pystylometry 0.1.0__py3-none-any.whl → 1.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pystylometry/__init__.py +30 -5
- pystylometry/_normalize.py +277 -0
- pystylometry/_types.py +1954 -28
- pystylometry/_utils.py +4 -0
- pystylometry/authorship/__init__.py +26 -1
- pystylometry/authorship/additional_methods.py +75 -0
- pystylometry/authorship/kilgarriff.py +347 -0
- pystylometry/character/__init__.py +15 -0
- pystylometry/character/character_metrics.py +389 -0
- pystylometry/cli.py +427 -0
- pystylometry/consistency/__init__.py +57 -0
- pystylometry/consistency/_thresholds.py +162 -0
- pystylometry/consistency/drift.py +549 -0
- pystylometry/dialect/__init__.py +65 -0
- pystylometry/dialect/_data/dialect_markers.json +1134 -0
- pystylometry/dialect/_loader.py +360 -0
- pystylometry/dialect/detector.py +533 -0
- pystylometry/lexical/__init__.py +13 -6
- pystylometry/lexical/advanced_diversity.py +680 -0
- pystylometry/lexical/function_words.py +590 -0
- pystylometry/lexical/hapax.py +310 -33
- pystylometry/lexical/mtld.py +180 -22
- pystylometry/lexical/ttr.py +149 -0
- pystylometry/lexical/word_frequency_sophistication.py +1805 -0
- pystylometry/lexical/yule.py +142 -29
- pystylometry/ngrams/__init__.py +2 -0
- pystylometry/ngrams/entropy.py +150 -49
- pystylometry/ngrams/extended_ngrams.py +235 -0
- pystylometry/prosody/__init__.py +12 -0
- pystylometry/prosody/rhythm_prosody.py +53 -0
- pystylometry/readability/__init__.py +12 -0
- pystylometry/readability/additional_formulas.py +2110 -0
- pystylometry/readability/ari.py +173 -35
- pystylometry/readability/coleman_liau.py +150 -30
- pystylometry/readability/complex_words.py +531 -0
- pystylometry/readability/flesch.py +181 -32
- pystylometry/readability/gunning_fog.py +208 -35
- pystylometry/readability/smog.py +126 -28
- pystylometry/readability/syllables.py +137 -30
- pystylometry/stylistic/__init__.py +20 -0
- pystylometry/stylistic/cohesion_coherence.py +45 -0
- pystylometry/stylistic/genre_register.py +45 -0
- pystylometry/stylistic/markers.py +131 -0
- pystylometry/stylistic/vocabulary_overlap.py +47 -0
- pystylometry/syntactic/__init__.py +4 -0
- pystylometry/syntactic/advanced_syntactic.py +494 -0
- pystylometry/syntactic/pos_ratios.py +172 -17
- pystylometry/syntactic/sentence_stats.py +105 -18
- pystylometry/syntactic/sentence_types.py +526 -0
- pystylometry/viz/__init__.py +71 -0
- pystylometry/viz/drift.py +589 -0
- pystylometry/viz/jsx/__init__.py +31 -0
- pystylometry/viz/jsx/_base.py +144 -0
- pystylometry/viz/jsx/report.py +677 -0
- pystylometry/viz/jsx/timeline.py +716 -0
- pystylometry/viz/jsx/viewer.py +1032 -0
- {pystylometry-0.1.0.dist-info → pystylometry-1.1.0.dist-info}/METADATA +49 -9
- pystylometry-1.1.0.dist-info/RECORD +63 -0
- pystylometry-1.1.0.dist-info/entry_points.txt +4 -0
- pystylometry-0.1.0.dist-info/RECORD +0 -26
- {pystylometry-0.1.0.dist-info → pystylometry-1.1.0.dist-info}/WHEEL +0 -0
|
@@ -0,0 +1,2110 @@
|
|
|
1
|
+
"""Additional readability formulas.
|
|
2
|
+
|
|
3
|
+
This module provides additional readability metrics beyond the core formulas
|
|
4
|
+
(Flesch, SMOG, Gunning Fog, Coleman-Liau, ARI). These formulas offer alternative
|
|
5
|
+
approaches to measuring text difficulty and are valuable for cross-validation
|
|
6
|
+
and comprehensive readability assessment.
|
|
7
|
+
|
|
8
|
+
Related GitHub Issues:
|
|
9
|
+
#16 - Additional Readability Formulas
|
|
10
|
+
#27 - Native chunked analysis with Distribution dataclass
|
|
11
|
+
|
|
12
|
+
Formulas implemented:
|
|
13
|
+
- Dale-Chall: Based on list of 3000 familiar words
|
|
14
|
+
- Linsear Write: Developed for technical writing assessment
|
|
15
|
+
- Fry Readability Graph: Visual graph-based assessment
|
|
16
|
+
- FORCAST: Military formula using only single-syllable words
|
|
17
|
+
- Powers-Sumner-Kearl: Recalibrated Flesch for primary grades
|
|
18
|
+
|
|
19
|
+
References:
|
|
20
|
+
Dale, E., & Chall, J. S. (1948). A formula for predicting readability.
|
|
21
|
+
Chall, J. S., & Dale, E. (1995). Readability revisited: The new Dale-Chall
|
|
22
|
+
readability formula. Brookline Books.
|
|
23
|
+
Klare, G. R. (1974-1975). Assessing readability. Reading Research Quarterly.
|
|
24
|
+
Fry, E. (1968). A readability formula that saves time. Journal of Reading.
|
|
25
|
+
Caylor, J. S., et al. (1973). Methodologies for determining reading requirements
|
|
26
|
+
of military occupational specialties. Human Resources Research Organization.
|
|
27
|
+
Powers, R. D., Sumner, W. A., & Kearl, B. E. (1958). A recalculation of four
|
|
28
|
+
adult readability formulas. Journal of Educational Psychology.
|
|
29
|
+
"""
|
|
30
|
+
|
|
31
|
+
import math
|
|
32
|
+
|
|
33
|
+
from .._normalize import normalize_for_readability
|
|
34
|
+
from .._types import (
|
|
35
|
+
DaleChallResult,
|
|
36
|
+
Distribution,
|
|
37
|
+
FORCASTResult,
|
|
38
|
+
FryResult,
|
|
39
|
+
LinsearWriteResult,
|
|
40
|
+
PowersSumnerKearlResult,
|
|
41
|
+
chunk_text,
|
|
42
|
+
make_distribution,
|
|
43
|
+
)
|
|
44
|
+
from .._utils import split_sentences, tokenize
|
|
45
|
+
from .syllables import count_syllables
|
|
46
|
+
|
|
47
|
+
# Dale-Chall List of Familiar Words (subset of ~1200 words)
|
|
48
|
+
# GitHub Issue #16: https://github.com/craigtrim/pystylometry/issues/16
|
|
49
|
+
# Full Dale-Chall list has 3000 words that 80% of 4th graders understand.
|
|
50
|
+
# This is a representative subset covering most common everyday words.
|
|
51
|
+
DALE_CHALL_FAMILIAR_WORDS = {
|
|
52
|
+
# Articles, pronouns, determiners
|
|
53
|
+
"a",
|
|
54
|
+
"an",
|
|
55
|
+
"the",
|
|
56
|
+
"this",
|
|
57
|
+
"that",
|
|
58
|
+
"these",
|
|
59
|
+
"those",
|
|
60
|
+
"some",
|
|
61
|
+
"any",
|
|
62
|
+
"all",
|
|
63
|
+
"each",
|
|
64
|
+
"every",
|
|
65
|
+
"both",
|
|
66
|
+
"few",
|
|
67
|
+
"many",
|
|
68
|
+
"much",
|
|
69
|
+
"more",
|
|
70
|
+
"most",
|
|
71
|
+
"other",
|
|
72
|
+
"another",
|
|
73
|
+
"such",
|
|
74
|
+
"what",
|
|
75
|
+
"which",
|
|
76
|
+
"who",
|
|
77
|
+
"whom",
|
|
78
|
+
"whose",
|
|
79
|
+
"whoever",
|
|
80
|
+
"i",
|
|
81
|
+
"me",
|
|
82
|
+
"my",
|
|
83
|
+
"mine",
|
|
84
|
+
"myself",
|
|
85
|
+
"we",
|
|
86
|
+
"us",
|
|
87
|
+
"our",
|
|
88
|
+
"ours",
|
|
89
|
+
"ourselves",
|
|
90
|
+
"you",
|
|
91
|
+
"your",
|
|
92
|
+
"yours",
|
|
93
|
+
"yourself",
|
|
94
|
+
"yourselves",
|
|
95
|
+
"he",
|
|
96
|
+
"him",
|
|
97
|
+
"his",
|
|
98
|
+
"himself",
|
|
99
|
+
"she",
|
|
100
|
+
"her",
|
|
101
|
+
"hers",
|
|
102
|
+
"herself",
|
|
103
|
+
"it",
|
|
104
|
+
"its",
|
|
105
|
+
"itself",
|
|
106
|
+
"they",
|
|
107
|
+
"them",
|
|
108
|
+
"their",
|
|
109
|
+
"theirs",
|
|
110
|
+
"themselves",
|
|
111
|
+
"one",
|
|
112
|
+
"ones",
|
|
113
|
+
"someone",
|
|
114
|
+
"somebody",
|
|
115
|
+
"something",
|
|
116
|
+
"anyone",
|
|
117
|
+
"anybody",
|
|
118
|
+
"anything",
|
|
119
|
+
"everyone",
|
|
120
|
+
"everybody",
|
|
121
|
+
"everything",
|
|
122
|
+
"no",
|
|
123
|
+
"none",
|
|
124
|
+
"nobody",
|
|
125
|
+
"nothing",
|
|
126
|
+
# Conjunctions and prepositions
|
|
127
|
+
"and",
|
|
128
|
+
"or",
|
|
129
|
+
"but",
|
|
130
|
+
"if",
|
|
131
|
+
"when",
|
|
132
|
+
"where",
|
|
133
|
+
"why",
|
|
134
|
+
"how",
|
|
135
|
+
"because",
|
|
136
|
+
"so",
|
|
137
|
+
"for",
|
|
138
|
+
"nor",
|
|
139
|
+
"yet",
|
|
140
|
+
"after",
|
|
141
|
+
"before",
