= tf.cast(self.mean, dtype=img.dtype)
|
|
179
|
-
img /= tf.cast(self.std, dtype=img.dtype)
|
|
180
|
-
return img
|
|
181
|
-
|
|
182
|
-
|
|
183
|
-
class LambdaTransformation(NestedObject):
|
|
184
|
-
"""Normalize a tensor to a Gaussian distribution for each channel
|
|
185
|
-
|
|
186
|
-
>>> import tensorflow as tf
|
|
187
|
-
>>> from doctr.transforms import LambdaTransformation
|
|
188
|
-
>>> transfo = LambdaTransformation(lambda x: x/ 255.)
|
|
189
|
-
>>> out = transfo(tf.random.uniform(shape=[8, 64, 64, 3], minval=0, maxval=1))
|
|
190
|
-
|
|
191
|
-
Args:
|
|
192
|
-
fn: the function to be applied to the input tensor
|
|
193
|
-
"""
|
|
194
|
-
|
|
195
|
-
def __init__(self, fn: Callable[[tf.Tensor], tf.Tensor]) -> None:
|
|
196
|
-
self.fn = fn
|
|
197
|
-
|
|
198
|
-
def __call__(self, img: tf.Tensor) -> tf.Tensor:
|
|
199
|
-
return self.fn(img)
|
|
200
|
-
|
|
201
|
-
|
|
202
|
-
class ToGray(NestedObject):
|
|
203
|
-
"""Convert a RGB tensor (batch of images or image) to a 3-channels grayscale tensor
|
|
204
|
-
|
|
205
|
-
>>> import tensorflow as tf
|
|
206
|
-
>>> from doctr.transforms import ToGray
|
|
207
|
-
>>> transfo = ToGray()
|
|
208
|
-
>>> out = transfo(tf.random.uniform(shape=[8, 64, 64, 3], minval=0, maxval=1))
|
|
209
|
-
"""
|
|
210
|
-
|
|
211
|
-
def __init__(self, num_output_channels: int = 1):
|
|
212
|
-
self.num_output_channels = num_output_channels
|
|
213
|
-
|
|
214
|
-
def __call__(self, img: tf.Tensor) -> tf.Tensor:
|
|
215
|
-
img = tf.image.rgb_to_grayscale(img)
|
|
216
|
-
return img if self.num_output_channels == 1 else tf.repeat(img, self.num_output_channels, axis=-1)
|
|
217
|
-
|
|
218
|
-
|
|
219
|
-
class RandomBrightness(NestedObject):
|
|
220
|
-
"""Randomly adjust brightness of a tensor (batch of images or image) by adding a delta
|
|
221
|
-
to all pixels
|
|
222
|
-
|
|
223
|
-
>>> import tensorflow as tf
|
|
224
|
-
>>> from doctr.transforms import RandomBrightness
|
|
225
|
-
>>> transfo = RandomBrightness()
|
|
226
|
-
>>> out = transfo(tf.random.uniform(shape=[8, 64, 64, 3], minval=0, maxval=1))
|
|
227
|
-
|
|
228
|
-
Args:
|
|
229
|
-
max_delta: offset to add to each pixel is randomly picked in [-max_delta, max_delta]
|
|
230
|
-
p: probability to apply transformation
|
|
231
|
-
"""
|
|
232
|
-
|
|
233
|
-
def __init__(self, max_delta: float = 0.3) -> None:
|
|
234
|
-
self.max_delta = max_delta
|
|
235
|
-
|
|
236
|
-
def extra_repr(self) -> str:
|
|
237
|
-
return f"max_delta={self.max_delta}"
|
|
238
|
-
|
|
239
|
-
def __call__(self, img: tf.Tensor) -> tf.Tensor:
|
|
240
|
-
return tf.image.random_brightness(img, max_delta=self.max_delta)
|
|
241
|
-
|
|
242
|
-
|
|
243
|
-
class RandomContrast(NestedObject):
|
|
244
|
-
"""Randomly adjust contrast of a tensor (batch of images or image) by adjusting
|
|
245
|
-
each pixel: (img - mean) * contrast_factor + mean.
