pystylometry 1.3.0__py3-none-any.whl → 1.3.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
pystylometry/__init__.py CHANGED
@@ -40,14 +40,13 @@ Usage:
40
40
  print(result.pattern_confidence)
41
41
  """
42
42
 
43
+ from . import lexical # noqa: E402
43
44
  from ._types import AnalysisResult
45
+ from .tokenizer import TokenizationStats, Tokenizer, TokenMetadata
44
46
 
45
47
  # Version
46
48
  __version__ = "0.1.0"
47
49
 
48
- # Core exports - always available
49
- from . import lexical
50
-
51
50
  # Optional exports - may raise ImportError if dependencies not installed
52
51
  try:
53
52
  from . import readability # noqa: F401
@@ -87,6 +86,41 @@ _CONSISTENCY_AVAILABLE = True
87
86
  _STYLISTIC_AVAILABLE = True
88
87
 
89
88
 
89
+ def tokenize(text: str, **kwargs: object) -> list[str]:
90
+ """Tokenize text using the stylometric tokenizer.
91
+
92
+ Convenience wrapper around Tokenizer.tokenize(). All keyword arguments
93
+ are forwarded to the Tokenizer constructor.
94
+
95
+ Args:
96
+ text: Input text to tokenize.
97
+ **kwargs: Options forwarded to Tokenizer (lowercase, strip_numbers,
98
+ expand_contractions, etc.).
99
+
100
+ Returns:
101
+ List of token strings.
102
+
103
+ Example:
104
+ >>> from pystylometry import tokenize
105
+ >>> tokenize("Hello, world! It's a test.")
106
+ ['hello', 'world', "it's", 'a', 'test']
107
+ """
108
+ return Tokenizer(**kwargs).tokenize(text) # type: ignore[arg-type]
109
+
110
+
111
+ def tokenize_with_metadata(text: str, **kwargs: object) -> list[TokenMetadata]:
112
+ """Tokenize text and return tokens with positional and type metadata.
113
+
114
+ Args:
115
+ text: Input text to tokenize.
116
+ **kwargs: Options forwarded to Tokenizer.
117
+
118
+ Returns:
119
+ List of TokenMetadata objects.
120
+ """
121
+ return Tokenizer(**kwargs).tokenize_with_metadata(text) # type: ignore[arg-type]
122
+
123
+
90
124
  def analyze(
91
125
  text: str,
92
126
  lexical_metrics: bool = True,
@@ -225,6 +259,11 @@ __all__ = [
225
259
  "__version__",
226
260
  "analyze",
227
261
  "get_available_modules",
262
+ "tokenize",
263
+ "tokenize_with_metadata",
264
+ "Tokenizer",
265
+ "TokenMetadata",
266
+ "TokenizationStats",
228
267
  "lexical",
229
268
  ]
230
269
 
pystylometry/_types.py CHANGED
@@ -23,7 +23,7 @@ from __future__ import annotations
23
23
 
24
24
  import statistics
25
25
  from dataclasses import dataclass
26
- from typing import Any
26
+ from typing import Any, Optional
27
27
 
28
28
  # ===== Distribution and Chunking =====
29
29
  # Related to GitHub Issue #27: Native chunked analysis with Distribution dataclass
@@ -316,8 +316,8 @@ class HapaxLexiconResult:
316
316
  class TTRResult:
317
317
  """Result from Type-Token Ratio (TTR) analysis.
318
318
 
319
- Wraps stylometry-ttr package functionality to measure vocabulary richness
320
- through the ratio of unique words (types) to total words (tokens).
319
+ Measures vocabulary richness through the ratio of unique words (types)
320
+ to total words (tokens).
321
321
 
322
322
  All numeric metrics include both a mean value (convenient access) and
323
323
  a full distribution with per-chunk values and statistics.
@@ -370,6 +370,208 @@ class TTRResult:
370
370
  metadata: dict[str, Any]
371
371
 