|
|
142
|
+
"while",
|
|
143
|
+
"since",
|
|
144
|
+
"until",
|
|
145
|
+
"unless",
|
|
146
|
+
"though",
|
|
147
|
+
"although",
|
|
148
|
+
"whether",
|
|
149
|
+
"than",
|
|
150
|
+
"as",
|
|
151
|
+
"like",
|
|
152
|
+
"of",
|
|
153
|
+
"to",
|
|
154
|
+
"in",
|
|
155
|
+
"on",
|
|
156
|
+
"at",
|
|
157
|
+
"by",
|
|
158
|
+
"with",
|
|
159
|
+
"from",
|
|
160
|
+
"about",
|
|
161
|
+
"into",
|
|
162
|
+
"through",
|
|
163
|
+
"over",
|
|
164
|
+
"under",
|
|
165
|
+
"above",
|
|
166
|
+
"below",
|
|
167
|
+
"between",
|
|
168
|
+
"among",
|
|
169
|
+
"against",
|
|
170
|
+
"during",
|
|
171
|
+
"without",
|
|
172
|
+
"within",
|
|
173
|
+
"along",
|
|
174
|
+
"across",
|
|
175
|
+
"behind",
|
|
176
|
+
"beside",
|
|
177
|
+
"near",
|
|
178
|
+
"off",
|
|
179
|
+
"out",
|
|
180
|
+
"up",
|
|
181
|
+
"down",
|
|
182
|
+
"around",
|
|
183
|
+
"past",
|
|
184
|
+
"toward",
|
|
185
|
+
"upon",
|
|
186
|
+
# Common verbs (base, past, -ing, -ed forms included)
|
|
187
|
+
"be",
|
|
188
|
+
"am",
|
|
189
|
+
"is",
|
|
190
|
+
"are",
|
|
191
|
+
"was",
|
|
192
|
+
"were",
|
|
193
|
+
"been",
|
|
194
|
+
"being",
|
|
195
|
+
"have",
|
|
196
|
+
"has",
|
|
197
|
+
"had",
|
|
198
|
+
"having",
|
|
199
|
+
"do",
|
|
200
|
+
"does",
|
|
201
|
+
"did",
|
|
202
|
+
"doing",
|
|
203
|
+
"done",
|
|
204
|
+
"will",
|
|
205
|
+
"would",
|
|
206
|
+
"shall",
|
|
207
|
+
"should",
|
|
208
|
+
"may",
|
|
209
|
+
"might",
|
|
210
|
+
"must",
|
|
211
|
+
"can",
|
|
212
|
+
"could",
|
|
213
|
+
"go",
|
|
214
|
+
"goes",
|
|
215
|
+
"went",
|
|
216
|
+
"gone",
|
|
217
|
+
"going",
|
|
218
|
+
"come",
|
|
219
|
+
"comes",
|
|
220
|
+
"came",
|
|
221
|
+
"coming",
|
|
222
|
+
"make",
|
|
223
|
+
"makes",
|
|
224
|
+
"made",
|
|
225
|
+
"making",
|
|
226
|
+
"get",
|
|
227
|
+
"gets",
|
|
228
|
+
"got",
|
|
229
|
+
"getting",
|
|
230
|
+
"gotten",
|
|
231
|
+
"know",
|
|
232
|
+
"knows",
|
|
233
|
+
"knew",
|
|
234
|
+
"known",
|
|
235
|
+
"knowing",
|
|
236
|
+
"think",
|
|
237
|
+
"thinks",
|
|
238
|
+
"thought",
|
|
239
|
+
"thinking",
|
|
240
|
+
"see",
|
|
241
|
+
"sees",
|
|
242
|
+
"saw",
|
|
243
|
+
"seen",
|
|
244
|
+
"seeing",
|
|
245
|
+
"look",
|
|
246
|
+
"looks",
|
|
247
|
+
"looked",
|
|
248
|
+
"looking",
|
|
249
|
+
"take",
|
|
250
|
+
"takes",
|
|
251
|
+
"took",
|
|
252
|
+
"taken",
|
|
253
|
+
"taking",
|
|
254
|
+
"give",
|
|
255
|
+
"gives",
|
|
256
|
+
"gave",
|
|
257
|
+
"given",
|
|
258
|
+
"giving",
|
|
259
|
+
"find",
|
|
260
|
+
"finds",
|
|
261
|
+
"found",
|
|
262
|
+
"finding",
|
|
263
|
+
"tell",
|
|
264
|
+
"tells",
|
|
265
|
+
"told",
|
|
266
|
+
"telling",
|
|
267
|
+
"ask",
|
|
268
|
+
"asks",
|
|
269
|
+
"asked",
|
|
270
|
+
"asking",
|
|
271
|
+
"work",
|
|
272
|
+
"works",
|
|
273
|
+
"worked",
|
|
274
|
+
"working",
|
|
275
|
+
"seem",
|
|
276
|
+
"seems",
|
|
277
|
+
"seemed",
|
|
278
|
+
"seeming",
|
|
279
|
+
"feel",
|
|
280
|
+
"feels",
|
|
281
|
+
"felt",
|
|
282
|
+
"feeling",
|
|
283
|
+
"try",
|
|
284
|
+
"tries",
|
|
285
|
+
"tried",
|
|
286
|
+
"trying",
|
|
287
|
+
"leave",
|
|
288
|
+
"leaves",
|
|
289
|
+
"left",
|
|
290
|
+
"leaving",
|
|
291
|
+
"call",
|
|
292
|
+
"calls",
|
|
293
|
+
"called",
|
|
294
|
+
"calling",
|
|
295
|
+
"use",
|
|
296
|
+
"uses",
|
|
297
|
+
"used",
|
|
298
|
+
"using",
|
|
299
|
+
"want",
|
|
300
|
+
"wants",
|
|
301
|
+
"wanted",
|
|
302
|
+
"wanting",
|
|
303
|
+
"need",
|
|
304
|
+
"needs",
|
|
305
|
+
"needed",
|
|
306
|
+
"needing",
|
|
307
|
+
"say",
|
|
308
|
+
"says",
|
|
309
|
+
"said",
|
|
310
|
+
"saying",
|
|
311
|
+
"talk",
|
|
312
|
+
"talks",
|
|
313
|
+
"talked",
|
|
314
|
+
"talking",
|
|
315
|
+
"turn",
|
|
316
|
+
"turns",
|
|
317
|
+
"turned",
|
|
318
|
+
"turning",
|
|
319
|
+
"run",
|
|
320
|
+
"runs",
|
|
321
|
+
"ran",
|
|
322
|
+
"running",
|
|
323
|
+
"move",
|
|
324
|
+
"moves",
|
|
325
|
+
"moved",
|
|
326
|
+
"moving",
|
|
327
|
+
"live",
|
|
328
|
+
"lives",
|
|
329
|
+
"lived",
|
|
330
|
+
"living",
|
|
331
|
+
"believe",
|
|
332
|
+
"believes",
|
|
333
|
+
"believed",
|
|
334
|
+
"believing",
|
|
335
|
+
"hold",
|
|
336
|
+
"holds",
|
|
337
|
+
"held",
|
|
338
|
+
"holding",
|
|
339
|
+
"bring",
|
|
340
|
+
"brings",
|
|
341
|
+
"brought",
|
|
342
|
+
"bringing",
|
|
343
|
+
"happen",
|
|
344
|
+
"happens",
|
|
345
|
+
"happened",
|
|
346
|
+
"happening",
|
|
347
|
+
"write",
|
|
348
|
+
"writes",
|
|
349
|
+
"wrote",
|
|
350
|
+
"written",
|
|
351
|
+
"writing",
|
|
352
|
+
"sit",
|
|
353
|
+
"sits",
|
|
354
|
+
"sat",
|
|
355
|
+
"sitting",
|
|
356
|
+
"stand",
|
|
357
|
+
"stands",
|
|
358
|
+
"stood",
|
|
359
|
+
"standing",
|
|
360
|
+
"hear",
|
|
361
|
+
"hears",
|
|
362
|
+
"heard",
|
|
363
|
+
"hearing",
|
|
364
|
+
"let",
|
|
365
|
+
"lets",
|
|
366
|
+
"letting",
|
|
367
|
+
"help",
|
|
368
|
+
"helps",
|
|
369
|
+
"helped",
|
|
370
|
+
"helping",
|
|
371
|
+
"show",
|
|
372
|
+
"shows",
|
|
373
|
+
"showed",
|
|
374
|
+
"shown",
|
|
375
|
+
"showing",
|
|
376
|
+
"play",
|
|
377
|
+
"plays",
|
|
378
|
+
"played",
|
|
379
|
+
"playing",
|
|
380
|
+
"read",
|
|
381
|
+
"reads",
|
|
382
|
+
"reading",
|
|
383
|
+
"change",
|
|
384
|
+
"changes",
|
|
385
|
+
"changed",
|
|
386
|
+
"changing",
|
|
387
|
+
"keep",
|
|
388
|
+
"keeps",
|
|
389
|
+
"kept",
|
|
390
|
+
"keeping",
|
|
391
|
+
"start",
|
|
392
|
+
"starts",
|
|
393
|
+
"started",
|
|
394
|
+
"starting",
|
|
395
|
+
"stop",
|
|
396
|
+
"stops",
|
|
397
|
+
"stopped",
|
|
398
|
+
"stopping",
|
|
399
|
+
"learn",
|
|
400
|
+
"learns",
|
|
401
|
+
"learned",
|
|
402
|
+
"learning",
|
|
403
|
+
"grow",
|
|
404
|
+
"grows",
|
|
405
|
+
"grew",
|
|
406
|
+
"grown",
|
|
407
|
+
"growing",
|
|
408
|
+
"open",
|
|
409
|
+
"opens",
|
|
410
|
+
"opened",
|
|
411
|
+
"opening",
|
|
412
|
+
"close",
|
|
413
|
+
"closes",
|
|
414
|
+
"closed",
|
|
415
|
+
"closing",
|
|
416
|
+
"walk",
|
|
417
|
+
"walks",
|
|
418
|
+
"walked",
|
|
419
|
+
"walking",
|
|
420
|
+
"win",
|
|
421
|
+
"wins",
|
|
422
|
+
"won",
|
|
423
|
+
"winning",
|
|
424
|
+
"begin",
|
|
425
|
+
"begins",
|
|
426
|
+
"began",
|
|
427
|
+
"begun",
|
|
428
|
+
"beginning",
|
|
429
|
+
"end",
|
|
430
|
+
"ends",
|
|
431
|
+
"ended",
|
|
432
|
+
"ending",
|
|
433
|
+
"lose",
|
|
434
|
+
"loses",
|
|
435
|
+
"lost",
|
|
436
|
+
"losing",
|
|
437
|
+
"send",
|
|
438
|
+
"sends",
|
|
439
|
+
"sent",
|
|
440
|
+
"sending",
|
|
441
|
+
"buy",
|
|
442
|
+
"buys",
|
|
443
|
+
"bought",
|
|
444
|
+
"buying",
|
|
445
|
+
"pay",
|
|
446
|
+
"pays",
|
|
447
|
+
"paid",
|
|
448
|
+
"paying",
|
|
449
|
+
"eat",
|
|
450
|
+
"eats",
|
|
451
|
+
"ate",
|
|
452
|
+
"eaten",
|
|
453
|
+
"eating",
|
|
454
|
+
"drink",
|
|
455
|
+
"drinks",
|
|
456
|
+
"drank",
|
|
457
|
+
"drinking",
|
|
458
|
+
"sleep",
|
|
459
|
+
"sleeps",
|
|
460
|
+
"slept",
|
|
461
|
+
"sleeping",
|
|
462
|
+
"wake",
|
|
463
|
+
"wakes",
|
|
464
|
+
"woke",
|
|
465
|
+
"waking",
|
|
466
|
+
"sing",
|
|
467
|
+
"sings",
|
|
468
|
+
"sang",
|
|
469
|
+
"sung",
|
|
470
|
+
"singing",
|
|
471
|
+
"dance",
|
|
472
|
+
"dances",
|
|
473
|
+
"danced",
|
|
474
|
+
"dancing",
|
|
475
|
+
"wait",
|
|
476
|
+
"waits",
|
|
477
|
+
"waited",
|
|
478
|
+
"waiting",
|
|
479
|
+
"stay",
|
|
480
|
+
"stays",
|
|
481
|
+
"stayed",
|
|
482
|
+
"staying",
|
|
483
|
+
"fly",
|
|
484
|
+
"flies",
|
|
485
|
+
"flew",
|
|
486
|
+
"flown",
|
|
487
|
+
"flying",
|
|
488
|
+
"fall",
|
|
489
|
+
