pyscf 2.4.0__py3-none-macosx_11_0_arm64.whl → 2.6.0__py3-none-macosx_11_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyscf/__init__.py +1 -1
- pyscf/adc/__init__.py +9 -12
- pyscf/adc/radc.py +2 -2
- pyscf/adc/radc_ea.py +2 -2
- pyscf/adc/radc_ip.py +2 -2
- pyscf/adc/radc_ip_cvs.py +2 -2
- pyscf/adc/uadc.py +2 -2
- pyscf/adc/uadc_ea.py +2 -2
- pyscf/adc/uadc_ip.py +2 -2
- pyscf/adc/uadc_ip_cvs.py +2 -2
- pyscf/agf2/__init__.py +1 -1
- pyscf/agf2/chempot.py +2 -2
- pyscf/agf2/dfragf2.py +4 -4
- pyscf/agf2/dfuagf2.py +4 -4
- pyscf/agf2/ragf2.py +5 -5
- pyscf/agf2/ragf2_slow.py +2 -2
- pyscf/agf2/uagf2.py +3 -3
- pyscf/agf2/uagf2_slow.py +2 -2
- pyscf/ao2mo/outcore.py +6 -6
- pyscf/cc/__init__.py +28 -35
- pyscf/cc/addons.py +2 -4
- pyscf/cc/ccsd.py +13 -2
- pyscf/cc/ccsd_t.py +1 -1
- pyscf/cc/ccsd_t_slow.py +1 -1
- pyscf/cc/dfccsd.py +4 -1
- pyscf/cc/eom_rccsd.py +2 -2
- pyscf/cc/gccsd.py +5 -1
- pyscf/cc/gccsd_t.py +2 -2
- pyscf/cc/gccsd_t_rdm.py +1 -1
- pyscf/cc/momgfccsd.py +2 -2
- pyscf/cc/qcisd_t_slow.py +1 -1
- pyscf/cc/rccsd.py +2 -0
- pyscf/cc/rccsd_slow.py +1 -1
- pyscf/cc/uccsd.py +5 -1
- pyscf/cc/uccsd_slow.py +1 -1
- pyscf/ci/__init__.py +31 -25
- pyscf/ci/addons.py +1 -2
- pyscf/ci/cisd.py +4 -2
- pyscf/data/elements.py +2 -2
- pyscf/df/addons.py +9 -9
- pyscf/df/df.py +9 -2
- pyscf/df/df_jk.py +14 -10
- pyscf/df/grad/casdm2_util.py +1 -1
- pyscf/df/grad/casscf.py +2 -0
- pyscf/df/grad/rhf.py +12 -8
- pyscf/df/grad/rks.py +6 -5
- pyscf/df/grad/sacasscf.py +2 -0
- pyscf/df/grad/uhf.py +4 -3
- pyscf/df/grad/uks.py +5 -5
- pyscf/df/hessian/rhf.py +9 -2
- pyscf/df/hessian/rks.py +2 -2
- pyscf/df/hessian/uhf.py +3 -3
- pyscf/df/hessian/uks.py +2 -2
- pyscf/df/incore.py +6 -5
- pyscf/df/outcore.py +16 -2
- pyscf/dft/LebedevGrid.py +5047 -0
- pyscf/dft/__init__.py +1 -0
- pyscf/dft/dft_parser.py +24 -0
- pyscf/dft/dks.py +10 -1
- pyscf/dft/gen_grid.py +9 -46
- pyscf/dft/gks.py +3 -1
- pyscf/dft/gks_symm.py +3 -0
- pyscf/dft/libxc.py +265 -147
- pyscf/dft/numint.py +24 -34
- pyscf/dft/numint2c.py +17 -30
- pyscf/dft/rks.py +47 -13
- pyscf/dft/rks_symm.py +6 -1
- pyscf/dft/roks.py +2 -0
- pyscf/dft/uks.py +4 -2
- pyscf/dft/uks_symm.py +3 -0
- pyscf/dft/xc_deriv.py +187 -82
- pyscf/dft/xcfun.py +117 -86
- pyscf/eph/rhf.py +1 -1
- pyscf/eph/rks.py +1 -1
- pyscf/eph/uhf.py +2 -2
- pyscf/eph/uks.py +2 -2
- pyscf/fci/addons.py +18 -15
- pyscf/fci/cistring.py +43 -10
- pyscf/fci/direct_nosym.py +45 -56
- pyscf/fci/direct_spin0.py +4 -2