372
372
 
373
+ @dataclass
374
+ class TTRAggregateResult:
375
+ """Aggregated TTR statistics for a collection of texts.
376
+
377
+ Computes group-level summary statistics (mean, std, min, max, median)
378
+ across multiple ``TTRResult`` objects. Useful for comparative analysis
379
+ across authors, genres, or time periods.
380
+
381
+ Related GitHub Issue:
382
+ #43 - Inline stylometry-ttr into pystylometry (remove external dependency)
383
+ https://github.com/craigtrim/pystylometry/issues/43
384
+
385
+ Example:
386
+ >>> from pystylometry.lexical import compute_ttr, TTRAggregator
387
+ >>> results = [compute_ttr(t) for t in texts]
388
+ >>> agg = TTRAggregator()
389
+ >>> stats = agg.aggregate(results, group_id="Austen")
390
+ >>> stats.ttr_mean
391
+ 0.412
392
+ """
393
+
394
+ group_id: str
395
+ text_count: int
396
+ total_words: int
397
+
398
+ # Raw TTR statistics
399
+ ttr_mean: float
400
+ ttr_std: float
401
+ ttr_min: float
402
+ ttr_max: float
403
+ ttr_median: float
404
+
405
+ # Root TTR (Guiraud's index) statistics
406
+ root_ttr_mean: float
407
+ root_ttr_std: float
408
+
409
+ # Log TTR (Herdan's C) statistics
410
+ log_ttr_mean: float
411
+ log_ttr_std: float
412
+
413
+ # STTR statistics (None if no texts had enough words for STTR)
414
+ sttr_mean: Optional[float]
415
+ sttr_std: Optional[float]
416
+
417
+ # Delta std mean (None if no texts had delta metrics)
418
+ delta_std_mean: Optional[float]
419
+
420
+ metadata: dict[str, Any]
421
+
422
+
423
+ # ===== Repetition Detection Results =====
424
+ # Related to GitHub Issue #28: Verbal tics detection for slop analysis
425
+ # https://github.com/craigtrim/pystylometry/issues/28
426
+
427
+
428
+ @dataclass
429
+ class RepetitiveWord:
430
+ """A single word flagged as abnormally repetitive.
431
+
432
+ The repetition_score is the ratio of observed count to expected count
433
+ based on the word's frequency in the British National Corpus (BNC).
434
+ Higher scores indicate stronger overrepresentation.
435
+
436
+ Related GitHub Issue:
437
+ #28 - Verbal tics detection for slop analysis
438
+ https://github.com/craigtrim/pystylometry/issues/28
439
+
440
+ Attributes:
441
+ word: The flagged word (lowercased).
442
+ count: Observed count in the text.
443
+ expected_count: Expected count based on BNC relative frequency × text length.
444
+ 0.0 if word not found in BNC.
445
+ repetition_score: count / expected_count. float('inf') if expected_count is 0.
446
+ bnc_bucket: BNC frequency bucket (1-100, 1=most frequent). None if not in BNC.
447
+ chunk_counts: Per-chunk occurrence counts (for distribution analysis).
448
+ distribution_entropy: Shannon entropy of the word's chunk distribution.
449
+ Low entropy = suspiciously even spread (model tic).
450
+ High entropy = clustered usage (human writing about a specific scene).
451
+ distribution_variance: Variance of per-chunk counts.
452
+ """
453
+
454
+ word: str
455
+ count: int
456
+ expected_count: float
457
+ repetition_score: float
458
+ bnc_bucket: int | None
459
+ chunk_counts: list[int]
460
+ distribution_entropy: float
461
+ distribution_variance: float
462
+
463
+
464
+ @dataclass
465
+ class RepetitiveUnigramsResult:
466
+ """Result from repetitive unigram detection.
467
+
468
+ Identifies content words that appear far more frequently than expected
469
+ based on their frequency in the British National Corpus (BNC, ~100M tokens).
470
+ This is a key indicator of AI-generated "slop" where models exhibit verbal
471
+ tics — repeating certain words with suspicious regularity.
472
+
473
+ Related GitHub Issue:
474
+ #28 - Verbal tics detection for slop analysis
475
+ https://github.com/craigtrim/pystylometry/issues/28
476
+
477