"falls",
|
|
490
|
+
"fell",
|
|
491
|
+
"fallen",
|
|
492
|
+
"falling",
|
|
493
|
+
"cut",
|
|
494
|
+
"cuts",
|
|
495
|
+
"cutting",
|
|
496
|
+
"break",
|
|
497
|
+
"breaks",
|
|
498
|
+
"broke",
|
|
499
|
+
"broken",
|
|
500
|
+
"breaking",
|
|
501
|
+
"watch",
|
|
502
|
+
"watches",
|
|
503
|
+
"watched",
|
|
504
|
+
"watching",
|
|
505
|
+
"listen",
|
|
506
|
+
"listens",
|
|
507
|
+
"listened",
|
|
508
|
+
"listening",
|
|
509
|
+
"remember",
|
|
510
|
+
"remembers",
|
|
511
|
+
"remembered",
|
|
512
|
+
"remembering",
|
|
513
|
+
"forget",
|
|
514
|
+
"forgets",
|
|
515
|
+
"forgot",
|
|
516
|
+
"forgotten",
|
|
517
|
+
"forgetting",
|
|
518
|
+
"meet",
|
|
519
|
+
"meets",
|
|
520
|
+
"met",
|
|
521
|
+
"meeting",
|
|
522
|
+
"follow",
|
|
523
|
+
"follows",
|
|
524
|
+
"followed",
|
|
525
|
+
"following",
|
|
526
|
+
"carry",
|
|
527
|
+
"carries",
|
|
528
|
+
"carried",
|
|
529
|
+
"carrying",
|
|
530
|
+
"catch",
|
|
531
|
+
"catches",
|
|
532
|
+
"caught",
|
|
533
|
+
"catching",
|
|
534
|
+
"draw",
|
|
535
|
+
"draws",
|
|
536
|
+
"drew",
|
|
537
|
+
"drawn",
|
|
538
|
+
"drawing",
|
|
539
|
+
"drive",
|
|
540
|
+
"drives",
|
|
541
|
+
"drove",
|
|
542
|
+
"driven",
|
|
543
|
+
"driving",
|
|
544
|
+
"ride",
|
|
545
|
+
"rides",
|
|
546
|
+
"rode",
|
|
547
|
+
"ridden",
|
|
548
|
+
"riding",
|
|
549
|
+
"wear",
|
|
550
|
+
"wears",
|
|
551
|
+
"wore",
|
|
552
|
+
"worn",
|
|
553
|
+
"wearing",
|
|
554
|
+
"pull",
|
|
555
|
+
"pulls",
|
|
556
|
+
"pulled",
|
|
557
|
+
"pulling",
|
|
558
|
+
"push",
|
|
559
|
+
"pushes",
|
|
560
|
+
"pushed",
|
|
561
|
+
"pushing",
|
|
562
|
+
"throw",
|
|
563
|
+
"throws",
|
|
564
|
+
"threw",
|
|
565
|
+
"thrown",
|
|
566
|
+
"throwing",
|
|
567
|
+
"reach",
|
|
568
|
+
"reaches",
|
|
569
|
+
"reached",
|
|
570
|
+
"reaching",
|
|
571
|
+
"pass",
|
|
572
|
+
"passes",
|
|
573
|
+
"passed",
|
|
574
|
+
"passing",
|
|
575
|
+
"shoot",
|
|
576
|
+
"shoots",
|
|
577
|
+
"shot",
|
|
578
|
+
"shooting",
|
|
579
|
+
"rise",
|
|
580
|
+
"rises",
|
|
581
|
+
"rose",
|
|
582
|
+
"risen",
|
|
583
|
+
"rising",
|
|
584
|
+
"blow",
|
|
585
|
+
"blows",
|
|
586
|
+
"blew",
|
|
587
|
+
"blown",
|
|
588
|
+
"blowing",
|
|
589
|
+
"grow",
|
|
590
|
+
"grows",
|
|
591
|
+
"grew",
|
|
592
|
+
"grown",
|
|
593
|
+
"growing",
|
|
594
|
+
"hit",
|
|
595
|
+
"hits",
|
|
596
|
+
"hitting",
|
|
597
|
+
"fight",
|
|
598
|
+
"fights",
|
|
599
|
+
"fought",
|
|
600
|
+
"fighting",
|
|
601
|
+
"die",
|
|
602
|
+
"dies",
|
|
603
|
+
"died",
|
|
604
|
+
"dying",
|
|
605
|
+
"kill",
|
|
606
|
+
"kills",
|
|
607
|
+
"killed",
|
|
608
|
+
"killing",
|
|
609
|
+
"speak",
|
|
610
|
+
"speaks",
|
|
611
|
+
"spoke",
|
|
612
|
+
"spoken",
|
|
613
|
+
"speaking",
|
|
614
|
+
# Common nouns
|
|
615
|
+
"time",
|
|
616
|
+
"times",
|
|
617
|
+
"year",
|
|
618
|
+
"years",
|
|
619
|
+
"day",
|
|
620
|
+
"days",
|
|
621
|
+
"week",
|
|
622
|
+
"weeks",
|
|
623
|
+
"month",
|
|
624
|
+
"months",
|
|
625
|
+
"hour",
|
|
626
|
+
"hours",
|
|
627
|
+
"minute",
|
|
628
|
+
"minutes",
|
|
629
|
+
"second",
|
|
630
|
+
"seconds",
|
|
631
|
+
"morning",
|
|
632
|
+
"afternoon",
|
|
633
|
+
"evening",
|
|
634
|
+
"night",
|
|
635
|
+
"today",
|
|
636
|
+
"yesterday",
|
|
637
|
+
"tomorrow",
|
|
638
|
+
"people",
|
|
639
|
+
"person",
|
|
640
|
+
"man",
|
|
641
|
+
"men",
|
|
642
|
+
"woman",
|
|
643
|
+
"women",
|
|
644
|
+
"child",
|
|
645
|
+
"children",
|
|
646
|
+
"boy",
|
|
647
|
+
"boys",
|
|
648
|
+
"girl",
|
|
649
|
+
"girls",
|
|
650
|
+
"baby",
|
|
651
|
+
"babies",
|
|
652
|
+
"friend",
|
|
653
|
+
"friends",
|
|
654
|
+
"family",
|
|
655
|
+
"families",
|
|
656
|
+
"mother",
|
|
657
|
+
"father",
|
|
658
|
+
"parent",
|
|
659
|
+
"parents",
|
|
660
|
+
"brother",
|
|
661
|
+
"brothers",
|
|
662
|
+
"sister",
|
|
663
|
+
"sisters",
|
|
664
|
+
"son",
|
|
665
|
+
"daughter",
|
|
666
|
+
"place",
|
|
667
|
+
"places",
|
|
668
|
+
"home",
|
|
669
|
+
"house",
|
|
670
|
+
"houses",
|
|
671
|
+
"room",
|
|
672
|
+
"rooms",
|
|
673
|
+
"school",
|
|
674
|
+
"schools",
|
|
675
|
+
"class",
|
|
676
|
+
"classes",
|
|
677
|
+
"student",
|
|
678
|
+
"students",
|
|
679
|
+
"teacher",
|
|
680
|
+
"teachers",
|
|
681
|
+
"way",
|
|
682
|
+
"ways",
|
|
683
|
+
"thing",
|
|
684
|
+
"things",
|
|
685
|
+
"part",
|
|
686
|
+
"parts",
|
|
687
|
+
"group",
|
|
688
|
+
"groups",
|
|
689
|
+
"number",
|
|
690
|
+
"numbers",
|
|
691
|
+
"side",
|
|
692
|
+
"sides",
|
|
693
|
+
"kind",
|
|
694
|
+
"kinds",
|
|
695
|
+
"head",
|
|
696
|
+
"heads",
|
|
697
|
+
"hand",
|
|
698
|
+
"hands",
|
|
699
|
+
"eye",
|
|
700
|
+
"eyes",
|
|
701
|
+
"face",
|
|
702
|
+
"faces",
|
|
703
|
+
"body",
|
|
704
|
+
"bodies",
|
|
705
|
+
"foot",
|
|
706
|
+
"feet",
|
|
707
|
+
"arm",
|
|
708
|
+
"arms",
|
|
709
|
+
"leg",
|
|
710
|
+
"legs",
|
|
711
|
+
"ear",
|
|
712
|
+
"ears",
|
|
713
|
+
"mouth",
|
|
714
|
+
"water",
|
|
715
|
+
"food",
|
|
716
|
+
"air",
|
|
717
|
+
"land",
|
|
718
|
+
"earth",
|
|
719
|
+
"ground",
|
|
720
|
+
"world",
|
|
721
|
+
"country",
|
|
722
|
+
"countries",
|
|
723
|
+
"state",
|
|
724
|
+
"states",
|
|
725
|
+
"city",
|
|
726
|
+
"cities",
|
|
727
|
+
"town",
|
|
728
|
+
"towns",
|
|
729
|
+
"name",
|
|
730
|
+
"names",
|
|
731
|
+
"word",
|
|
732
|
+
"words",
|
|
733
|
+
"line",
|
|
734
|
+
"lines",
|
|
735
|
+
"page",
|
|
736
|
+
"pages",
|
|
737
|
+
"book",
|
|
738
|
+
"books",
|
|
739
|
+
"story",
|
|
740
|
+
"stories",
|
|
741
|
+
"letter",
|
|
742
|
+
"letters",
|
|
743
|
+
"paper",
|
|
744
|
+
"papers",
|
|
745
|
+
"point",
|
|
746
|
+
"points",
|
|
747
|
+
"end",
|
|
748
|
+
"ends",
|
|
749
|
+
"top",
|
|
750
|
+
"bottom",
|
|
751
|
+
"front",
|
|
752
|
+
"back",
|
|
753
|
+
"life",
|
|
754
|
+
"lives",
|
|
755
|
+
"problem",
|
|
756
|
+
"problems",
|
|
757
|
+
"question",
|
|
758
|
+
"questions",
|
|
759
|
+
"answer",
|
|
760
|
+
"answers",
|
|
761
|
+
"work",
|
|
762
|
+
"works",
|
|
763
|
+
"job",
|
|
764
|
+
"jobs",
|
|
765
|
+
"money",
|
|
766
|
+
"door",
|
|
767
|
+
"doors",
|
|
768
|
+
"window",
|
|
769
|
+
"windows",
|
|
770
|
+
"car",
|
|
771
|
+
"cars",
|
|
772
|
+
"road",
|
|
773
|
+
"roads",
|
|
774
|
+
"street",
|
|
775
|
+
"streets",
|
|
776
|
+
"tree",
|
|
777
|
+
"trees",
|
|
778
|
+
"animal",
|
|
779
|
+
"animals",
|
|
780
|
+
"bird",
|
|
781
|
+
"birds",
|
|
782
|
+
"fish",
|
|
783
|
+
"dog",
|
|
784
|
+
"dogs",
|
|
785
|
+
"cat",
|
|
786
|
+
"cats",
|
|
787
|
+
"horse",
|
|
788
|
+
"horses",
|
|
789
|
+
"sea",
|
|
790
|
+
"mountain",
|
|
791
|
+
"mountains",
|
|
792
|
+
"river",
|
|
793
|
+
"rivers",
|
|
794
|
+
"sun",
|
|
795
|
+
"moon",
|
|
796
|
+
"star",
|
|
797
|
+
"stars",
|
|
798
|
+
"sky",
|
|
799
|
+
"cloud",
|
|
800
|
+
"clouds",
|
|
801
|
+
"rain",
|
|
802
|
+
"snow",
|
|
803
|
+
"wind",
|
|
804
|
+
"fire",
|
|
805
|
+
"light",
|
|
806
|
+
"dark",
|
|
807
|
+
"sound",
|
|
808
|
+
"sounds",
|
|
809
|
+
"color",
|
|
810
|
+
"colors",
|
|
811
|
+
"white",
|
|
812
|
+
"black",
|
|
813
|
+
"red",
|
|
814
|
+
"blue",
|
|
815
|
+
"green",
|
|
816
|
+
"yellow",
|
|
817
|
+
"brown",
|
|
818
|
+
"orange",
|
|
819
|
+
"game",
|
|
820
|
+
"games",
|
|
821
|
+
"ball",
|
|
822
|
+
"music",
|
|
823
|
+
"song",
|
|
824
|
+
"songs",
|
|
825
|
+
"picture",
|
|
826
|
+
"pictures",
|
|
827
|
+
"table",
|
|
828
|
+
"tables",
|
|
829
|
+
"chair",
|
|
830
|
+
"chairs",
|
|
831
|
+
"bed",
|
|
832
|
+
"beds",
|
|
833
|
+