- pyscf/fci/direct_spin1.py +11 -7
- pyscf/fci/direct_spin1_cyl_sym.py +7 -3
- pyscf/fci/direct_spin1_symm.py +12 -0
- pyscf/fci/selected_ci.py +2 -2
- pyscf/geomopt/geometric_solver.py +1 -1
- pyscf/grad/__init__.py +1 -0
- pyscf/grad/casci.py +5 -3
- pyscf/grad/casscf.py +2 -0
- pyscf/grad/ccsd.py +2 -0
- pyscf/grad/cisd.py +2 -0
- pyscf/grad/dhf.py +3 -1
- pyscf/grad/dispersion.py +66 -0
- pyscf/grad/mp2.py +9 -3
- pyscf/grad/rhf.py +11 -0
- pyscf/grad/rks.py +4 -8
- pyscf/grad/tdrhf.py +3 -1
- pyscf/grad/uks.py +3 -4
- pyscf/gto/basis/__init__.py +8 -2
- pyscf/gto/basis/parse_cp2k.py +13 -8
- pyscf/gto/basis/parse_cp2k_pp.py +18 -5
- pyscf/gto/ecp.py +5 -5
- pyscf/gto/mole.py +83 -79
- pyscf/gto/moleintor.py +1 -0
- pyscf/gw/gw_ac.py +2 -2
- pyscf/gw/gw_cd.py +2 -2
- pyscf/gw/gw_exact.py +2 -2
- pyscf/gw/gw_slow.py +1 -1
- pyscf/gw/rpa.py +237 -96
- pyscf/gw/ugw_ac.py +2 -2
- pyscf/gw/urpa.py +135 -127
- pyscf/hessian/__init__.py +1 -0
- pyscf/hessian/dispersion.py +104 -0
- pyscf/hessian/rhf.py +44 -15
- pyscf/hessian/rks.py +37 -7
- pyscf/hessian/uhf.py +13 -8
- pyscf/hessian/uks.py +7 -5
- pyscf/lib/CMakeLists.txt +59 -10
- pyscf/lib/ao2mo/nr_ao2mo.c +6 -1
- pyscf/lib/ao2mo/nrr_ao2mo.c +6 -1
- pyscf/lib/ao2mo/r_ao2mo.c +6 -1
- pyscf/lib/cc/ccsd_t.c +37 -6
- pyscf/lib/cc/uccsd_t.c +25 -4
- pyscf/lib/chkfile.py +1 -2
- pyscf/lib/config.h +1 -1
- pyscf/lib/config.h.in +1 -1
- pyscf/lib/deps/include/cint.h +1 -1
- pyscf/lib/deps/include/cint_funcs.h +47 -16
- pyscf/lib/deps/lib/libcint.6.dylib +0 -0
- pyscf/lib/deps/lib/libxcfun.2.dylib +0 -0
- pyscf/lib/dft/CMakeLists.txt +10 -6
- pyscf/lib/dft/grid_collocate.c +655 -0
- pyscf/lib/dft/grid_common.c +660 -0
- pyscf/lib/dft/grid_common.h +109 -0
- pyscf/lib/dft/grid_integrate.c +1358 -0
- pyscf/lib/dft/libxc_itrf.c +587 -357
- pyscf/lib/dft/multigrid.c +744 -0
- pyscf/lib/dft/multigrid.h +72 -0
- pyscf/lib/dft/utils.c +71 -0
- pyscf/lib/dft/utils.h +27 -0
- pyscf/lib/dft/xc_deriv.c +85 -89
- pyscf/lib/dft/xcfun_itrf.c +24 -17
- pyscf/lib/diis.py +2 -0
- pyscf/lib/gto/fill_r_4c.c +5 -0
- pyscf/lib/libagf2.dylib +0 -0
- pyscf/lib/libao2mo.dylib +0 -0
- pyscf/lib/libcc.dylib +0 -0
- pyscf/lib/libcgto.dylib +0 -0
- pyscf/lib/libcvhf.dylib +0 -0
- pyscf/lib/libdft.dylib +0 -0
- pyscf/lib/libfci.dylib +0 -0
- pyscf/lib/libmcscf.dylib +0 -0
- pyscf/lib/libnp_helper.dylib +0 -0
- pyscf/lib/libpbc.dylib +0 -0
- pyscf/lib/libri.dylib +0 -0
- pyscf/lib/libxc_itrf.dylib +0 -0
- pyscf/lib/libxcfun_itrf.dylib +0 -0