+ The slop_score provides a single aggregate metric:
478
+ slop_score = flagged_words_per_10k × mean_repetition_score
479
+
480
+ Where:
481
+ - flagged_words_per_10k = count of flagged words / (total content words / 10000)
482
+ - mean_repetition_score = mean repetition_score across all flagged words
483
+
484
+ Higher slop_score = more likely AI-generated verbal tics.
485
+
486
+ References:
487
+ British National Corpus Consortium. (2007). The British National Corpus,
488
+ version 3 (BNC XML Edition). http://www.natcorp.ox.ac.uk/
489
+
490
+ Example:
491
+ >>> result = compute_repetitive_unigrams(text)
492
+ >>> for w in result.repetitive_words[:5]:
493
+ ... print(f"{w.word}: {w.count}x (expected {w.expected_count:.1f}, "
494
+ ... f"score {w.repetition_score:.1f})")
495
+ shimmered: 23x (expected 0.1, score 266.2)
496
+ >>> result.slop_score
497
+ 42.7
498
+ """
499
+
500
+ repetitive_words: list[RepetitiveWord] # Sorted by repetition_score descending
501
+ total_content_words: int
502
+ flagged_count: int # Number of words exceeding threshold
503
+ flagged_words_per_10k: float # flagged_count / (total_content_words / 10000)
504
+ mean_repetition_score: float # Mean score across flagged words
505
+ slop_score: float # Aggregate: flagged_words_per_10k × mean_repetition_score
506
+ total_content_words_dist: Distribution
507
+ chunk_size: int
508
+ chunk_count: int
509
+ metadata: dict[str, Any]
510
+
511
+
512
+ @dataclass
513
+ class RepetitiveNgram:
514
+ """A single n-gram flagged as abnormally repetitive.
515
+
516
+ Content n-grams (bigrams, trigrams, etc.) should rarely repeat verbatim
517
+ in natural writing. N-grams that repeat beyond a length-scaled threshold
518
+ are flagged.
519
+
520
+ Related GitHub Issue:
521
+ #28 - Verbal tics detection for slop analysis
522
+ https://github.com/craigtrim/pystylometry/issues/28
523
+
524
+ Attributes:
525
+ ngram: The flagged n-gram as a tuple of words.
526
+ count: Observed count in the text.
527
+ frequency_per_10k: Occurrences per 10,000 n-grams.
528
+ chunk_counts: Per-chunk occurrence counts.
529
+ distribution_entropy: Shannon entropy of the n-gram's chunk distribution.
530
+ distribution_variance: Variance of per-chunk counts.
531
+ """
532
+
533
+ ngram: tuple[str, ...]
534
+ count: int
535
+ frequency_per_10k: float
536
+ chunk_counts: list[int]
537
+ distribution_entropy: float
538
+ distribution_variance: float
539
+
540
+
541
+ @dataclass
542
+ class RepetitiveNgramsResult:
543
+ """Result from repetitive n-gram detection.
544
+
545
+ Detects bigrams, trigrams, or higher-order n-grams that repeat more than
546
+ expected within the text. No external corpus is required — content n-grams
547
+ should not repeat verbatim often in natural writing.
548
+
549
+ N-grams composed entirely of function words (e.g., "of the", "in a") are
550
+ excluded since their repetition is expected.
551
+
552
+ Related GitHub Issue:
553
+ #28 - Verbal tics detection for slop analysis
554
+ https://github.com/craigtrim/pystylometry/issues/28
555
+
556
+ Example:
557
+ >>> result = compute_repetitive_ngrams(text, n=2)
558
+ >>> for ng in result.repetitive_ngrams[:5]:
559
+ ... print(f"{' '.join(ng.ngram)}: {ng.count}x "
560
+ ... f"({ng.frequency_per_10k:.1f} per 10k)")
561
+ uncomfortable truth: 8x (1.6 per 10k)
562
+ """
563
+
564
+ repetitive_ngrams: list[RepetitiveNgram] # Sorted by count descending
565
+ n: int | tuple[int, ...] # N-gram order(s) analyzed
566
+ total_ngrams: int
567
+ flagged_count: int
568
+ flagged_per_10k: float # flagged_count / (total_ngrams / 10000)
569
+ total_ngrams_dist: Distribution
570
+ chunk_size: int
571
+ chunk_count: int
572
+ metadata: dict[str, Any]
573
+
574
+
373
575
  # ===== Readability Results =====
374
576
 