"floor",
|
|
834
|
+
"wall",
|
|
835
|
+
"walls",
|
|
836
|
+
"minute",
|
|
837
|
+
"power",
|
|
838
|
+
"war",
|
|
839
|
+
"force",
|
|
840
|
+
"age",
|
|
841
|
+
"care",
|
|
842
|
+
"order",
|
|
843
|
+
"case",
|
|
844
|
+
# Common adjectives
|
|
845
|
+
"good",
|
|
846
|
+
"better",
|
|
847
|
+
"best",
|
|
848
|
+
"bad",
|
|
849
|
+
"worse",
|
|
850
|
+
"worst",
|
|
851
|
+
"big",
|
|
852
|
+
"bigger",
|
|
853
|
+
"biggest",
|
|
854
|
+
"small",
|
|
855
|
+
"smaller",
|
|
856
|
+
"smallest",
|
|
857
|
+
"large",
|
|
858
|
+
"larger",
|
|
859
|
+
"largest",
|
|
860
|
+
"little",
|
|
861
|
+
"less",
|
|
862
|
+
"least",
|
|
863
|
+
"long",
|
|
864
|
+
"longer",
|
|
865
|
+
"longest",
|
|
866
|
+
"short",
|
|
867
|
+
"shorter",
|
|
868
|
+
"shortest",
|
|
869
|
+
"high",
|
|
870
|
+
"higher",
|
|
871
|
+
"highest",
|
|
872
|
+
"low",
|
|
873
|
+
"lower",
|
|
874
|
+
"lowest",
|
|
875
|
+
"old",
|
|
876
|
+
"older",
|
|
877
|
+
"oldest",
|
|
878
|
+
"young",
|
|
879
|
+
"younger",
|
|
880
|
+
"youngest",
|
|
881
|
+
"new",
|
|
882
|
+
"newer",
|
|
883
|
+
"newest",
|
|
884
|
+
"great",
|
|
885
|
+
"greater",
|
|
886
|
+
"greatest",
|
|
887
|
+
"important",
|
|
888
|
+
"right",
|
|
889
|
+
"left",
|
|
890
|
+
"own",
|
|
891
|
+
"other",
|
|
892
|
+
"different",
|
|
893
|
+
"same",
|
|
894
|
+
"next",
|
|
895
|
+
"last",
|
|
896
|
+
"first",
|
|
897
|
+
"second",
|
|
898
|
+
"third",
|
|
899
|
+
"early",
|
|
900
|
+
"earlier",
|
|
901
|
+
"earliest",
|
|
902
|
+
"late",
|
|
903
|
+
"later",
|
|
904
|
+
"latest",
|
|
905
|
+
"easy",
|
|
906
|
+
"easier",
|
|
907
|
+
"easiest",
|
|
908
|
+
"hard",
|
|
909
|
+
"harder",
|
|
910
|
+
"hardest",
|
|
911
|
+
"hot",
|
|
912
|
+
"hotter",
|
|
913
|
+
"hottest",
|
|
914
|
+
"cold",
|
|
915
|
+
"colder",
|
|
916
|
+
"coldest",
|
|
917
|
+
"warm",
|
|
918
|
+
"warmer",
|
|
919
|
+
"warmest",
|
|
920
|
+
"cool",
|
|
921
|
+
"cooler",
|
|
922
|
+
"coolest",
|
|
923
|
+
"fast",
|
|
924
|
+
"faster",
|
|
925
|
+
"fastest",
|
|
926
|
+
"slow",
|
|
927
|
+
"slower",
|
|
928
|
+
"slowest",
|
|
929
|
+
"strong",
|
|
930
|
+
"stronger",
|
|
931
|
+
"strongest",
|
|
932
|
+
"weak",
|
|
933
|
+
"weaker",
|
|
934
|
+
"weakest",
|
|
935
|
+
"happy",
|
|
936
|
+
"happier",
|
|
937
|
+
"happiest",
|
|
938
|
+
"sad",
|
|
939
|
+
"sadder",
|
|
940
|
+
"saddest",
|
|
941
|
+
"nice",
|
|
942
|
+
"nicer",
|
|
943
|
+
"nicest",
|
|
944
|
+
"kind",
|
|
945
|
+
"kinder",
|
|
946
|
+
"kindest",
|
|
947
|
+
"sure",
|
|
948
|
+
"free",
|
|
949
|
+
"full",
|
|
950
|
+
"whole",
|
|
951
|
+
"ready",
|
|
952
|
+
"simple",
|
|
953
|
+
"clear",
|
|
954
|
+
"real",
|
|
955
|
+
"true",
|
|
956
|
+
"certain",
|
|
957
|
+
"public",
|
|
958
|
+
"able",
|
|
959
|
+
"several",
|
|
960
|
+
"open",
|
|
961
|
+
"closed",
|
|
962
|
+
"deep",
|
|
963
|
+
"wide",
|
|
964
|
+
"bright",
|
|
965
|
+
"dark",
|
|
966
|
+
"heavy",
|
|
967
|
+
"light",
|
|
968
|
+
"clean",
|
|
969
|
+
"dirty",
|
|
970
|
+
"wet",
|
|
971
|
+
"dry",
|
|
972
|
+
"soft",
|
|
973
|
+
"hard",
|
|
974
|
+
"quiet",
|
|
975
|
+
"loud",
|
|
976
|
+
"quick",
|
|
977
|
+
"slow",
|
|
978
|
+
"rich",
|
|
979
|
+
"poor",
|
|
980
|
+
"sick",
|
|
981
|
+
"well",
|
|
982
|
+
"dead",
|
|
983
|
+
"alive",
|
|
984
|
+
"empty",
|
|
985
|
+
"busy",
|
|
986
|
+
"pretty",
|
|
987
|
+
"beautiful",
|
|
988
|
+
"ugly",
|
|
989
|
+
# Common adverbs
|
|
990
|
+
"very",
|
|
991
|
+
"too",
|
|
992
|
+
"so",
|
|
993
|
+
"more",
|
|
994
|
+
"most",
|
|
995
|
+
"less",
|
|
996
|
+
"least",
|
|
997
|
+
"well",
|
|
998
|
+
"better",
|
|
999
|
+
"best",
|
|
1000
|
+
"just",
|
|
1001
|
+
"only",
|
|
1002
|
+
"even",
|
|
1003
|
+
"still",
|
|
1004
|
+
"also",
|
|
1005
|
+
"just",
|
|
1006
|
+
"now",
|
|
1007
|
+
"then",
|
|
1008
|
+
"here",
|
|
1009
|
+
"there",
|
|
1010
|
+
"where",
|
|
1011
|
+
"how",
|
|
1012
|
+
"when",
|
|
1013
|
+
"why",
|
|
1014
|
+
"not",
|
|
1015
|
+
"never",
|
|
1016
|
+
"always",
|
|
1017
|
+
"often",
|
|
1018
|
+
"sometimes",
|
|
1019
|
+
"usually",
|
|
1020
|
+
"ever",
|
|
1021
|
+
"again",
|
|
1022
|
+
"back",
|
|
1023
|
+
"away",
|
|
1024
|
+
"together",
|
|
1025
|
+
"once",
|
|
1026
|
+
"twice",
|
|
1027
|
+
"soon",
|
|
1028
|
+
"today",
|
|
1029
|
+
"yesterday",
|
|
1030
|
+
"tomorrow",
|
|
1031
|
+
"already",
|
|
1032
|
+
"almost",
|
|
1033
|
+
"enough",
|
|
1034
|
+
"quite",
|
|
1035
|
+
"rather",
|
|
1036
|
+
"really",
|
|
1037
|
+
"perhaps",
|
|
1038
|
+
"maybe",
|
|
1039
|
+
"probably",
|
|
1040
|
+
"certainly",
|
|
1041
|
+
"surely",
|
|
1042
|
+
"yes",
|
|
1043
|
+
"no",
|
|
1044
|
+
"please",
|
|
1045
|
+
"thank",
|
|
1046
|
+
"sorry",
|
|
1047
|
+
# Numbers
|
|
1048
|
+
"zero",
|
|
1049
|
+
"one",
|
|
1050
|
+
"two",
|
|
1051
|
+
"three",
|
|
1052
|
+
"four",
|
|
1053
|
+
"five",
|
|
1054
|
+
"six",
|
|
1055
|
+
"seven",
|
|
1056
|
+
"eight",
|
|
1057
|
+
"nine",
|
|
1058
|
+
"ten",
|
|
1059
|
+
"eleven",
|
|
1060
|
+
"twelve",
|
|
1061
|
+
"thirteen",
|
|
1062
|
+
"fourteen",
|
|
1063
|
+
"fifteen",
|
|
1064
|
+
"sixteen",
|
|
1065
|
+
"seventeen",
|
|
1066
|
+
"eighteen",
|
|
1067
|
+
"nineteen",
|
|
1068
|
+
"twenty",
|
|
1069
|
+
"thirty",
|
|
1070
|
+
"forty",
|
|
1071
|
+
"fifty",
|
|
1072
|
+
"sixty",
|
|
1073
|
+
"seventy",
|
|
1074
|
+
"eighty",
|
|
1075
|
+
"ninety",
|
|
1076
|
+
"hundred",
|
|
1077
|
+
"thousand",
|
|
1078
|
+
"million",
|
|
1079
|
+
"first",
|
|
1080
|
+
"second",
|
|
1081
|
+
"third",
|
|
1082
|
+
"fourth",
|
|
1083
|
+
"fifth",
|
|
1084
|
+
"sixth",
|
|
1085
|
+
"seventh",
|
|
1086
|
+
"eighth",
|
|
1087
|
+
"ninth",
|
|
1088
|
+
"tenth",
|
|
1089
|
+
# Additional common words
|
|
1090
|
+
"able",
|
|
1091
|
+
"accept",
|
|
1092
|
+
"across",
|
|
1093
|
+
"act",
|
|
1094
|
+
"add",
|
|
1095
|
+
"afraid",
|
|
1096
|
+
"against",
|
|
1097
|
+
"agree",
|
|
1098
|
+
"allow",
|
|
1099
|
+
"alone",
|
|
1100
|
+
"appear",
|
|
1101
|
+
"apple",
|
|
1102
|
+
"area",
|
|
1103
|
+
"arm",
|
|
1104
|
+
"arrive",
|
|
1105
|
+
"art",
|
|
1106
|
+
"aunt",
|
|
1107
|
+
"ball",
|
|
1108
|
+
"become",
|
|
1109
|
+
"believe",
|
|
1110
|
+
"belong",
|
|
1111
|
+
"boat",
|
|
1112
|
+
"build",
|
|
1113
|
+
"burn",
|
|
1114
|
+
"business",
|
|
1115
|
+
"chair",
|
|
1116
|
+
"chance",
|
|
1117
|
+
"church",
|
|
1118
|
+
"clear",
|
|
1119
|
+
"climb",
|
|
1120
|
+
"clothe",
|
|
1121
|
+
"clothes",
|
|
1122
|
+
"company",
|
|
1123
|
+
"contain",
|
|
1124
|
+
"continue",
|
|
1125
|
+
"control",
|
|
1126
|
+
"cook",
|
|
1127
|
+
"corner",
|
|
1128
|
+
"cost",
|
|
1129
|
+
"count",
|
|
1130
|
+
"course",
|
|
1131
|
+
"cover",
|
|
1132
|
+
"create",
|
|
1133
|
+
"cross",
|
|
1134
|
+
"crowd",
|
|
1135
|
+
"cry",
|
|
1136
|
+
"decide",
|
|
1137
|
+
"depend",
|
|
1138
|
+
"describe",
|
|
1139
|
+
"develop",
|
|
1140
|
+
"die",
|
|
1141
|
+
"direction",
|
|
1142
|
+
"discover",
|
|
1143
|
+
"doctor",
|
|
1144
|
+
"double",
|
|
1145
|
+
"drop",
|
|
1146
|
+
"during",
|
|
1147
|
+
"edge",
|
|
1148
|
+
"effect",
|
|
1149
|
+
"eight",
|
|
1150
|
+
"either",
|
|
1151
|
+
"else",
|
|
1152
|
+
"enjoy",
|
|
1153
|
+
"enough",
|
|
1154
|
+
"enter",
|
|
1155
|
+
"example",
|
|
1156
|
+
"except",
|
|
1157
|
+
"excite",
|
|
1158
|
+
"expect",
|
|
1159
|
+
"explain",
|
|
1160
|
+
"express",
|
|
1161
|
+
"fact",
|
|
1162
|
+
"fair",
|
|
1163
|
+
"farm",
|
|
1164
|
+
"fear",
|
|
1165
|
+
"field",
|
|
1166
|
+
"fill",
|
|
1167
|
+
"final",
|
|
1168
|
+
"fine",
|
|
1169
|
+
"finger",