- pyscf/lib/linalg_helper.py +2 -2
- pyscf/lib/mcscf/fci_contract.c +25 -19
- pyscf/lib/mcscf/fci_contract_nosym.c +11 -5
- pyscf/lib/mcscf/fci_string.c +29 -29
- pyscf/lib/misc.py +121 -19
- pyscf/lib/np_helper/np_helper.h +7 -0
- pyscf/lib/numpy_helper.py +11 -4
- pyscf/lib/pbc/CMakeLists.txt +11 -1
- pyscf/lib/pbc/cell.c +280 -0
- pyscf/lib/pbc/cell.h +29 -0
- pyscf/lib/pbc/fft.c +147 -0
- pyscf/lib/pbc/fft.h +26 -0
- pyscf/lib/pbc/fill_ints.c +3 -3
- pyscf/lib/pbc/fill_ints.h +29 -0
- pyscf/lib/pbc/fill_ints_screened.c +1012 -0
- pyscf/lib/pbc/hf_grad.c +95 -0
- pyscf/lib/pbc/neighbor_list.c +206 -0
- pyscf/lib/pbc/neighbor_list.h +41 -0
- pyscf/lib/pbc/optimizer.c +37 -1
- pyscf/lib/pbc/optimizer.h +3 -3
- pyscf/lib/pbc/pp.c +448 -0
- pyscf/lib/solvent/CMakeLists.txt +38 -0
- pyscf/lib/vhf/nr_sgx_direct.c +5 -0
- pyscf/lib/vhf/optimizer.c +10 -0
- pyscf/lo/boys.py +4 -1
- pyscf/lo/pipek.py +77 -71
- pyscf/lo/pipek_jacobi.py +161 -0
- pyscf/mcscf/__init__.py +31 -31
- pyscf/mcscf/addons.py +20 -12
- pyscf/mcscf/casci.py +5 -3
- pyscf/mcscf/casci_symm.py +3 -1
- pyscf/mcscf/df.py +2 -2
- pyscf/mcscf/mc1step.py +14 -8
- pyscf/mcscf/newton_casscf_symm.py +1 -1
- pyscf/mcscf/ucasci.py +1 -1
- pyscf/mcscf/umc1step.py +3 -3
- pyscf/mp/__init__.py +10 -12
- pyscf/mp/dfgmp2.py +3 -2
- pyscf/mp/dfmp2.py +3 -3
- pyscf/mp/dfmp2_native.py +4 -2
- pyscf/mp/dfump2_native.py +4 -3
- pyscf/mp/gmp2.py +6 -3
- pyscf/mp/mp2.py +48 -14
- pyscf/mp/ump2.py +56 -23
- pyscf/mrpt/nevpt2.py +2 -2
- pyscf/nac/__init__.py +32 -0
- pyscf/nac/sacasscf.py +293 -0
- pyscf/pbc/__all__.py +3 -0
- pyscf/pbc/adc/__init__.py +1 -1
- pyscf/pbc/adc/kadc_rhf.py +2 -2
- pyscf/pbc/adc/kadc_rhf_ea.py +2 -2
- pyscf/pbc/adc/kadc_rhf_ip.py +2 -2
- pyscf/pbc/cc/__init__.py +10 -7
- pyscf/pbc/cc/kccsd.py +3 -1
- pyscf/pbc/cc/kccsd_rhf.py +4 -2
- pyscf/pbc/cc/kccsd_rhf_ksymm.py +1 -1
- pyscf/pbc/cc/kccsd_uhf.py +3 -1
- pyscf/pbc/cc/kintermediates.py +1 -1
- pyscf/pbc/ci/__init__.py +4 -4
- pyscf/pbc/df/aft.py +5 -4
- pyscf/pbc/df/aft_jk.py +1 -1
- pyscf/pbc/df/df.py +7 -2
- pyscf/pbc/df/df_jk.py +12 -11
- pyscf/pbc/df/fft.py +7 -2
- pyscf/pbc/df/ft_ao.py +17 -9
- pyscf/pbc/df/gdf_builder.py +8 -7
- pyscf/pbc/df/incore.py +246 -2
- pyscf/pbc/df/mdf.py +3 -0
- pyscf/pbc/df/mdf_jk.py +0 -3
- pyscf/pbc/df/rsdf_builder.py +20 -11
- pyscf/pbc/df/rsdf_helper.py +16 -13
- pyscf/pbc/dft/gen_grid.py +14 -9
- pyscf/pbc/dft/gks.py +4 -2
- pyscf/pbc/dft/kgks.py +13 -4
- pyscf/pbc/dft/krks.py +15 -25
- pyscf/pbc/dft/krks_ksymm.py +16 -15