375
577
 
pystylometry/cli.py CHANGED
@@ -3,6 +3,7 @@
3
3
  Usage:
4
4
  pystylometry-drift <file> [--window-size=N] [--stride=N] [--mode=MODE] [--json]
5
5
  pystylometry-drift <file> --plot [output.png]
6
+ pystylometry-tokenize <file> [--json] [--metadata] [--stats]
6
7
 
7
8
  Example:
8
9
  pystylometry-drift manuscript.txt
@@ -10,6 +11,9 @@ Example:
10
11
  pystylometry-drift manuscript.txt --json
11
12
  pystylometry-drift manuscript.txt --plot
12
13
  pystylometry-drift manuscript.txt --plot drift_report.png
14
+ pystylometry-tokenize manuscript.txt
15
+ pystylometry-tokenize manuscript.txt --json --metadata
16
+ pystylometry-tokenize manuscript.txt --stats
13
17
  """
14
18
 
15
19
  from __future__ import annotations
@@ -423,5 +427,322 @@ The generated viewer includes:
423
427
  print()
424
428
 
425
429
 
430
+ def tokenize_cli() -> None:
431
+ """CLI entry point for stylometric tokenization."""
432
+ parser = argparse.ArgumentParser(
433
+ prog="pystylometry-tokenize",
434
+ description="Tokenize text for stylometric analysis.",
435
+ formatter_class=argparse.RawDescriptionHelpFormatter,
436
+ epilog="""
437
+ Examples:
438
+ pystylometry-tokenize manuscript.txt
439
+ pystylometry-tokenize manuscript.txt --json
440
+ pystylometry-tokenize manuscript.txt --json --metadata
441
+ pystylometry-tokenize manuscript.txt --stats
442
+ pystylometry-tokenize manuscript.txt -U --expand-contractions
443
+ pystylometry-tokenize manuscript.txt --min-length 3 --strip-numbers
444
+ """,
445
+ )
446
+
447
+ parser.add_argument(
448
+ "file",
449
+ type=Path,
450
+ help="Path to text file to tokenize",
451
+ )
452
+
453
+ # Output mode
454
+ output_group = parser.add_argument_group("output")
455
+ output_group.add_argument(
456
+ "-j",
457
+ "--json",
458
+ action="store_true",
459
+ help="Output as JSON (list of strings, or list of objects with --metadata)",
460
+ )
461
+ output_group.add_argument(
462
+ "-m",
463
+ "--metadata",
464
+ action="store_true",
465
+ help="Include token type and position metadata (implies --json)",
466
+ )
467
+ output_group.add_argument(
468
+ "-s",
469
+ "--stats",
470
+ action="store_true",
471
+ help="Show tokenization statistics instead of tokens",
472
+ )
473
+
474
+ # Core behavior
475
+ behavior_group = parser.add_argument_group("behavior")
476
+ behavior_group.add_argument(
477
+ "-U",
478
+ "--no-lowercase",
479
+ action="store_true",
480
+ help="Preserve original case (default: lowercase)",
481
+ )
482
+ behavior_group.add_argument(
483
+ "-e",
484
+ "--expand-contractions",
485
+ action="store_true",
486
+ help="Expand contractions (it's -> it is)",
487
+ )
488
+ behavior_group.add_argument(
489
+ "-n",
490
+ "--strip-numbers",
491
+ action="store_true",
492
+ help="Remove numeric tokens",
493
+ )
494
+ behavior_group.add_argument(
495
+ "--keep-punctuation",
496
+ action="store_true",
497
+ help="Keep punctuation tokens (default: stripped)",
498
+ )
499
+
500
+ # Filtering
501
+ filter_group = parser.add_argument_group("filtering")
502
+ filter_group.add_argument(
503