|
|
1170
|
+
"finish",
|
|
1171
|
+
"flower",
|
|
1172
|
+
"force",
|
|
1173
|
+
"foreign",
|
|
1174
|
+
"forest",
|
|
1175
|
+
"form",
|
|
1176
|
+
"fresh",
|
|
1177
|
+
"front",
|
|
1178
|
+
"garden",
|
|
1179
|
+
"general",
|
|
1180
|
+
"glass",
|
|
1181
|
+
"god",
|
|
1182
|
+
"gold",
|
|
1183
|
+
"hang",
|
|
1184
|
+
"hat",
|
|
1185
|
+
"hope",
|
|
1186
|
+
"hot",
|
|
1187
|
+
"idea",
|
|
1188
|
+
"include",
|
|
1189
|
+
"increase",
|
|
1190
|
+
"instead",
|
|
1191
|
+
"interest",
|
|
1192
|
+
"island",
|
|
1193
|
+
"join",
|
|
1194
|
+
"laugh",
|
|
1195
|
+
"law",
|
|
1196
|
+
"lead",
|
|
1197
|
+
"lie",
|
|
1198
|
+
"lift",
|
|
1199
|
+
"list",
|
|
1200
|
+
"lock",
|
|
1201
|
+
"love",
|
|
1202
|
+
"machine",
|
|
1203
|
+
"mark",
|
|
1204
|
+
"matter",
|
|
1205
|
+
"mean",
|
|
1206
|
+
"measure",
|
|
1207
|
+
"member",
|
|
1208
|
+
"mention",
|
|
1209
|
+
"middle",
|
|
1210
|
+
"mile",
|
|
1211
|
+
"mind",
|
|
1212
|
+
"miss",
|
|
1213
|
+
"moment",
|
|
1214
|
+
"nation",
|
|
1215
|
+
"natural",
|
|
1216
|
+
"nature",
|
|
1217
|
+
"necessary",
|
|
1218
|
+
"neighbor",
|
|
1219
|
+
"notice",
|
|
1220
|
+
"object",
|
|
1221
|
+
"ocean",
|
|
1222
|
+
"offer",
|
|
1223
|
+
"office",
|
|
1224
|
+
"opinion",
|
|
1225
|
+
"paint",
|
|
1226
|
+
"pair",
|
|
1227
|
+
"party",
|
|
1228
|
+
"pattern",
|
|
1229
|
+
"period",
|
|
1230
|
+
"pick",
|
|
1231
|
+
"plan",
|
|
1232
|
+
"plant",
|
|
1233
|
+
"position",
|
|
1234
|
+
"possible",
|
|
1235
|
+
"pound",
|
|
1236
|
+
"prepare",
|
|
1237
|
+
"present",
|
|
1238
|
+
"president",
|
|
1239
|
+
"press",
|
|
1240
|
+
"prince",
|
|
1241
|
+
"print",
|
|
1242
|
+
"probable",
|
|
1243
|
+
"produce",
|
|
1244
|
+
"promise",
|
|
1245
|
+
"proper",
|
|
1246
|
+
"protect",
|
|
1247
|
+
"prove",
|
|
1248
|
+
"purpose",
|
|
1249
|
+
"quarter",
|
|
1250
|
+
"queen",
|
|
1251
|
+
"question",
|
|
1252
|
+
"quick",
|
|
1253
|
+
"quiet",
|
|
1254
|
+
"race",
|
|
1255
|
+
"raise",
|
|
1256
|
+
"range",
|
|
1257
|
+
"rate",
|
|
1258
|
+
"reason",
|
|
1259
|
+
"receive",
|
|
1260
|
+
"record",
|
|
1261
|
+
"region",
|
|
1262
|
+
"remain",
|
|
1263
|
+
"reply",
|
|
1264
|
+
"report",
|
|
1265
|
+
"represent",
|
|
1266
|
+
"require",
|
|
1267
|
+
"rest",
|
|
1268
|
+
"result",
|
|
1269
|
+
"return",
|
|
1270
|
+
"roll",
|
|
1271
|
+
"rule",
|
|
1272
|
+
"sail",
|
|
1273
|
+
"salt",
|
|
1274
|
+
"save",
|
|
1275
|
+
"science",
|
|
1276
|
+
"season",
|
|
1277
|
+
"seat",
|
|
1278
|
+
"seem",
|
|
1279
|
+
"sell",
|
|
1280
|
+
"sense",
|
|
1281
|
+
"sentence",
|
|
1282
|
+
"separate",
|
|
1283
|
+
"serve",
|
|
1284
|
+
"set",
|
|
1285
|
+
"settle",
|
|
1286
|
+
"seven",
|
|
1287
|
+
"shape",
|
|
1288
|
+
"share",
|
|
1289
|
+
"ship",
|
|
1290
|
+
"shore",
|
|
1291
|
+
"sign",
|
|
1292
|
+
"silver",
|
|
1293
|
+
"single",
|
|
1294
|
+
"sir",
|
|
1295
|
+
"six",
|
|
1296
|
+
"size",
|
|
1297
|
+
"skin",
|
|
1298
|
+
"soldier",
|
|
1299
|
+
"solve",
|
|
1300
|
+
"south",
|
|
1301
|
+
"space",
|
|
1302
|
+
"special",
|
|
1303
|
+
"speed",
|
|
1304
|
+
"spell",
|
|
1305
|
+
"spend",
|
|
1306
|
+
"spread",
|
|
1307
|
+
"spring",
|
|
1308
|
+
"square",
|
|
1309
|
+
"step",
|
|
1310
|
+
"stone",
|
|
1311
|
+
"straight",
|
|
1312
|
+
"strange",
|
|
1313
|
+
"stream",
|
|
1314
|
+
"strength",
|
|
1315
|
+
"strike",
|
|
1316
|
+
"subject",
|
|
1317
|
+
"success",
|
|
1318
|
+
"sudden",
|
|
1319
|
+
"suffer",
|
|
1320
|
+
"suggest",
|
|
1321
|
+
"suit",
|
|
1322
|
+
"summer",
|
|
1323
|
+
"supply",
|
|
1324
|
+
"support",
|
|
1325
|
+
"suppose",
|
|
1326
|
+
"surface",
|
|
1327
|
+
"surprise",
|
|
1328
|
+
"sweet",
|
|
1329
|
+
"swim",
|
|
1330
|
+
"system",
|
|
1331
|
+
"tail",
|
|
1332
|
+
"taste",
|
|
1333
|
+
"teach",
|
|
1334
|
+
"team",
|
|
1335
|
+
"telephone",
|
|
1336
|
+
"television",
|
|
1337
|
+
"temperature",
|
|
1338
|
+
"ten",
|
|
1339
|
+
"test",
|
|
1340
|
+
"thick",
|
|
1341
|
+
"thin",
|
|
1342
|
+
"though",
|
|
1343
|
+
"thousand",
|
|
1344
|
+
"three",
|
|
1345
|
+
"tire",
|
|
1346
|
+
"total",
|
|
1347
|
+
"touch",
|
|
1348
|
+
"track",
|
|
1349
|
+
"train",
|
|
1350
|
+
"travel",
|
|
1351
|
+
"trip",
|
|
1352
|
+
"trouble",
|
|
1353
|
+
"type",
|
|
1354
|
+
"uncle",
|
|
1355
|
+
"understand",
|
|
1356
|
+
"unit",
|
|
1357
|
+
"universe",
|
|
1358
|
+
"value",
|
|
1359
|
+
"various",
|
|
1360
|
+
"view",
|
|
1361
|
+
"village",
|
|
1362
|
+
"visit",
|
|
1363
|
+
"voice",
|
|
1364
|
+
"vote",
|
|
1365
|
+
"wagon",
|
|
1366
|
+
"wander",
|
|
1367
|
+
"warm",
|
|
1368
|
+
"wash",
|
|
1369
|
+
"wave",
|
|
1370
|
+
"wealth",
|
|
1371
|
+
"weather",
|
|
1372
|
+
"weight",
|
|
1373
|
+
"welcome",
|
|
1374
|
+
"west",
|
|
1375
|
+
"wheel",
|
|
1376
|
+
"wild",
|
|
1377
|
+
"wind",
|
|
1378
|
+
"winter",
|
|
1379
|
+
"wish",
|
|
1380
|
+
"wonder",
|
|
1381
|
+
"wood",
|
|
1382
|
+
"yard",
|
|
1383
|
+
"yellow",
|
|
1384
|
+
}
|
|
1385
|
+
|
|
1386
|
+
|
|
1387
|
+
def _compute_dale_chall_single(text: str) -> tuple[float, int, float, float, dict]:
|
|
1388
|
+
"""Compute Dale-Chall for a single chunk."""
|
|
1389
|
+
sentences = split_sentences(text)
|
|
1390
|
+
tokens = tokenize(text)
|
|
1391
|
+
word_tokens = normalize_for_readability(tokens)
|
|
1392
|
+
|
|
1393
|
+
if len(sentences) == 0 or len(word_tokens) == 0:
|
|
1394
|
+
return (float("nan"), 0, float("nan"), float("nan"), {"sentence_count": 0, "word_count": 0})
|
|
1395
|
+
|
|
1396
|
+
difficult_words = [w for w in word_tokens if w.lower() not in DALE_CHALL_FAMILIAR_WORDS]
|
|
1397
|
+
difficult_word_count = len(difficult_words)
|
|
1398
|
+
difficult_word_ratio = difficult_word_count / len(word_tokens)
|
|
1399
|
+
difficult_word_pct = difficult_word_ratio * 100
|
|
1400
|
+
avg_sentence_length = len(word_tokens) / len(sentences)
|
|
1401
|
+
raw_score = 0.1579 * difficult_word_pct + 0.0496 * avg_sentence_length
|
|
1402
|
+
adjusted = difficult_word_pct > 5.0
|
|
1403
|
+
dale_chall_score = raw_score + 3.6365 if adjusted else raw_score
|
|
1404
|
+
|
|
1405
|
+
return (
|
|
1406
|
+
dale_chall_score,
|
|
1407
|
+
difficult_word_count,
|
|
1408
|
+
difficult_word_ratio,
|
|
1409
|
+
avg_sentence_length,
|
|
1410
|
+
{
|
|
1411
|
+
"sentence_count": len(sentences),
|
|
1412
|
+
"word_count": len(word_tokens),
|
|
1413
|
+
"adjusted": adjusted,
|
|
1414
|
+
"raw_score": raw_score,
|
|
1415
|
+
"difficult_word_pct": difficult_word_pct,
|
|
1416
|
+
},
|
|
1417
|
+
)
|
|
1418
|
+
|
|
1419
|
+
|
|
1420
|
+
def _get_dale_chall_grade_level(score: float) -> str:
|
|
1421
|
+
"""Map Dale-Chall score to grade level."""
|
|
1422
|
+
if math.isnan(score):
|
|
1423
|
+
return "Unknown"
|
|
1424
|
+
if score < 5.0:
|
|
1425
|
+
return "4 and below"
|
|
1426
|
+
elif score < 6.0:
|
|
1427
|
+
return "5-6"
|
|
1428
|
+
elif score < 7.0:
|
|
1429
|
+
return "7-8"
|
|
1430
|
+
elif score < 8.0:
|
|
1431
|
+
return "9-10"
|
|
1432
|
+
elif score < 9.0:
|
|
1433
|
+
return "11-12"
|
|
1434
|
+
elif score < 10.0:
|
|
1435
|
+
return "College"
|
|
1436
|
+
else:
|
|
1437
|
+
return "College Graduate"
|
|
1438
|
+
|
|
1439
|
+
|
|
1440
|
+
def compute_dale_chall(text: str, chunk_size: int = 1000) -> DaleChallResult:
|
|
1441
|
+
"""
|
|
1442
|
+
Compute Dale-Chall Readability Formula.
|
|
1443
|
+
|
|
1444
|
+
This function uses native chunked analysis to capture variance and patterns
|
|
1445
|
+
across the text, which is essential for stylometric fingerprinting.