|
|
246
|
-
|
|
247
|
-
>>> import tensorflow as tf
|
|
248
|
-
>>> from doctr.transforms import RandomContrast
|
|
249
|
-
>>> transfo = RandomContrast()
|
|
250
|
-
>>> out = transfo(tf.random.uniform(shape=[8, 64, 64, 3], minval=0, maxval=1))
|
|
251
|
-
|
|
252
|
-
Args:
|
|
253
|
-
delta: multiplicative factor is picked in [1-delta, 1+delta] (reduce contrast if factor<1)
|
|
254
|
-
"""
|
|
255
|
-
|
|
256
|
-
def __init__(self, delta: float = 0.3) -> None:
|
|
257
|
-
self.delta = delta
|
|
258
|
-
|
|
259
|
-
def extra_repr(self) -> str:
|
|
260
|
-
return f"delta={self.delta}"
|
|
261
|
-
|
|
262
|
-
def __call__(self, img: tf.Tensor) -> tf.Tensor:
|
|
263
|
-
return tf.image.random_contrast(img, lower=1 - self.delta, upper=1 / (1 - self.delta))
|
|
264
|
-
|
|
265
|
-
|
|
266
|
-
class RandomSaturation(NestedObject):
|
|
267
|
-
"""Randomly adjust saturation of a tensor (batch of images or image) by converting to HSV and
|
|
268
|
-
increasing saturation by a factor.
|
|
269
|
-
|
|
270
|
-
>>> import tensorflow as tf
|
|
271
|
-
>>> from doctr.transforms import RandomSaturation
|
|
272
|
-
>>> transfo = RandomSaturation()
|
|
273
|
-
>>> out = transfo(tf.random.uniform(shape=[8, 64, 64, 3], minval=0, maxval=1))
|
|
274
|
-
|
|
275
|
-
Args:
|
|
276
|
-
delta: multiplicative factor is picked in [1-delta, 1+delta] (reduce saturation if factor<1)
|
|
277
|
-
"""
|
|
278
|
-
|
|
279
|
-
def __init__(self, delta: float = 0.5) -> None:
|
|
280
|
-
self.delta = delta
|
|
281
|
-
|
|
282
|
-
def extra_repr(self) -> str:
|
|
283
|
-
return f"delta={self.delta}"
|
|
284
|
-
|
|
285
|
-
def __call__(self, img: tf.Tensor) -> tf.Tensor:
|
|
286
|
-
return tf.image.random_saturation(img, lower=1 - self.delta, upper=1 + self.delta)
|
|
287
|
-
|
|
288
|
-
|
|
289
|
-
class RandomHue(NestedObject):
|
|
290
|
-
"""Randomly adjust hue of a tensor (batch of images or image) by converting to HSV and adding a delta
|
|
291
|
-
|
|
292
|
-
>>> import tensorflow as tf
|
|
293
|
-
>>> from doctr.transforms import RandomHue
|
|
294
|
-
>>> transfo = RandomHue()
|
|
295
|
-
>>> out = transfo(tf.random.uniform(shape=[8, 64, 64, 3], minval=0, maxval=1))
|
|
296
|
-
|
|
297
|
-
Args:
|
|
298
|
-
max_delta: offset to add to each pixel is randomly picked in [-max_delta, max_delta]
|
|
299
|
-
"""
|
|
300
|
-
|
|
301
|
-
def __init__(self, max_delta: float = 0.3) -> None:
|
|
302
|
-
self.max_delta = max_delta
|
|
303
|
-
|
|
304
|
-
def extra_repr(self) -> str:
|
|
305
|
-
return f"max_delta={self.max_delta}"
|
|
306
|
-
|
|
307
|
-
def __call__(self, img: tf.Tensor) -> tf.Tensor:
|
|
308
|
-
return tf.image.random_hue(img, max_delta=self.max_delta)
|
|
309
|
-
|
|
310
|
-
|
|
311
|
-
class RandomGamma(NestedObject):
|
|
312
|
-
"""randomly performs gamma correction for a tensor (batch of images or image)
|
|
313
|
-
|
|
314
|
-
>>> import tensorflow as tf
|
|
315
|
-
>>> from doctr.transforms import RandomGamma
|
|
316
|
-
>>> transfo = RandomGamma()
|
|
317
|
-
>>> out = transfo(tf.random.uniform(shape=[8, 64, 64, 3], minval=0, maxval=1))
|
|
318
|
-
|
|
319
|
-
Args:
|
|
320
|
-
min_gamma: non-negative real number, lower bound for gamma param
|
|
321
|
-
max_gamma: non-negative real number, upper bound for gamma
|
|
322
|
-
min_gain: lower bound for constant multiplier
|
|
323
|
-
max_gain: upper bound for constant multiplier
|
|
324
|
-
"""
|
|
325
|
-
|
|
326
|
-
def __init__(
|
|
327
|
-
self,
|
|
328
|
-
min_gamma: float = 0.5,
|
|
329
|
-
max_gamma: float = 1.5,
|
|
330
|
-
min_gain: float = 0.8,
|
|
331