+ "--min-length",
504
+ type=int,
505
+ default=1,
506
+ metavar="N",
507
+ help="Minimum token length (default: 1)",
508
+ )
509
+ filter_group.add_argument(
510
+ "--max-length",
511
+ type=int,
512
+ default=None,
513
+ metavar="N",
514
+ help="Maximum token length (default: unlimited)",
515
+ )
516
+ filter_group.add_argument(
517
+ "--preserve-urls",
518
+ action="store_true",
519
+ help="Keep URL tokens",
520
+ )
521
+ filter_group.add_argument(
522
+ "--preserve-emails",
523
+ action="store_true",
524
+ help="Keep email tokens",
525
+ )
526
+ filter_group.add_argument(
527
+ "--preserve-hashtags",
528
+ action="store_true",
529
+ help="Keep hashtag tokens",
530
+ )
531
+ filter_group.add_argument(
532
+ "--preserve-mentions",
533
+ action="store_true",
534
+ help="Keep @mention tokens",
535
+ )
536
+
537
+ # Advanced
538
+ advanced_group = parser.add_argument_group("advanced")
539
+ advanced_group.add_argument(
540
+ "--expand-abbreviations",
541
+ action="store_true",
542
+ help="Expand abbreviations (Dr. -> Doctor)",
543
+ )
544
+ advanced_group.add_argument(
545
+ "--strip-accents",
546
+ action="store_true",
547
+ help="Remove accents from characters",
548
+ )
549
+ advanced_group.add_argument(
550
+ "--no-clean",
551
+ action="store_true",
552
+ help="Skip text cleaning (italics, brackets, page markers)",
553
+ )
554
+ advanced_group.add_argument(
555
+ "--no-unicode-normalize",
556
+ action="store_true",
557
+ help="Skip unicode normalization",
558
+ )
559
+
560
+ args = parser.parse_args()
561
+
562
+ # --- ANSI colors ---
563
+ use_color = sys.stderr.isatty()
564
+
565
+ def _c(code: str, text: str) -> str:
566
+ return f"\033[{code}m{text}\033[0m" if use_color else text
567
+
568
+ bold = lambda t: _c("1", t) # noqa: E731
569
+ dim = lambda t: _c("2", t) # noqa: E731
570
+ cyan = lambda t: _c("36", t) # noqa: E731
571
+ green = lambda t: _c("32", t) # noqa: E731
572
+ yellow = lambda t: _c("33", t) # noqa: E731
573
+
574
+ # --- Validate file ---
575
+ if not args.file.exists():
576
+ print(f"Error: File not found: {args.file}", file=sys.stderr)
577
+ sys.exit(1)
578
+
579
+ try:
580
+ text = args.file.read_text(encoding="utf-8")
581
+ except Exception as e:
582
+ print(f"Error reading file: {e}", file=sys.stderr)
583
+ sys.exit(1)
584
+
585
+ # --- Build Tokenizer kwargs ---
586
+ tokenizer_kwargs = {
587
+ "lowercase": not args.no_lowercase,
588
+ "min_length": args.min_length,
589
+ "max_length": args.max_length,
590
+ "strip_numbers": args.strip_numbers,
591
+ "strip_punctuation": not args.keep_punctuation,
592
+ "preserve_urls": args.preserve_urls,
593
+ "preserve_emails": args.preserve_emails,
594
+ "preserve_hashtags": args.preserve_hashtags,
595
+ "preserve_mentions": args.preserve_mentions,
596
+ "expand_contractions": args.expand_contractions,
597
+ "expand_abbreviations": args.expand_abbreviations,
598
+ "strip_accents": args.strip_accents,
599
+ "normalize_unicode": not args.no_unicode_normalize,
600
+ "clean_text": not args.no_clean,
601
+ }
602
+
603
+ # Collect active options for banner