- pyscf/pbc/dft/krkspu.py +3 -3
- pyscf/pbc/dft/krkspu_ksymm.py +2 -2
- pyscf/pbc/dft/kroks.py +9 -19
- pyscf/pbc/dft/kuks.py +14 -24
- pyscf/pbc/dft/kuks_ksymm.py +16 -15
- pyscf/pbc/dft/kukspu.py +3 -3
- pyscf/pbc/dft/kukspu_ksymm.py +2 -2
- pyscf/pbc/dft/multigrid/__init__.py +57 -0
- pyscf/pbc/dft/{multigrid.py → multigrid/multigrid.py} +87 -94
- pyscf/pbc/dft/multigrid/multigrid_pair.py +1405 -0
- pyscf/pbc/dft/multigrid/pp.py +290 -0
- pyscf/pbc/dft/multigrid/utils.py +70 -0
- pyscf/pbc/dft/numint.py +5 -0
- pyscf/pbc/dft/rks.py +12 -8
- pyscf/pbc/dft/roks.py +2 -0
- pyscf/pbc/dft/uks.py +6 -4
- pyscf/pbc/geomopt/geometric_solver.py +1 -1
- pyscf/pbc/grad/__init__.py +5 -2
- pyscf/pbc/grad/krhf.py +7 -1
- pyscf/pbc/grad/krks.py +1 -1
- pyscf/pbc/grad/kuks.py +1 -1
- pyscf/pbc/grad/rhf.py +167 -0
- pyscf/pbc/grad/rks.py +24 -0
- pyscf/pbc/grad/uhf.py +92 -0
- pyscf/pbc/grad/uks.py +24 -0
- pyscf/pbc/gto/__init__.py +1 -0
- pyscf/pbc/gto/_pbcintor.py +14 -7
- pyscf/pbc/gto/cell.py +228 -23
- pyscf/pbc/gto/ewald_methods.py +293 -0
- pyscf/pbc/gto/neighborlist.py +199 -0
- pyscf/pbc/gto/pseudo/pp_int.py +350 -17
- pyscf/pbc/gw/__init__.py +44 -1
- pyscf/pbc/gw/kgw_slow_supercell.py +1 -1
- pyscf/pbc/gw/krgw_ac.py +4 -4
- pyscf/pbc/gw/krgw_cd.py +4 -4
- pyscf/pbc/gw/kugw_ac.py +7 -4
- pyscf/pbc/lib/kpts_helper.py +1 -1
- pyscf/pbc/mp/__init__.py +3 -3
- pyscf/pbc/mp/kmp2.py +3 -1
- pyscf/pbc/mpicc/__init__.py +4 -2
- pyscf/pbc/scf/addons.py +22 -18
- pyscf/pbc/scf/ghf.py +3 -1
- pyscf/pbc/scf/hf.py +34 -20
- pyscf/pbc/scf/kghf.py +3 -1
- pyscf/pbc/scf/khf.py +15 -15
- pyscf/pbc/scf/khf_ksymm.py +8 -6
- pyscf/pbc/scf/krohf.py +6 -4
- pyscf/pbc/scf/kuhf.py +14 -10
- pyscf/pbc/scf/kuhf_ksymm.py +4 -2
- pyscf/pbc/scf/rohf.py +2 -1
- pyscf/pbc/scf/rsjk.py +14 -4
- pyscf/pbc/scf/uhf.py +9 -5
- pyscf/pbc/symm/geom.py +1 -1
- pyscf/pbc/symm/pyscf_spglib.py +1 -1
- pyscf/pbc/symm/symmetry.py +1 -1
- pyscf/pbc/tdscf/__init__.py +6 -9
- pyscf/pbc/tdscf/krhf.py +1 -1
- pyscf/pbc/tdscf/krhf_slow_supercell.py +3 -3
- pyscf/pbc/tdscf/rhf.py +1 -1
- pyscf/pbc/tools/k2gamma.py +27 -15
- pyscf/pbc/tools/pbc.py +55 -10
- pyscf/pbc/x2c/sfx2c1e.py +1 -1
- pyscf/pbc/x2c/x2c1e.py +1 -1
- pyscf/post_scf.py +3 -0
- pyscf/qmmm/itrf.py +13 -1
- pyscf/scf/__init__.py +3 -1
- pyscf/scf/_response_functions.py +5 -4
- pyscf/scf/addons.py +50 -51
- pyscf/scf/atom_hf.py +16 -3
- pyscf/scf/atom_hf_pp.py +154 -0
- pyscf/scf/atom_ks.py +1 -1
- pyscf/scf/cphf.py +39 -17