|
-
max_gain: float = 1.2,
|
|
332
|
-
) -> None:
|
|
333
|
-
self.min_gamma = min_gamma
|
|
334
|
-
self.max_gamma = max_gamma
|
|
335
|
-
self.min_gain = min_gain
|
|
336
|
-
self.max_gain = max_gain
|
|
337
|
-
|
|
338
|
-
def extra_repr(self) -> str:
|
|
339
|
-
return f"""gamma_range=({self.min_gamma}, {self.max_gamma}),
|
|
340
|
-
gain_range=({self.min_gain}, {self.max_gain})"""
|
|
341
|
-
|
|
342
|
-
def __call__(self, img: tf.Tensor) -> tf.Tensor:
|
|
343
|
-
gamma = random.uniform(self.min_gamma, self.max_gamma)
|
|
344
|
-
gain = random.uniform(self.min_gain, self.max_gain)
|
|
345
|
-
return tf.image.adjust_gamma(img, gamma=gamma, gain=gain)
|
|
346
|
-
|
|
347
|
-
|
|
348
|
-
class RandomJpegQuality(NestedObject):
|
|
349
|
-
"""Randomly adjust jpeg quality of a 3 dimensional RGB image
|
|
350
|
-
|
|
351
|
-
>>> import tensorflow as tf
|
|
352
|
-
>>> from doctr.transforms import RandomJpegQuality
|
|
353
|
-
>>> transfo = RandomJpegQuality()
|
|
354
|
-
>>> out = transfo(tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1))
|
|
355
|
-
|
|
356
|
-
Args:
|
|
357
|
-
min_quality: int between [0, 100]
|
|
358
|
-
max_quality: int between [0, 100]
|
|
359
|
-
"""
|
|
360
|
-
|
|
361
|
-
def __init__(self, min_quality: int = 60, max_quality: int = 100) -> None:
|
|
362
|
-
self.min_quality = min_quality
|
|
363
|
-
self.max_quality = max_quality
|
|
364
|
-
|
|
365
|
-
def extra_repr(self) -> str:
|
|
366
|
-
return f"min_quality={self.min_quality}"
|
|
367
|
-
|
|
368
|
-
def __call__(self, img: tf.Tensor) -> tf.Tensor:
|
|
369
|
-
return tf.image.random_jpeg_quality(img, min_jpeg_quality=self.min_quality, max_jpeg_quality=self.max_quality)
|
|
370
|
-
|
|
371
|
-
|
|
372
|
-
class GaussianBlur(NestedObject):
|
|
373
|
-
"""Randomly adjust jpeg quality of a 3 dimensional RGB image
|
|
374
|
-
|
|
375
|
-
>>> import tensorflow as tf
|
|
376
|
-
>>> from doctr.transforms import GaussianBlur
|
|
377
|
-
>>> transfo = GaussianBlur(3, (.1, 5))
|
|
378
|
-
>>> out = transfo(tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1))
|
|
379
|
-
|
|
380
|
-
Args:
|
|
381
|
-
kernel_shape: size of the blurring kernel
|
|
382
|
-
std: min and max value of the standard deviation
|
|
383
|
-
"""
|
|
384
|
-
|
|
385
|
-
def __init__(self, kernel_shape: int | Iterable[int], std: tuple[float, float]) -> None:
|
|
386
|
-
self.kernel_shape = kernel_shape
|
|
387
|
-
self.std = std
|
|
388
|
-
|
|
389
|
-
def extra_repr(self) -> str:
|
|
390
|
-
return f"kernel_shape={self.kernel_shape}, std={self.std}"
|
|
391
|
-
|
|
392
|
-
def __call__(self, img: tf.Tensor) -> tf.Tensor:
|
|
393
|
-
return tf.squeeze(
|
|
394
|
-
_gaussian_filter(
|
|
395
|
-
img[tf.newaxis, ...],
|
|
396
|
-
kernel_size=self.kernel_shape,
|
|
397
|
-
sigma=random.uniform(self.std[0], self.std[1]),
|
|
398
|
-
mode="REFLECT",
|
|
399
|
-
),
|
|
400
|
-
axis=0,
|
|
401
|
-
)
|
|
402
|
-
|
|
403
|
-
|
|
404
|
-
class ChannelShuffle(NestedObject):
|
|
405
|
-
"""Randomly shuffle channel order of a given image"""
|
|
406
|
-
|
|
407
|
-
def __init__(self):
|
|
408
|
-
pass
|
|
409
|
-
|
|
410
|
-
def __call__(self, img: tf.Tensor) -> tf.Tensor:
|
|
411
|
-
return tf.transpose(tf.random.shuffle(tf.transpose(img, perm=[2, 0, 1])), perm=[1, 2, 0])
|
|
412
|
-
|
|
413
|
-
|
|
414
|
-
class GaussianNoise(NestedObject):
|
|
415
|
-
"""Adds Gaussian Noise to the input tensor
|
|
416
|
-
|
|
417
|
-
>>> import tensorflow as tf
|
|
418
|
-
>>> from doctr.transforms import GaussianNoise
|
|
419
|
-
>>> transfo = GaussianNoise(0., 1.)