604
+ active_opts = []
605
+ if args.no_lowercase:
606
+ active_opts.append("preserve case")
607
+ if args.expand_contractions:
608
+ active_opts.append("expand contractions")
609
+ if args.expand_abbreviations:
610
+ active_opts.append("expand abbreviations")
611
+ if args.strip_numbers:
612
+ active_opts.append("strip numbers")
613
+ if args.keep_punctuation:
614
+ active_opts.append("keep punctuation")
615
+ if args.strip_accents:
616
+ active_opts.append("strip accents")
617
+ if args.no_clean:
618
+ active_opts.append("skip cleaning")
619
+ if args.no_unicode_normalize:
620
+ active_opts.append("skip unicode normalization")
621
+ if args.preserve_urls:
622
+ active_opts.append("preserve URLs")
623
+ if args.preserve_emails:
624
+ active_opts.append("preserve emails")
625
+ if args.preserve_hashtags:
626
+ active_opts.append("preserve hashtags")
627
+ if args.preserve_mentions:
628
+ active_opts.append("preserve mentions")
629
+ if args.min_length > 1:
630
+ active_opts.append(f"min length {args.min_length}")
631
+ if args.max_length is not None:
632
+ active_opts.append(f"max length {args.max_length}")
633
+
634
+ # Determine output format
635
+ if args.stats:
636
+ output_format = "Statistics"
637
+ elif args.metadata:
638
+ output_format = "JSON (with metadata)"
639
+ elif args.json:
640
+ output_format = "JSON"
641
+ else:
642
+ output_format = "One token per line"
643
+
644
+ # --- Banner (to stderr so stdout stays pipeable) ---
645
+ char_count = len(text)
646
+ line_count = text.count("\n") + 1
647
+
648
+ banner = sys.stderr
649
+ print(file=banner)
650
+ print(f" {bold('PYSTYLOMETRY')} {dim('—')} {cyan('Stylometric Tokenizer')}", file=banner)
651
+ print(f" {dim('═' * 71)}", file=banner)
652
+ print(file=banner)
653
+ print(f" {bold('INPUT')}", file=banner)
654
+ print(f" {dim('─' * 71)}", file=banner)
655
+ print(f" File: {args.file}", file=banner)
656
+ print(f" Size: {char_count:,} characters / {line_count:,} lines", file=banner)
657
+ print(file=banner)
658
+ print(f" {bold('CONFIGURATION')}", file=banner)
659
+ print(f" {dim('─' * 71)}", file=banner)
660
+ print(f" Case: {'preserve' if args.no_lowercase else 'lowercase'}", file=banner)
661
+ print(
662
+ f" Punctuation: {'keep' if args.keep_punctuation else 'strip'}",
663
+ file=banner,
664
+ )
665
+ print(
666
+ f" Contractions: {'expand' if args.expand_contractions else 'preserve'}",
667
+ file=banner,
668
+ )
669
+ print(f" Numbers: {'strip' if args.strip_numbers else 'keep'}", file=banner)
670
+ if active_opts:
671
+ print(f" Active options: {', '.join(active_opts)}", file=banner)
672
+ print(file=banner)
673
+ print(f" {bold('OUTPUT')}", file=banner)
674
+ print(f" {dim('─' * 71)}", file=banner)
675
+ print(f" Format: {output_format}", file=banner)
676
+ print(file=banner)
677
+
678
+ # --- Tokenize ---
679
+ from pystylometry.tokenizer import Tokenizer
680
+
681
+ tokenizer = Tokenizer(**tokenizer_kwargs)
682
+
683
+ if args.stats:
684
+ stats = tokenizer.get_statistics(text)
685
+ print(f" {bold('RESULTS')}", file=banner)
686