|
|
1446
|
+
|
|
1447
|
+
Related GitHub Issues:
|
|
1448
|
+
#16 - Additional Readability Formulas
|
|
1449
|
+
#27 - Native chunked analysis with Distribution dataclass
|
|
1450
|
+
|
|
1451
|
+
Formula:
|
|
1452
|
+
Raw Score = 0.1579 * (difficult_words_pct) + 0.0496 * (avg_sentence_length)
|
|
1453
|
+
|
|
1454
|
+
If difficult_words_pct > 5%:
|
|
1455
|
+
Adjusted Score = Raw Score + 3.6365
|
|
1456
|
+
|
|
1457
|
+
Args:
|
|
1458
|
+
text: Input text to analyze
|
|
1459
|
+
chunk_size: Number of words per chunk (default: 1000)
|
|
1460
|
+
|
|
1461
|
+
Returns:
|
|
1462
|
+
DaleChallResult with dale_chall_score, grade_level, distributions, and metadata
|
|
1463
|
+
|
|
1464
|
+
Example:
|
|
1465
|
+
>>> result = compute_dale_chall("Long text here...", chunk_size=1000)
|
|
1466
|
+
>>> result.dale_chall_score # Mean across chunks
|
|
1467
|
+
7.3
|
|
1468
|
+
>>> result.dale_chall_score_dist.std # Variance reveals fingerprint
|
|
1469
|
+
0.5
|
|
1470
|
+
"""
|
|
1471
|
+
chunks = chunk_text(text, chunk_size)
|
|
1472
|
+
score_values = []
|
|
1473
|
+
ratio_values = []
|
|
1474
|
+
sent_len_values = []
|
|
1475
|
+
total_difficult = 0
|
|
1476
|
+
total_words = 0
|
|
1477
|
+
total_sentences = 0
|
|
1478
|
+
|
|
1479
|
+
for chunk in chunks:
|
|
1480
|
+
sc, diff_cnt, diff_rat, sent_len, meta = _compute_dale_chall_single(chunk)
|
|
1481
|
+
if not math.isnan(sc):
|
|
1482
|
+
score_values.append(sc)
|
|
1483
|
+
ratio_values.append(diff_rat)
|
|
1484
|
+
sent_len_values.append(sent_len)
|
|
1485
|
+
total_difficult += diff_cnt
|
|
1486
|
+
total_words += meta.get("word_count", 0)
|
|
1487
|
+
total_sentences += meta.get("sentence_count", 0)
|
|
1488
|
+
|
|
1489
|
+
if not score_values:
|
|
1490
|
+
empty_dist = Distribution(
|
|
1491
|
+
values=[], mean=float("nan"), median=float("nan"), std=0.0, range=0.0, iqr=0.0
|
|
1492
|
+
)
|
|
1493
|
+
return DaleChallResult(
|
|
1494
|
+
dale_chall_score=float("nan"),
|
|
1495
|
+
grade_level="Unknown",
|
|
1496
|
+
difficult_word_count=0,
|
|
1497
|
+
difficult_word_ratio=float("nan"),
|
|
1498
|
+
avg_sentence_length=float("nan"),
|
|
1499
|
+
total_words=0,
|
|
1500
|
+
dale_chall_score_dist=empty_dist,
|
|
1501
|
+
difficult_word_ratio_dist=empty_dist,
|
|
1502
|
+
avg_sentence_length_dist=empty_dist,
|
|
1503
|
+
chunk_size=chunk_size,
|
|
1504
|
+
chunk_count=len(chunks),
|
|
1505
|
+
metadata={
|
|
1506
|
+
"sentence_count": 0,
|
|
1507
|
+
"raw_score": float("nan"),
|
|
1508
|
+
"adjusted": False,
|
|
1509
|
+
"difficult_word_pct": float("nan"),
|
|
1510
|
+
"reliable": False,
|
|
1511
|
+
},
|
|
1512
|
+
)
|
|
1513
|
+
|
|
1514
|
+
score_dist = make_distribution(score_values)
|
|
1515
|
+
ratio_dist = make_distribution(ratio_values)
|
|
1516
|
+
sent_len_dist = make_distribution(sent_len_values)
|
|
1517
|
+
|
|
1518
|
+
# Calculate overall raw score and adjusted status for metadata
|
|
1519
|
+
overall_difficult_pct = (total_difficult / total_words * 100) if total_words > 0 else 0.0
|
|
1520
|
+
overall_raw_score = 0.1579 * overall_difficult_pct + 0.0496 * sent_len_dist.mean
|
|
1521
|
+
overall_adjusted = overall_difficult_pct > 5.0
|
|
1522
|
+
|
|
1523
|
+
return DaleChallResult(
|
|
1524
|
+
dale_chall_score=score_dist.mean,
|
|
1525
|
+
grade_level=_get_dale_chall_grade_level(score_dist.mean),
|
|
1526
|
+
difficult_word_count=total_difficult,
|
|
1527
|
+
difficult_word_ratio=ratio_dist.mean,
|
|
1528
|
+
avg_sentence_length=sent_len_dist.mean,
|
|
1529
|
+
total_words=total_words,
|
|
1530
|
+
dale_chall_score_dist=score_dist,
|
|
1531
|
+
difficult_word_ratio_dist=ratio_dist,
|
|
1532
|
+
avg_sentence_length_dist=sent_len_dist,
|
|
1533
|
+
chunk_size=chunk_size,
|
|
1534
|
+
chunk_count=len(chunks),
|
|
1535
|
+
metadata={
|
|
1536
|
+
"sentence_count": total_sentences,
|
|
1537
|
+
"raw_score": overall_raw_score,
|
|
1538
|
+
"adjusted": overall_adjusted,
|
|
1539
|
+
"difficult_word_pct": overall_difficult_pct,
|
|
1540
|
+
"total_sentence_count": total_sentences,
|
|
1541
|
+
"total_word_count": total_words,
|
|
1542
|
+
"total_difficult_word_count": total_difficult,
|
|
1543
|
+
"reliable": total_words >= 100,
|
|
1544
|
+
},
|
|
1545
|
+
)
|
|
1546
|
+
|
|
1547
|
+
|
|
1548
|
+
def _compute_linsear_single(text: str) -> tuple[float, float, int, int, float, dict]:
|
|
1549
|
+
"""Compute Linsear Write for a single chunk."""
|
|
1550
|
+
sentences = split_sentences(text)
|
|
1551
|
+
tokens = tokenize(text)
|
|
1552
|
+
word_tokens = normalize_for_readability(tokens)
|
|
1553
|
+
|
|
1554
|
+
if len(sentences) == 0 or len(word_tokens) == 0:
|
|
1555
|
+
return (
|
|
1556
|
+
float("nan"),
|
|
1557
|
+
float("nan"),
|
|
1558
|
+
0,
|
|
1559
|
+
0,
|
|
1560
|
+
float("nan"),
|
|
1561
|
+
{"sentence_count": 0, "word_count": 0},
|
|
1562
|
+
)
|
|
1563
|
+
|
|
1564
|
+
easy_word_count = sum(1 for w in word_tokens if count_syllables(w) <= 2)
|
|
1565
|
+
hard_word_count = len(word_tokens) - easy_word_count
|
|
1566
|
+
weighted_sum = easy_word_count + hard_word_count * 3
|
|
1567
|
+
raw_score = weighted_sum / len(sentences)
|
|
1568
|
+
grade_level_raw = round(raw_score / 2) if raw_score > 20 else round((raw_score - 2) / 2)
|
|
1569
|
+
grade_level = max(0.0, float(grade_level_raw))
|
|
1570
|
+
avg_sentence_length = len(word_tokens) / len(sentences)
|
|
1571
|
+
|
|
1572
|
+
return (
|
|
1573
|
+
raw_score,
|
|
1574
|
+
grade_level,
|
|
1575
|
+
easy_word_count,
|
|
1576
|
+
hard_word_count,
|
|
1577
|
+
avg_sentence_length,
|
|
1578
|
+
{"sentence_count": len(sentences), "word_count": len(word_tokens)},
|
|
1579
|
+
)
|
|
1580
|
+
|
|
1581
|
+
|
|
1582
|
+
def compute_linsear_write(text: str, chunk_size: int = 1000) -> LinsearWriteResult:
|
|
1583
|
+
"""
|
|
1584
|
+
Compute Linsear Write Readability Formula.
|
|
1585
|
+
|
|
1586
|
+
This function uses native chunked analysis to capture variance and patterns
|
|
1587
|
+
across the text, which is essential for stylometric fingerprinting.
|
|
1588
|
+
|
|
1589
|
+
Related GitHub Issues:
|
|
1590
|
+
#16 - Additional Readability Formulas
|
|
1591
|
+
#27 - Native chunked analysis with Distribution dataclass
|
|
1592
|
+
|
|
1593
|
+
Args:
|
|
1594
|
+
text: Input text to analyze
|
|
1595
|
+
chunk_size: Number of words per chunk (default: 1000)
|
|
1596
|
+
|
|
1597
|
+
Returns:
|
|
1598
|
+
LinsearWriteResult with score, grade_level, distributions, and metadata
|
|
1599
|
+
|
|
1600
|
+
Example:
|
|
1601
|
+
>>> result = compute_linsear_write("Long text here...", chunk_size=1000)
|
|
1602
|
+
>>> result.linsear_score # Mean across chunks
|
|
1603
|
+
11.3
|
|
1604
|
+
"""
|
|
1605
|
+
chunks = chunk_text(text, chunk_size)
|
|
1606
|
+
score_values = []
|
|
1607
|
+
grade_values = []
|
|
1608
|
+
sent_len_values = []
|
|
1609
|
+
total_easy = 0
|
|
1610
|
+
total_hard = 0
|
|
1611
|
+
total_words = 0
|
|
1612
|
+
|
|
1613
|
+
for chunk in chunks:
|
|
1614
|
+
sc, gr, easy, hard, sent_len, meta = _compute_linsear_single(chunk)
|
|
1615
|
+
if not math.isnan(sc):
|
|
1616
|
+
score_values.append(sc)
|
|
1617
|
+
grade_values.append(gr)
|
|
1618
|
+
sent_len_values.append(sent_len)
|
|
1619
|
+
total_easy += easy
|
|
1620
|
+
total_hard += hard
|
|
1621
|
+
total_words += meta.get("word_count", 0)
|
|
1622
|
+
|
|
1623
|
+
if not score_values:
|
|
1624
|
+
empty_dist = Distribution(
|
|
1625
|
+
values=[], mean=float("nan"), median=float("nan"), std=0.0, range=0.0, iqr=0.0
|
|
1626
|
+
)
|
|
1627
|
+
return LinsearWriteResult(
|
|
1628
|
+
linsear_score=float("nan"),
|
|
1629
|
+
grade_level=float("nan"),
|
|
1630
|
+
easy_word_count=0,
|
|
1631
|
+
hard_word_count=0,
|
|
1632
|
+
avg_sentence_length=float("nan"),
|
|
1633
|
+
linsear_score_dist=empty_dist,
|
|
1634
|
+
grade_level_dist=empty_dist,
|
|
1635
|
+
avg_sentence_length_dist=empty_dist,
|
|
1636
|
+
chunk_size=chunk_size,
|
|
1637
|
+
chunk_count=len(chunks),
|
|
1638
|
+
metadata={"total_words": 0, "reliable": False},
|
|
1639
|
+
)
|
|
1640
|
+
|
|
1641
|
+
score_dist = make_distribution(score_values)
|
|
1642
|
+
grade_dist = make_distribution(grade_values)
|
|
1643
|
+
sent_len_dist = make_distribution(sent_len_values)
|
|
1644
|
+
|
|
1645
|
+
return LinsearWriteResult(
|
|
1646
|
+
linsear_score=score_dist.mean,
|
|
1647
|
+
grade_level=grade_dist.mean,
|
|
1648
|
+
easy_word_count=total_easy,
|
|
1649
|
+
hard_word_count=total_hard,
|
|
1650
|
+
avg_sentence_length=sent_len_dist.mean,
|
|
1651
|
+
linsear_score_dist=score_dist,
|
|
1652
|
+
grade_level_dist=grade_dist,
|
|
1653
|
+
avg_sentence_length_dist=sent_len_dist,
|
|
1654
|
+
chunk_size=chunk_size,
|
|
1655
|
+
chunk_count=len(chunks),
|
|
1656
|
+
metadata={"total_words": total_words, "reliable": total_words >= 100},
|
|
1657
|
+
)
|
|
1658
|
+
|
|
1659
|
+
|
|
1660
|
+
def _get_fry_grade_level(avg_sent_len: float, avg_syl_100: float) -> tuple[str, str]:
|
|
1661
|
+
"""Get Fry grade level and zone from coordinates."""