|
|
420
|
-
>>> out = transfo(tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1))
|
|
421
|
-
|
|
422
|
-
Args:
|
|
423
|
-
mean : mean of the gaussian distribution
|
|
424
|
-
std : std of the gaussian distribution
|
|
425
|
-
"""
|
|
426
|
-
|
|
427
|
-
def __init__(self, mean: float = 0.0, std: float = 1.0) -> None:
|
|
428
|
-
super().__init__()
|
|
429
|
-
self.std = std
|
|
430
|
-
self.mean = mean
|
|
431
|
-
|
|
432
|
-
def __call__(self, x: tf.Tensor) -> tf.Tensor:
|
|
433
|
-
# Reshape the distribution
|
|
434
|
-
noise = self.mean + 2 * self.std * tf.random.uniform(x.shape) - self.std
|
|
435
|
-
if x.dtype == tf.uint8:
|
|
436
|
-
return tf.cast(
|
|
437
|
-
tf.clip_by_value(tf.math.round(tf.cast(x, dtype=tf.float32) + 255 * noise), 0, 255), dtype=tf.uint8
|
|
438
|
-
)
|
|
439
|
-
else:
|
|
440
|
-
return tf.cast(tf.clip_by_value(x + noise, 0, 1), dtype=x.dtype)
|
|
441
|
-
|
|
442
|
-
def extra_repr(self) -> str:
|
|
443
|
-
return f"mean={self.mean}, std={self.std}"
|
|
444
|
-
|
|
445
|
-
|
|
446
|
-
class RandomHorizontalFlip(NestedObject):
|
|
447
|
-
"""Adds random horizontal flip to the input tensor/np.ndarray
|
|
448
|
-
|
|
449
|
-
>>> import tensorflow as tf
|
|
450
|
-
>>> from doctr.transforms import RandomHorizontalFlip
|
|
451
|
-
>>> transfo = RandomHorizontalFlip(p=0.5)
|
|
452
|
-
>>> image = tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1)
|
|
453
|
-
>>> target = np.array([[0.1, 0.1, 0.4, 0.5] ], dtype= np.float32)
|
|
454
|
-
>>> out = transfo(image, target)
|
|
455
|
-
|
|
456
|
-
Args:
|
|
457
|
-
p : probability of Horizontal Flip
|
|
458
|
-
"""
|
|
459
|
-
|
|
460
|
-
def __init__(self, p: float) -> None:
|
|
461
|
-
super().__init__()
|
|
462
|
-
self.p = p
|
|
463
|
-
|
|
464
|
-
def __call__(self, img: tf.Tensor | np.ndarray, target: np.ndarray) -> tuple[tf.Tensor, np.ndarray]:
|
|
465
|
-
if np.random.rand(1) <= self.p:
|
|
466
|
-
_img = tf.image.flip_left_right(img)
|
|
467
|
-
_target = target.copy()
|
|
468
|
-
# Changing the relative bbox coordinates
|
|
469
|
-
if target.shape[1:] == (4,):
|
|
470
|
-
_target[:, ::2] = 1 - target[:, [2, 0]]
|
|
471
|
-
else:
|
|
472
|
-
_target[..., 0] = 1 - target[..., 0]
|
|
473
|
-
return _img, _target
|
|
474
|
-
return img, target
|
|
475
|
-
|
|
476
|
-
|
|
477
|
-
class RandomShadow(NestedObject):
|
|
478
|
-
"""Adds random shade to the input image
|
|
479
|
-
|
|
480
|
-
>>> import tensorflow as tf
|
|
481
|
-
>>> from doctr.transforms import RandomShadow
|
|
482
|
-
>>> transfo = RandomShadow(0., 1.)