+ print(f" {dim('─' * 71)}", file=banner)
687
+ print(f" Total tokens: {green(f'{stats.total_tokens:,}')}", file=banner)
688
+ print(f" Unique tokens: {green(f'{stats.unique_tokens:,}')}", file=banner)
689
+ print(f" Word tokens: {stats.word_tokens:,}", file=banner)
690
+ print(f" Number tokens: {stats.number_tokens:,}", file=banner)
691
+ print(f" Punctuation: {stats.punctuation_tokens:,}", file=banner)
692
+ print(f" URLs: {stats.url_tokens:,}", file=banner)
693
+ print(f" Emails: {stats.email_tokens:,}", file=banner)
694
+ print(f" Hashtags: {stats.hashtag_tokens:,}", file=banner)
695
+ print(f" Mentions: {stats.mention_tokens:,}", file=banner)
696
+ print(f" Avg length: {stats.average_token_length:.1f}", file=banner)
697
+ print(f" Min length: {stats.min_token_length}", file=banner)
698
+ print(f" Max length: {stats.max_token_length}", file=banner)
699
+ print(file=banner)
700
+
701
+ if args.json:
702
+ import dataclasses
703
+
704
+ print(json.dumps(dataclasses.asdict(stats), indent=2))
705
+
706
+ elif args.metadata or (args.json and args.metadata):
707
+ metadata_list = tokenizer.tokenize_with_metadata(text)
708
+ count = len(metadata_list)
709
+ print(
710
+ f" {yellow('Tokenizing...')} {green(f'{count:,}')} tokens extracted",
711
+ file=banner,
712
+ )
713
+ print(file=banner)
714
+ output = [
715
+ {
716
+ "token": m.token,
717
+ "start": m.start,
718
+ "end": m.end,
719
+ "type": m.token_type,
720
+ }
721
+ for m in metadata_list
722
+ ]
723
+ print(json.dumps(output, indent=2))
724
+
725
+ elif args.json:
726
+ tokens = tokenizer.tokenize(text)
727
+ count = len(tokens)
728
+ print(
729
+ f" {yellow('Tokenizing...')} {green(f'{count:,}')} tokens extracted",
730
+ file=banner,
731
+ )
732
+ print(file=banner)
733
+ print(json.dumps(tokens, indent=2))
734
+
735
+ else:
736
+ tokens = tokenizer.tokenize(text)
737
+ count = len(tokens)
738
+ print(
739
+ f" {yellow('Tokenizing...')} {green(f'{count:,}')} tokens extracted",
740
+ file=banner,
741
+ )
742
+ print(file=banner)
743
+ for token in tokens:
744
+ print(token)
745
+
746
+
426
747
  if __name__ == "__main__":
427
748
  drift_cli()
@@ -5,12 +5,14 @@ from .advanced_diversity import compute_hdd, compute_mattr, compute_msttr, compu
5
5
  from .function_words import compute_function_words
6
6
  from .hapax import compute_hapax_ratios, compute_hapax_with_lexicon_analysis
7
7
  from .mtld import compute_mtld
8
- from .ttr import compute_ttr
8
+ from .repetition import compute_repetitive_ngrams, compute_repetitive_unigrams
9
+ from .ttr import TTRAggregator, compute_ttr
9
10
  from .word_frequency_sophistication import compute_word_frequency_sophistication
10
11
  from .yule import compute_yule
11
12
 
12
13
  __all__ = [
13
14
  "compute_ttr",
15
+ "TTRAggregator",
14
16
  "compute_mtld",
15
17
  "compute_yule",
16
18
  "compute_hapax_ratios",
@@ -21,4 +23,6 @@ __all__ = [
21
23
  "compute_hdd",
22
24
  "compute_msttr",
23
25
  "compute_word_frequency_sophistication",
26
+ "compute_repetitive_unigrams",
27
+ "compute_repetitive_ngrams",
24
28
  ]