|
|
1662
|
+
if math.isnan(avg_sent_len) or math.isnan(avg_syl_100):
|
|
1663
|
+
return ("Unknown", "invalid")
|
|
1664
|
+
|
|
1665
|
+
if avg_syl_100 < 125:
|
|
1666
|
+
if avg_sent_len < 7:
|
|
1667
|
+
grade, zone = "1", "valid"
|
|
1668
|
+
elif avg_sent_len < 11:
|
|
1669
|
+
grade, zone = "2", "valid"
|
|
1670
|
+
else:
|
|
1671
|
+
grade, zone = "3", "valid"
|
|
1672
|
+
elif avg_syl_100 < 135:
|
|
1673
|
+
if avg_sent_len < 8:
|
|
1674
|
+
grade, zone = "2", "valid"
|
|
1675
|
+
elif avg_sent_len < 12:
|
|
1676
|
+
grade, zone = "3", "valid"
|
|
1677
|
+
else:
|
|
1678
|
+
grade, zone = "4", "valid"
|
|
1679
|
+
elif avg_syl_100 < 145:
|
|
1680
|
+
if avg_sent_len < 9:
|
|
1681
|
+
grade, zone = "3", "valid"
|
|
1682
|
+
elif avg_sent_len < 13:
|
|
1683
|
+
grade, zone = "5", "valid"
|
|
1684
|
+
else:
|
|
1685
|
+
grade, zone = "6", "valid"
|
|
1686
|
+
elif avg_syl_100 < 155:
|
|
1687
|
+
if avg_sent_len < 10:
|
|
1688
|
+
grade, zone = "4", "valid"
|
|
1689
|
+
elif avg_sent_len < 14:
|
|
1690
|
+
grade, zone = "7", "valid"
|
|
1691
|
+
else:
|
|
1692
|
+
grade, zone = "8", "valid"
|
|
1693
|
+
elif avg_syl_100 < 165:
|
|
1694
|
+
if avg_sent_len < 12:
|
|
1695
|
+
grade, zone = "6", "valid"
|
|
1696
|
+
elif avg_sent_len < 16:
|
|
1697
|
+
grade, zone = "9", "valid"
|
|
1698
|
+
else:
|
|
1699
|
+
grade, zone = "10", "valid"
|
|
1700
|
+
elif avg_syl_100 < 175:
|
|
1701
|
+
if avg_sent_len < 14:
|
|
1702
|
+
grade, zone = "8", "valid"
|
|
1703
|
+
elif avg_sent_len < 18:
|
|
1704
|
+
grade, zone = "11", "valid"
|
|
1705
|
+
else:
|
|
1706
|
+
grade, zone = "12", "valid"
|
|
1707
|
+
else:
|
|
1708
|
+
if avg_sent_len < 16:
|
|
1709
|
+
grade, zone = "10", "valid"
|
|
1710
|
+
elif avg_sent_len < 20:
|
|
1711
|
+
grade, zone = "College", "valid"
|
|
1712
|
+
else:
|
|
1713
|
+
grade, zone = "College+", "valid"
|
|
1714
|
+
|
|
1715
|
+
if avg_syl_100 > 185 or avg_sent_len > 25:
|
|
1716
|
+
zone = "above_graph"
|
|
1717
|
+
elif avg_syl_100 < 110:
|
|
1718
|
+
zone = "below_graph"
|
|
1719
|
+
|
|
1720
|
+
return (grade, zone)
|
|
1721
|
+
|
|
1722
|
+
|
|
1723
|
+
def _compute_fry_single(text: str) -> tuple[float, float, dict]:
|
|
1724
|
+
"""Compute Fry for a single chunk. Returns (avg_sent_len, avg_syl_100, meta)."""
|
|
1725
|
+
sentences = split_sentences(text)
|
|
1726
|
+
tokens = tokenize(text)
|
|
1727
|
+
word_tokens = normalize_for_readability(tokens)
|
|
1728
|
+
|
|
1729
|
+
if len(sentences) == 0 or len(word_tokens) == 0:
|
|
1730
|
+
return (
|
|
1731
|
+
float("nan"),
|
|
1732
|
+
float("nan"),
|
|
1733
|
+
{"sentence_count": 0, "word_count": 0, "syllable_count": 0, "sample_size": 0},
|
|
1734
|
+
)
|
|
1735
|
+
|
|
1736
|
+
sample_size = min(100, len(word_tokens))
|
|
1737
|
+
sample_tokens = word_tokens[:sample_size]
|
|
1738
|
+
total_syllables = sum(count_syllables(w) for w in sample_tokens)
|
|
1739
|
+
|
|
1740
|
+
word_count_so_far = 0
|
|
1741
|
+
sentences_in_sample = 0
|
|
1742
|
+
for sent in sentences:
|
|
1743
|
+
sent_tokens = normalize_for_readability(tokenize(sent))
|
|
1744
|
+
if word_count_so_far + len(sent_tokens) <= sample_size:
|
|
1745
|
+
sentences_in_sample += 1
|
|
1746
|
+
word_count_so_far += len(sent_tokens)
|
|
1747
|
+
else:
|
|
1748
|
+
if word_count_so_far < sample_size:
|
|
1749
|
+
sentences_in_sample += 1
|
|
1750
|
+
break
|
|
1751
|
+
|
|
1752
|
+
sentences_in_sample = max(1, sentences_in_sample)
|
|
1753
|
+
avg_sentence_length = sample_size / sentences_in_sample
|
|
1754
|
+
avg_syllables_per_100 = (total_syllables / sample_size) * 100
|
|
1755
|
+
|
|
1756
|
+
return (
|
|
1757
|
+
avg_sentence_length,
|
|
1758
|
+
avg_syllables_per_100,
|
|
1759
|
+
{
|
|
1760
|
+
"sentence_count": len(sentences),
|
|
1761
|
+
"word_count": len(word_tokens),
|
|
1762
|
+
"syllable_count": total_syllables,
|
|
1763
|
+
"sample_size": sample_size,
|
|
1764
|
+
},
|
|
1765
|
+
)
|
|
1766
|
+
|
|
1767
|
+
|
|
1768
|
+
def compute_fry(text: str, chunk_size: int = 1000) -> FryResult:
|
|
1769
|
+
"""
|
|
1770
|
+
Compute Fry Readability Graph metrics.
|
|
1771
|
+
|
|
1772
|
+
This function uses native chunked analysis to capture variance and patterns
|
|
1773
|
+
across the text, which is essential for stylometric fingerprinting.
|
|
1774
|
+
|
|
1775
|
+
Related GitHub Issues:
|
|
1776
|
+
#16 - Additional Readability Formulas
|
|
1777
|
+
#27 - Native chunked analysis with Distribution dataclass
|
|
1778
|
+
|
|
1779
|
+
Args:
|
|
1780
|
+
text: Input text to analyze
|
|
1781
|
+
chunk_size: Number of words per chunk (default: 1000)
|
|
1782
|
+
|
|
1783
|
+
Returns:
|
|
1784
|
+
FryResult with avg_sentence_length, avg_syllables_per_100, distributions, and metadata
|
|
1785
|
+
|
|
1786
|
+
Example:
|
|
1787
|
+
>>> result = compute_fry("Long text here...", chunk_size=1000)
|
|
1788
|
+
>>> result.avg_sentence_length # Mean across chunks
|
|
1789
|
+
14.3
|
|
1790
|
+
"""
|
|
1791
|
+
chunks = chunk_text(text, chunk_size)
|
|
1792
|
+
sent_len_values = []
|
|
1793
|
+
syl_100_values = []
|
|
1794
|
+
total_words = 0
|
|
1795
|
+
total_sentences = 0
|
|
1796
|
+
total_syllables = 0
|
|
1797
|
+
|
|
1798
|
+
for chunk in chunks:
|
|
1799
|
+
sent_len, syl_100, meta = _compute_fry_single(chunk)
|
|
1800
|
+
if not math.isnan(sent_len):
|
|
1801
|
+
sent_len_values.append(sent_len)
|
|
1802
|
+
syl_100_values.append(syl_100)
|
|
1803
|
+
total_words += meta.get("word_count", 0)
|
|
1804
|
+
total_sentences += meta.get("sentence_count", 0)
|
|
1805
|
+
total_syllables += meta.get("syllable_count", 0)
|
|
1806
|
+
|
|
1807
|
+
if not sent_len_values:
|
|
1808
|
+
empty_dist = Distribution(
|
|
1809
|
+
values=[], mean=float("nan"), median=float("nan"), std=0.0, range=0.0, iqr=0.0
|
|
1810
|
+
)
|
|
1811
|
+
return FryResult(
|
|
1812
|
+
avg_sentence_length=float("nan"),
|
|
1813
|
+
avg_syllables_per_100=float("nan"),
|
|
1814
|
+
grade_level="Unknown",
|
|
1815
|
+
graph_zone="invalid",
|
|
1816
|
+
avg_sentence_length_dist=empty_dist,
|
|
1817
|
+
avg_syllables_per_100_dist=empty_dist,
|
|
1818
|
+
chunk_size=chunk_size,
|
|
1819
|
+
chunk_count=len(chunks),
|
|
1820
|
+
metadata={"total_sentences": 0, "total_words": 0, "sample_size": 0, "reliable": False},
|
|
1821
|
+
)
|
|
1822
|
+
|
|
1823
|
+
sent_len_dist = make_distribution(sent_len_values)
|
|
1824
|
+
syl_100_dist = make_distribution(syl_100_values)
|
|
1825
|
+
grade_level, graph_zone = _get_fry_grade_level(sent_len_dist.mean, syl_100_dist.mean)
|
|
1826
|
+
|
|
1827
|
+
# Calculate sample size (min of 100 or total_words for overall)
|
|
1828
|
+
sample_size = min(100, total_words)
|
|
1829
|
+
|
|
1830
|
+
return FryResult(
|
|
1831
|
+
avg_sentence_length=sent_len_dist.mean,
|
|
1832
|
+
avg_syllables_per_100=syl_100_dist.mean,
|
|
1833
|
+
grade_level=grade_level,
|
|
1834
|
+
graph_zone=graph_zone,
|
|
1835
|
+
avg_sentence_length_dist=sent_len_dist,
|
|
1836
|
+
avg_syllables_per_100_dist=syl_100_dist,
|
|
1837
|
+
chunk_size=chunk_size,
|
|
1838
|
+
chunk_count=len(chunks),
|
|
1839
|
+
metadata={
|
|
1840
|
+
"total_sentences": total_sentences,
|
|
1841
|
+
"total_words": total_words,
|
|
1842
|
+
"total_syllables": total_syllables,
|
|
1843
|
+
"sample_size": sample_size,
|
|
1844
|
+
"reliable": total_words >= 100,
|
|
1845
|
+
},
|
|
1846
|
+
)
|
|
1847
|
+
|
|
1848
|
+
|
|
1849
|
+
def _compute_forcast_single(text: str) -> tuple[float, float, int, float, dict]:
|
|
1850
|
+
"""Compute FORCAST for a single chunk."""
|
|
1851
|
+
tokens = tokenize(text)
|
|
1852
|
+
word_tokens = normalize_for_readability(tokens)
|
|
1853
|
+
|
|
1854
|
+
if len(word_tokens) == 0:
|
|
1855
|
+
return (
|
|
1856
|
+
float("nan"),
|
|
1857
|
+
float("nan"),
|
|
1858
|
+
0,
|
|
1859
|
+
float("nan"),
|
|
1860
|
+
{"word_count": 0, "sample_size": 0, "scaled_n": 0.0},
|
|
1861
|
+
)
|
|
1862
|
+
|
|
1863
|
+
sample_size = min(150, len(word_tokens))
|
|
1864
|
+
sample_tokens = word_tokens[:sample_size]
|
|
1865
|
+
single_syllable_count = sum(1 for w in sample_tokens if count_syllables(w) == 1)
|
|
1866
|
+
scaled_n = (
|
|
1867
|
+
single_syllable_count * (150 / sample_size) if sample_size < 150 else single_syllable_count
|
|
1868
|
+
)
|
|
1869
|
+
forcast_score = 20 - (scaled_n / 10)
|
|
1870
|
+
grade_level = float(max(0, min(20, round(forcast_score))))
|
|
1871
|
+
single_syllable_ratio = single_syllable_count / sample_size
|
|
1872
|
+
|
|
1873
|
+
return (
|
|
1874
|
+
forcast_score,
|
|
1875
|
+
grade_level,
|
|
1876
|
+
single_syllable_count,
|
|
1877
|
+
single_syllable_ratio,
|
|
1878
|
+
{"word_count": len(word_tokens), "sample_size": sample_size, "scaled_n": scaled_n},
|
|
1879
|
+
)
|
|
1880
|
+
|
|
1881
|
+
|
|
1882
|
+
def compute_forcast(text: str, chunk_size: int = 1000) -> FORCASTResult:
|
|
1883
|
+
"""
|
|
1884
|
+
Compute FORCAST Readability Formula.
|
|
1885
|
+
|
|
1886
|
+
This function uses native chunked analysis to capture variance and patterns
|
|
1887
|
+
across the text, which is essential for stylometric fingerprinting.
|
|
1888
|
+
|
|
1889
|
+
Related GitHub Issues:
|
|
1890
|
+
#16 - Additional Readability Formulas
|
|
1891
|
+
#27 - Native chunked analysis with Distribution dataclass
|
|
1892
|
+
|
|
1893
|
+
Formula:
|
|
1894
|
+
Grade Level = 20 - (N / 10)
|
|
1895
|
+
Where N is the number of single-syllable words in a 150-word sample.