- pyscf/scf/dhf.py +6 -8
- pyscf/scf/diis.py +12 -11
- pyscf/scf/dispersion.py +177 -0
- pyscf/scf/ghf.py +8 -8
- pyscf/scf/ghf_symm.py +3 -1
- pyscf/scf/hf.py +150 -54
- pyscf/scf/hf_symm.py +9 -4
- pyscf/scf/rohf.py +30 -7
- pyscf/scf/ucphf.py +46 -30
- pyscf/scf/uhf.py +17 -19
- pyscf/scf/uhf_symm.py +7 -5
- pyscf/sgx/sgx.py +9 -4
- pyscf/solvent/__init__.py +26 -2
- pyscf/solvent/_attach_solvent.py +58 -11
- pyscf/solvent/_ddcosmo_tdscf_grad.py +2 -2
- pyscf/solvent/ddcosmo.py +7 -6
- pyscf/solvent/ddpcm.py +1 -0
- pyscf/solvent/grad/__init__.py +17 -0
- pyscf/solvent/{ddcosmo_grad.py → grad/ddcosmo_grad.py} +1 -1
- pyscf/solvent/grad/pcm.py +384 -0
- pyscf/solvent/grad/smd.py +176 -0
- pyscf/solvent/grad/smd_experiment.py +216 -0
- pyscf/solvent/hessian/__init__.py +0 -0
- pyscf/solvent/hessian/pcm.py +230 -0
- pyscf/solvent/hessian/smd.py +171 -0
- pyscf/solvent/hessian/smd_experiment.py +208 -0
- pyscf/solvent/pcm.py +138 -57
- pyscf/solvent/pol_embed.py +3 -3
- pyscf/solvent/smd.py +433 -0
- pyscf/solvent/smd_experiment.py +273 -0
- pyscf/soscf/newton_ah.py +21 -10
- pyscf/symm/basis.py +1 -1
- pyscf/symm/geom.py +3 -7
- pyscf/tdscf/common_slow.py +4 -7
- pyscf/tdscf/dhf.py +1 -1
- pyscf/tdscf/ghf.py +1 -1
- pyscf/tdscf/proxy.py +1 -1
- pyscf/tdscf/rhf.py +10 -3
- pyscf/tdscf/rhf_slow.py +1 -1
- pyscf/tdscf/uhf.py +5 -1
- pyscf/tools/chgcar.py +1 -5
- pyscf/tools/molden.py +15 -2
- pyscf/x2c/sfx2c1e.py +8 -3
- pyscf/x2c/tdscf.py +1 -1
- pyscf/x2c/x2c.py +10 -2
- pyscf-2.6.0.dist-info/METADATA +140 -0
- {pyscf-2.4.0.dist-info → pyscf-2.6.0.dist-info}/NOTICE +8 -1
- {pyscf-2.4.0.dist-info → pyscf-2.6.0.dist-info}/RECORD +355 -307
- {pyscf-2.4.0.dist-info → pyscf-2.6.0.dist-info}/WHEEL +1 -1
- pyscf-2.4.0.dist-info/METADATA +0 -81
- {pyscf-2.4.0.dist-info → pyscf-2.6.0.dist-info}/LICENSE +0 -0
- {pyscf-2.4.0.dist-info → pyscf-2.6.0.dist-info}/top_level.txt +0 -0
pyscf/dft/LebedevGrid.py
ADDED
|
@@ -0,0 +1,5047 @@
|
|
|
1
|
+
# This code was modified from CxLebedevGrid.cpp (from Gerald Knizia).
|
|
2
|
+
# The following comments are copied from the header file CxLebedevGrid.h
|
|
3
|
+
#
|
|
4
|
+
#
|
|
5
|
+
#ccgk: This code generates Lebedev grids. It is based on C files from
|
|
6
|
+
#ccgk: Dmitri Laikov, which were converted to Fortran by Christoph van Wuellen.
|
|
7
|
+
#ccgk: I (Gerald Knizia) subsequently converted them back to C++.
|
|
8
|
+
#ccgk:
|
|
9
|
+
#ccgk: The original distribution contained the following readme file:
|
|
10
|
+
#ccgk:
|
|
11
|
+
#
|
|
12
|
+
# Lebedev grids of orders n=6m+5 where m=0,1,...,21 in 16 digit precision
|
|
13
|
+
# =======================================================================
|
|
14
|
+
#
|
|
15
|
+
# The file Lebedev-Laikov.F implements a set of subroutines providing
|
|
16
|
+
# Lebedev-Laikov grids of order n=2m+1, where m=1,2,...,15, and additionally
|
|
17
|
+
# grids of order n=6m+5, where m=5,6,...,21. The parameters ensure
|
|
18
|
+
# that angular integration of polynomials x**k * y**l * z**m, where k+l+m <= 131
|
|
19
|
+
# can be performed with a relative accuracy of 2e-14 [1]. Note that the weights
|
|
20
|
+
# are normalised to add up to 1.0.
|
|
21
|
+
#
|
|
22
|
+
# For each order n a separate subroutine is provided named
|
|
23
|
+
# LD. The parameters X, Y, Z are arrays for the
|
|
24
|
+
# cartesian components of each point, and the parameter W is an array for the
|
|
25
|
+
# weights. The subroutines increase the integer parameter N by number of grid
|
|
26
|
+
# points generated. All these routines use the subroutine gen_oh which takes care
|
|
27
|
+
# of the octahedral symmetry of the grids.
|
|
28
|
+
#
|
|
29
|
+
# Christoph van Wuellen (Ruhr-Universitaet, Bochum, Germany) generated the
|
|
30
|
+
# routines in Lebedev-Laikov.F by translating the original C-routines kindly
|
|
31
|
+
# provided by Dmitri Laikov (Moscow State University, Moscow, Russia). We
|
|
32
|
+
# are in debt to Dmitri Laikov for giving us permission to make these routines
|
|
33
|
+
# publically available.
|
|
34
|
+
#
|
|
35
|
+
# Huub van Dam
|
|
36
|
+
# Daresbury Laboratory, Daresbury, United Kingdom
|
|
37
|
+
# April, 2000
|
|
38
|
+
#
|
|
39
|
+
# References
|
|
40
|
+
# ==========
|
|
41
|
+
#
|
|
42
|
+
# [1] V.I. Lebedev, and D.N. Laikov
|
|
43
|
+
# "A quadrature formula for the sphere of the 131st
|
|
44
|
+
# algebraic order of accuracy"
|
|
45
|
+
# Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
|
|
46
|
+
#
|
|
47
|
+
#ccgk: and the following comments and references for the original of the subroutine SphGenOh:
|
|
48
|
+
#
|
|
49
|
+
# chvd
|
|
50
|
+
# chvd This subroutine is part of a set of subroutines that generate
|
|
51
|
+
# chvd Lebedev grids [1-6] for integration on a sphere. The original
|
|
52
|
+
# chvd C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
|
|
53
|
+
# chvd translated into fortran by Dr. Christoph van Wuellen.
|
|
54
|
+
# chvd This subroutine was translated from C to fortran77 by hand.
|
|
55
|
+
# chvd
|
|
56
|
+
# chvd Users of this code are asked to include reference [1] in their
|
|
57
|
+
# chvd publications, and in the user- and programmers-manuals
|
|
58
|
+
# chvd describing their codes.
|
|
59
|
+
# chvd
|
|
60
|
+
# chvd This code was distributed through CCL (http://www.ccl.net/).
|
|
61
|
+
# chvd
|
|
62
|
+
# chvd [1] V.I. Lebedev, and D.N. Laikov
|
|
63
|
+
# chvd "A quadrature formula for the sphere of the 131st
|
|
64
|
+
# chvd algebraic order of accuracy"
|
|
65
|
+
# chvd Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
|
|
66
|
+
# chvd
|
|
67
|
+
# chvd [2] V.I. Lebedev
|
|
68
|
+
# chvd "A quadrature formula for the sphere of 59th algebraic
|
|
69
|
+
# chvd order of accuracy"
|
|
70
|
+
# chvd Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
|
|
71
|
+
# chvd
|
|
72
|
+
# chvd [3] V.I. Lebedev, and A.L. Skorokhodov
|
|
73
|
+
# chvd "Quadrature formulas of orders 41, 47, and 53 for the sphere"
|
|
74
|
+
# chvd Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
|
|
75
|
+
# chvd
|
|
76
|
+
# chvd [4] V.I. Lebedev
|
|
77
|
+
# chvd "Spherical quadrature formulas exact to orders 25-29"
|
|
78
|
+
# chvd Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
|
|
79
|
+
# chvd
|
|
80
|
+
# chvd [5] V.I. Lebedev
|
|
81
|
+
# chvd "Quadratures on a sphere"
|
|
82
|
+
# chvd Computational Mathematics and Mathematical Physics, Vol. 16,
|
|
83
|
+
# chvd 1976, pp. 10-24.
|
|
84
|
+
# chvd
|
|
85
|
+
# chvd [6] V.I. Lebedev
|
|
86
|
+
# chvd "Values of the nodes and weights of ninth to seventeenth
|
|
87
|
+
# chvd order Gauss-Markov quadrature formulae invariant under the
|
|
88
|
+
# chvd octahedron group with inversion"
|
|
89
|
+
# chvd Computational Mathematics and Mathematical Physics, Vol. 15,
|
|
90
|
+
# chvd 1975, pp. 44-51.
|
|
91
|
+
# chvd
|
|
92
|
+
# cvw
|
|
93
|
+
# cvw Given a point on a sphere (specified by a and b), generate all
|
|
94
|
+
# cvw the equivalent points under Oh symmetry, making grid points with
|
|
95
|
+
# cvw weight v.
|
|
96
|
+
# cvw The variable num is increased by the number of different points
|
|
97
|
+
# cvw generated.
|
|
98
|
+
# cvw
|
|
99
|
+
# cvw Depending on code, there are 6...48 different but equivalent
|
|
100
|
+
# cvw points.
|
|
101
|
+
# cvw
|
|
102
|
+
# cvw code=1: (0,0,1) etc ( 6 points)
|
|
103
|
+
# cvw code=2: (0,a,a) etc, a=1/sqrt(2) ( 12 points)
|
|
104
|
+
# cvw code=3: (a,a,a) etc, a=1/sqrt(3) ( 8 points)
|
|
105
|
+
# cvw code=4: (a,a,b) etc, b=sqrt(1-2 a^2) ( 24 points)
|
|
106
|
+
# cvw code=5: (a,b,0) etc, b=sqrt(1-a^2), a input ( 24 points)
|
|
107
|
+
# cvw code=6: (a,b,c) etc, c=sqrt(1-a^2-b^2), a/b input ( 48 points)
|
|
108
|
+
# cvw
|
|
109
|
+
|
|
110
|
+
import numpy as np
|
|
111
|
+
from functools import lru_cache
|
|
112
|
+
|
|
113
|
+
@lru_cache(maxsize=500)
|
|
114
|
+
def SphGenOh(code, a, b, v):
|
|
115
|
+
if code == 0:
|
|
116
|
+
a = 1.0
|
|
117
|
+
g = np.array((
|
|
118
|
+
# pos/x pos/y pos/z weight
|
|
119
|
+
a, 0., 0., v,
|
|
120
|
+
-a, 0., 0., v,
|
|
121
|
+
0., a, 0., v,
|
|
122
|
+
0., -a, 0., v,
|
|
123
|
+
0., 0., a, v,
|
|
124
|
+
0., 0., -a, v,
|
|
125
|
+
)).reshape(6, 4)
|
|
126
|
+
elif code == 1:
|
|
127
|
+
a = np.sqrt(0.5)