|
|
483
|
-
>>> out = transfo(tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1))
|
|
484
|
-
|
|
485
|
-
Args:
|
|
486
|
-
opacity_range : minimum and maximum opacity of the shade
|
|
487
|
-
"""
|
|
488
|
-
|
|
489
|
-
def __init__(self, opacity_range: tuple[float, float] | None = None) -> None:
|
|
490
|
-
super().__init__()
|
|
491
|
-
self.opacity_range = opacity_range if isinstance(opacity_range, tuple) else (0.2, 0.8)
|
|
492
|
-
|
|
493
|
-
def __call__(self, x: tf.Tensor) -> tf.Tensor:
|
|
494
|
-
# Reshape the distribution
|
|
495
|
-
if x.dtype == tf.uint8:
|
|
496
|
-
return tf.cast(
|
|
497
|
-
tf.clip_by_value(
|
|
498
|
-
tf.math.round(255 * random_shadow(tf.cast(x, dtype=tf.float32) / 255, self.opacity_range)),
|
|
499
|
-
0,
|
|
500
|
-
255,
|
|
501
|
-
),
|
|
502
|
-
dtype=tf.uint8,
|
|
503
|
-
)
|
|
504
|
-
else:
|
|
505
|
-
return tf.clip_by_value(random_shadow(x, self.opacity_range), 0, 1)
|
|
506
|
-
|
|
507
|
-
def extra_repr(self) -> str:
|
|
508
|
-
return f"opacity_range={self.opacity_range}"
|
|
509
|
-
|
|
510
|
-
|
|
511
|
-
class RandomResize(NestedObject):
|
|
512
|
-
"""Randomly resize the input image and align corresponding targets
|
|
513
|
-
|
|
514
|
-
>>> import tensorflow as tf
|
|
515
|
-
>>> from doctr.transforms import RandomResize
|
|
516
|
-
>>> transfo = RandomResize((0.3, 0.9), preserve_aspect_ratio=True, symmetric_pad=True, p=0.5)
|
|
517
|
-
>>> out = transfo(tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1))
|
|
518
|
-
|
|
519
|
-
Args:
|
|
520
|
-
scale_range: range of the resizing factor for width and height (independently)
|
|
521
|
-
preserve_aspect_ratio: whether to preserve the aspect ratio of the image,
|
|
522
|
-
given a float value, the aspect ratio will be preserved with this probability
|
|
523
|
-
symmetric_pad: whether to symmetrically pad the image,
|
|
524
|
-
given a float value, the symmetric padding will be applied with this probability
|
|
525
|
-
p: probability to apply the transformation
|
|
526
|
-
"""
|
|
527
|
-
|
|
528
|
-
def __init__(
|
|
529
|
-
self,
|
|
530
|
-
scale_range: tuple[float, float] = (0.3, 0.9),
|
|
531
|
-
preserve_aspect_ratio: bool | float = False,
|
|
532
|
-
symmetric_pad: bool | float = False,
|
|
533
|
-
p: float = 0.5,
|
|
534
|
-
):
|
|
535
|
-
super().__init__()
|
|
536
|
-
self.scale_range = scale_range
|
|
537
|
-
self.preserve_aspect_ratio = preserve_aspect_ratio
|
|
538
|
-
self.symmetric_pad = symmetric_pad
|
|
539
|
-
self.p = p
|
|
540
|
-
self._resize = Resize
|
|
541
|
-
|
|
542
|
-
def __call__(self, img: tf.Tensor, target: np.ndarray) -> tuple[tf.Tensor, np.ndarray]:
|
|
543
|
-
if np.random.rand(1) <= self.p:
|
|
544
|
-
scale_h = random.uniform(*self.scale_range)
|
|
545
|
-
scale_w = random.uniform(*self.scale_range)
|
|
546
|
-
new_size = (int(img.shape[-3] * scale_h), int(img.shape[-2] * scale_w))
|
|
547
|
-
|
|
548
|
-
_img, _target = self._resize(
|
|
549
|
-
new_size,
|
|
550
|
-
preserve_aspect_ratio=self.preserve_aspect_ratio
|
|
551
|
-
if isinstance(self.preserve_aspect_ratio, bool)
|
|
552
|
-
else bool(np.random.rand(1) <= self.symmetric_pad),
|
|
553
|
-
symmetric_pad=self.symmetric_pad
|
|
554
|
-
if isinstance(self.symmetric_pad, bool)
|
|
555
|
-
else bool(np.random.rand(1) <= self.symmetric_pad),
|
|
556
|
-
)(img, target)
|
|
557
|
-
|
|
558
|
-
return _img, _target
|
|
559
|
-
return img, target
|
|
560
|
-
|
|
561
|
-
def extra_repr(self) -> str:
|
|
562
|
-
return f"scale_range={self.scale_range}, preserve_aspect_ratio={self.preserve_aspect_ratio}, symmetric_pad={self.symmetric_pad}, p={self.p}" # noqa: E501
|