|
|
1896
|
+
|
|
1897
|
+
Args:
|
|
1898
|
+
text: Input text to analyze
|
|
1899
|
+
chunk_size: Number of words per chunk (default: 1000)
|
|
1900
|
+
|
|
1901
|
+
Returns:
|
|
1902
|
+
FORCASTResult with score, grade_level, distributions, and metadata
|
|
1903
|
+
|
|
1904
|
+
Example:
|
|
1905
|
+
>>> result = compute_forcast("Long text here...", chunk_size=1000)
|
|
1906
|
+
>>> result.forcast_score # Mean across chunks
|
|
1907
|
+
9.7
|
|
1908
|
+
"""
|
|
1909
|
+
chunks = chunk_text(text, chunk_size)
|
|
1910
|
+
score_values = []
|
|
1911
|
+
grade_values = []
|
|
1912
|
+
ratio_values = []
|
|
1913
|
+
total_single = 0
|
|
1914
|
+
total_words = 0
|
|
1915
|
+
|
|
1916
|
+
for chunk in chunks:
|
|
1917
|
+
sc, gr, single_cnt, single_rat, meta = _compute_forcast_single(chunk)
|
|
1918
|
+
if not math.isnan(sc):
|
|
1919
|
+
score_values.append(sc)
|
|
1920
|
+
grade_values.append(gr)
|
|
1921
|
+
ratio_values.append(single_rat)
|
|
1922
|
+
total_single += single_cnt
|
|
1923
|
+
total_words += meta.get("word_count", 0)
|
|
1924
|
+
|
|
1925
|
+
if not score_values:
|
|
1926
|
+
empty_dist = Distribution(
|
|
1927
|
+
values=[], mean=float("nan"), median=float("nan"), std=0.0, range=0.0, iqr=0.0
|
|
1928
|
+
)
|
|
1929
|
+
return FORCASTResult(
|
|
1930
|
+
forcast_score=float("nan"),
|
|
1931
|
+
grade_level=float("nan"),
|
|
1932
|
+
single_syllable_ratio=float("nan"),
|
|
1933
|
+
single_syllable_count=0,
|
|
1934
|
+
total_words=0,
|
|
1935
|
+
forcast_score_dist=empty_dist,
|
|
1936
|
+
grade_level_dist=empty_dist,
|
|
1937
|
+
single_syllable_ratio_dist=empty_dist,
|
|
1938
|
+
chunk_size=chunk_size,
|
|
1939
|
+
chunk_count=len(chunks),
|
|
1940
|
+
metadata={"sample_size": 0, "scaled_n": 0.0, "reliable": False},
|
|
1941
|
+
)
|
|
1942
|
+
|
|
1943
|
+
score_dist = make_distribution(score_values)
|
|
1944
|
+
grade_dist = make_distribution(grade_values)
|
|
1945
|
+
ratio_dist = make_distribution(ratio_values)
|
|
1946
|
+
|
|
1947
|
+
# Calculate overall sample_size and scaled_n for metadata
|
|
1948
|
+
overall_sample_size = min(150, total_words)
|
|
1949
|
+
overall_scaled_n = (
|
|
1950
|
+
total_single * (150 / overall_sample_size)
|
|
1951
|
+
if overall_sample_size < 150
|
|
1952
|
+
else float(total_single)
|
|
1953
|
+
)
|
|
1954
|
+
|
|
1955
|
+
return FORCASTResult(
|
|
1956
|
+
forcast_score=score_dist.mean,
|
|
1957
|
+
grade_level=grade_dist.mean,
|
|
1958
|
+
single_syllable_ratio=ratio_dist.mean,
|
|
1959
|
+
single_syllable_count=total_single,
|
|
1960
|
+
total_words=total_words,
|
|
1961
|
+
forcast_score_dist=score_dist,
|
|
1962
|
+
grade_level_dist=grade_dist,
|
|
1963
|
+
single_syllable_ratio_dist=ratio_dist,
|
|
1964
|
+
chunk_size=chunk_size,
|
|
1965
|
+
chunk_count=len(chunks),
|
|
1966
|
+
metadata={
|
|
1967
|
+
"sample_size": overall_sample_size,
|
|
1968
|
+
"scaled_n": overall_scaled_n,
|
|
1969
|
+
"reliable": total_words >= 100,
|
|
1970
|
+
},
|
|
1971
|
+
)
|
|
1972
|
+
|
|
1973
|
+
|
|
1974
|
+
def _compute_psk_single(text: str) -> tuple[float, float, float, float, int, dict]:
|
|
1975
|
+
"""Compute PSK for a single chunk."""
|
|
1976
|
+
sentences = split_sentences(text)
|
|
1977
|
+
tokens = tokenize(text)
|
|
1978
|
+
word_tokens = normalize_for_readability(tokens)
|
|
1979
|
+
|
|
1980
|
+
if len(sentences) == 0 or len(word_tokens) == 0:
|
|
1981
|
+
return (
|
|
1982
|
+
float("nan"),
|
|
1983
|
+
float("nan"),
|
|
1984
|
+
float("nan"),
|
|
1985
|
+
float("nan"),
|
|
1986
|
+
0,
|
|
1987
|
+
{"sentence_count": 0, "word_count": 0},
|
|
1988
|
+
)
|
|
1989
|
+
|
|
1990
|
+
total_syllables = sum(count_syllables(w) for w in word_tokens)
|
|
1991
|
+
avg_sentence_length = len(word_tokens) / len(sentences)
|
|
1992
|
+
avg_syllables_per_word = total_syllables / len(word_tokens)
|
|
1993
|
+
psk_score = 0.0778 * avg_sentence_length + 0.0455 * avg_syllables_per_word - 2.2029
|
|
1994
|
+
grade_level = round(psk_score, 1)
|
|
1995
|
+
|
|
1996
|
+
return (
|
|
1997
|
+
psk_score,
|
|
1998
|
+
grade_level,
|
|
1999
|
+
avg_sentence_length,
|
|
2000
|
+
avg_syllables_per_word,
|
|
2001
|
+
total_syllables,
|
|
2002
|
+
{"sentence_count": len(sentences), "word_count": len(word_tokens)},
|
|
2003
|
+
)
|
|
2004
|
+
|
|
2005
|
+
|
|
2006
|
+
def compute_powers_sumner_kearl(text: str, chunk_size: int = 1000) -> PowersSumnerKearlResult:
|
|
2007
|
+
"""
|
|
2008
|
+
Compute Powers-Sumner-Kearl Readability Formula.
|
|
2009
|
+
|
|
2010
|
+
This function uses native chunked analysis to capture variance and patterns
|
|
2011
|
+
across the text, which is essential for stylometric fingerprinting.
|
|
2012
|
+
|
|
2013
|
+
Related GitHub Issues:
|
|
2014
|
+
#16 - Additional Readability Formulas
|
|
2015
|
+
#27 - Native chunked analysis with Distribution dataclass
|
|
2016
|
+
|
|
2017
|
+
Formula:
|
|
2018
|
+
Grade Level = 0.0778 * avg_sentence_length + 0.0455 * avg_syllables_per_word - 2.2029
|
|
2019
|
+
|
|
2020
|
+
Args:
|
|
2021
|
+
text: Input text to analyze
|
|
2022
|
+
chunk_size: Number of words per chunk (default: 1000)
|
|
2023
|
+
|
|
2024
|
+
Returns:
|
|
2025
|
+
PowersSumnerKearlResult with score, grade_level, distributions, and metadata
|
|
2026
|
+
|
|
2027
|
+
Example:
|
|
2028
|
+
>>> result = compute_powers_sumner_kearl("Long text here...", chunk_size=1000)
|
|
2029
|
+
>>> result.psk_score # Mean across chunks
|
|
2030
|
+
2.3
|
|
2031
|
+
"""
|
|
2032
|
+
chunks = chunk_text(text, chunk_size)
|
|
2033
|
+
score_values = []
|
|
2034
|
+
grade_values = []
|
|
2035
|
+
sent_len_values = []
|
|
2036
|
+
syl_per_word_values = []
|
|
2037
|
+
total_sentences = 0
|
|
2038
|
+
total_words = 0
|
|
2039
|
+
total_syllables = 0
|
|
2040
|
+
|
|
2041
|
+
for chunk in chunks:
|
|
2042
|
+
sc, gr, sent_len, syl_word, syls, meta = _compute_psk_single(chunk)
|
|
2043
|
+
if not math.isnan(sc):
|
|
2044
|
+
score_values.append(sc)
|
|
2045
|
+
grade_values.append(gr)
|
|
2046
|
+
sent_len_values.append(sent_len)
|
|
2047
|
+
syl_per_word_values.append(syl_word)
|
|
2048
|
+
total_sentences += meta.get("sentence_count", 0)
|
|
2049
|
+
total_words += meta.get("word_count", 0)
|
|
2050
|
+
total_syllables += syls
|
|
2051
|
+
|
|
2052
|
+
if not score_values:
|
|
2053
|
+
empty_dist = Distribution(
|
|
2054
|
+
values=[], mean=float("nan"), median=float("nan"), std=0.0, range=0.0, iqr=0.0
|
|
2055
|
+
)
|
|
2056
|
+
return PowersSumnerKearlResult(
|
|
2057
|
+
psk_score=float("nan"),
|
|
2058
|
+
grade_level=float("nan"),
|
|
2059
|
+
avg_sentence_length=float("nan"),
|
|
2060
|
+
avg_syllables_per_word=float("nan"),
|
|
2061
|
+
total_sentences=0,
|
|
2062
|
+
total_words=0,
|
|
2063
|
+
total_syllables=0,
|
|
2064
|
+
psk_score_dist=empty_dist,
|
|
2065
|
+
grade_level_dist=empty_dist,
|
|
2066
|
+
avg_sentence_length_dist=empty_dist,
|
|
2067
|
+
avg_syllables_per_word_dist=empty_dist,
|
|
2068
|
+
chunk_size=chunk_size,
|
|
2069
|
+
chunk_count=len(chunks),
|
|
2070
|
+
metadata={
|
|
2071
|
+
"flesch_reading_ease": float("nan"),
|
|
2072
|
+
"flesch_kincaid_grade": float("nan"),
|
|
2073
|
+
"difference_from_flesch": float("nan"),
|
|
2074
|
+
"reliable": False,
|
|
2075
|
+
},
|
|
2076
|
+
)
|
|
2077
|
+
|
|
2078
|
+
score_dist = make_distribution(score_values)
|
|
2079
|
+
grade_dist = make_distribution(grade_values)
|
|
2080
|
+
sent_len_dist = make_distribution(sent_len_values)
|
|
2081
|
+
syl_word_dist = make_distribution(syl_per_word_values)
|
|
2082
|
+
|
|
2083
|
+
# Compute Flesch metrics for comparison (using the same avg values)
|
|
2084
|
+
# Flesch Reading Ease: 206.835 - 1.015 * ASL - 84.6 * ASW
|
|
2085
|
+
# Flesch-Kincaid Grade: 0.39 * ASL + 11.8 * ASW - 15.59
|
|
2086
|
+
flesch_reading_ease = 206.835 - 1.015 * sent_len_dist.mean - 84.6 * syl_word_dist.mean
|
|
2087
|
+
flesch_kincaid_grade = 0.39 * sent_len_dist.mean + 11.8 * syl_word_dist.mean - 15.59
|
|
2088
|
+
difference_from_flesch = grade_dist.mean - flesch_kincaid_grade
|
|
2089
|
+
|
|
2090
|
+
return PowersSumnerKearlResult(
|
|
2091
|
+
psk_score=score_dist.mean,
|
|
2092
|
+
grade_level=grade_dist.mean,
|
|
2093
|
+
avg_sentence_length=sent_len_dist.mean,
|
|
2094
|
+
avg_syllables_per_word=syl_word_dist.mean,
|
|
2095
|
+
total_sentences=total_sentences,
|
|
2096
|
+
total_words=total_words,
|
|
2097
|
+
total_syllables=total_syllables,
|
|
2098
|
+
psk_score_dist=score_dist,
|
|
2099
|
+
grade_level_dist=grade_dist,
|
|
2100
|
+
avg_sentence_length_dist=sent_len_dist,
|
|
2101
|
+
avg_syllables_per_word_dist=syl_word_dist,
|
|
2102
|
+
chunk_size=chunk_size,
|
|
2103
|
+
chunk_count=len(chunks),
|
|
2104
|
+
metadata={
|
|
2105
|
+
"flesch_reading_ease": flesch_reading_ease,
|
|
2106
|
+
"flesch_kincaid_grade": flesch_kincaid_grade,
|
|
2107
|
+
"difference_from_flesch": difference_from_flesch,
|
|
2108
|
+
"reliable": total_words >= 100,
|
|
2109
|
+
},
|
|
2110
|
+
)
|