|
|
128
|
+
g = np.array((
|
|
129
|
+
# pos/x pos/y pos/z weight
|
|
130
|
+
0., a, a, v,
|
|
131
|
+
0., -a, a, v,
|
|
132
|
+
0., a, -a, v,
|
|
133
|
+
0., -a, -a, v,
|
|
134
|
+
a, 0., a, v,
|
|
135
|
+
-a, 0., a, v,
|
|
136
|
+
a, 0., -a, v,
|
|
137
|
+
-a, 0., -a, v,
|
|
138
|
+
a, a, 0., v,
|
|
139
|
+
-a, a, 0., v,
|
|
140
|
+
a, -a, 0., v,
|
|
141
|
+
-a, -a, 0., v,
|
|
142
|
+
)).reshape(12, 4)
|
|
143
|
+
elif code == 2:
|
|
144
|
+
a = np.sqrt(1./3.)
|
|
145
|
+
g = np.array((
|
|
146
|
+
# pos/x pos/y pos/z weight
|
|
147
|
+
a, a, a, v,
|
|
148
|
+
-a, a, a, v,
|
|
149
|
+
a, -a, a, v,
|
|
150
|
+
-a, -a, a, v,
|
|
151
|
+
a, a, -a, v,
|
|
152
|
+
-a, a, -a, v,
|
|
153
|
+
a, -a, -a, v,
|
|
154
|
+
-a, -a, -a, v,
|
|
155
|
+
)).reshape(8, 4)
|
|
156
|
+
elif code == 3:
|
|
157
|
+
b = np.sqrt(1. - 2.*a*a)
|
|
158
|
+
g = np.array((
|
|
159
|
+
# pos/x pos/y pos/z weight
|
|
160
|
+
a, a, b, v,
|
|
161
|
+
-a, a, b, v,
|
|
162
|
+
a, -a, b, v,
|
|
163
|
+
-a, -a, b, v,
|
|
164
|
+
a, a, -b, v,
|
|
165
|
+
-a, a, -b, v,
|
|
166
|
+
a, -a, -b, v,
|
|
167
|
+
-a, -a, -b, v,
|
|
168
|
+
a, b, a, v,
|
|
169
|
+
-a, b, a, v,
|
|
170
|
+
a, -b, a, v,
|
|
171
|
+
-a, -b, a, v,
|
|
172
|
+
a, b, -a, v,
|
|
173
|
+
-a, b, -a, v,
|
|
174
|
+
a, -b, -a, v,
|
|
175
|
+
-a, -b, -a, v,
|
|
176
|
+
b, a, a, v,
|
|
177
|
+
-b, a, a, v,
|
|
178
|
+
b, -a, a, v,
|
|
179
|
+
-b, -a, a, v,
|
|
180
|
+
b, a, -a, v,
|
|
181
|
+
-b, a, -a, v,
|
|
182
|
+
b, -a, -a, v,
|
|
183
|
+
-b, -a, -a, v,
|
|
184
|
+
)).reshape(24, 4)
|
|
185
|
+
elif code == 4:
|
|
186
|
+
b = np.sqrt(1. - a*a)
|
|
187
|
+
g = np.array((
|
|
188
|
+
# pos/x pos/y pos/z weight
|
|
189
|
+
a, b, 0., v,
|
|
190
|
+
-a, b, 0., v,
|
|
191
|
+
a, -b, 0., v,
|
|
192
|
+
-a, -b, 0., v,
|
|
193
|
+
b, a, 0., v,
|
|
194
|
+
-b, a, 0., v,
|
|
195
|
+
b, -a, 0., v,
|
|
196
|
+
-b, -a, 0., v,
|
|
197
|
+
a, 0., b, v,
|
|
198
|
+
-a, 0., b, v,
|
|
199
|
+
a, 0., -b, v,
|
|
200
|
+
-a, 0., -b, v,
|
|
201
|
+
b, 0., a, v,
|
|
202
|
+
-b, 0., a, v,
|
|
203
|
+
b, 0., -a, v,
|
|
204
|
+
-b, 0., -a, v,
|
|
205
|
+
0., a, b, v,
|
|
206
|
+
0., -a, b, v,
|
|
207
|
+
0., a, -b, v,
|
|
208
|
+
0., -a, -b, v,
|
|
209
|
+
0., b, a, v,
|
|
210
|
+
0., -b, a, v,
|
|
211
|
+
0., b, -a, v,
|
|
212
|
+
0., -b, -a, v,
|
|
213
|
+
)).reshape(24, 4)
|
|
214
|
+
elif code == 5:
|
|
215
|
+
c = np.sqrt(1. - a*a - b*b)
|
|
216
|
+
g = np.array((
|
|
217
|
+
# pos/x pos/y pos/z weight
|
|
218
|
+
a, b, c, v,
|
|
219
|
+
-a, b, c, v,
|
|
220
|
+
a, -b, c, v,
|
|
221
|
+
-a, -b, c, v,
|
|
222
|
+
a, b, -c, v,
|
|
223
|
+
-a, b, -c, v,
|
|
224
|
+
a, -b, -c, v,
|
|
225
|
+
-a, -b, -c, v,
|
|
226
|
+
a, c, b, v,
|
|
227
|
+
-a, c, b, v,
|
|
228
|
+
a, -c, b, v,
|
|
229
|
+
-a, -c, b, v,
|
|
230
|
+
a, c, -b, v,
|
|
231
|
+
-a, c, -b, v,
|
|
232
|
+
a, -c, -b, v,
|
|
233
|
+
-a, -c, -b, v,
|
|
234
|
+
b, a, c, v,
|
|
235
|
+
-b, a, c, v,
|
|
236
|
+
b, -a, c, v,
|
|
237
|
+
-b, -a, c, v,
|
|
238
|
+
b, a, -c, v,
|
|
239
|
+
-b, a, -c, v,
|
|
240
|
+
b, -a, -c, v,
|
|
241
|
+
-b, -a, -c, v,
|
|
242
|
+
b, c, a, v,
|
|
243
|
+
-b, c, a, v,
|
|
244
|
+
b, -c, a, v,
|
|
245
|
+
-b, -c, a, v,
|
|
246
|
+
b, c, -a, v,
|
|
247
|
+
-b, c, -a, v,
|
|
248
|
+
b, -c, -a, v,
|
|
249
|
+
-b, -c, -a, v,
|
|
250
|
+
c, a, b, v,
|
|
251
|
+
-c, a, b, v,
|
|
252
|
+
c, -a, b, v,
|
|
253
|
+
-c, -a, b, v,
|
|
254
|
+
c, a, -b, v,
|
|
255
|
+
-c, a, -b, v,
|
|
256
|
+
c, -a, -b, v,
|
|
257
|
+
-c, -a, -b, v,
|
|
258
|
+
c, b, a, v,
|
|
259
|
+
-c, b, a, v,
|
|
260
|
+
c, -b, a, v,
|
|
261
|
+
-c, -b, a, v,
|
|
262
|
+
c, b, -a, v,
|
|
263
|
+
-c, b, -a, v,
|
|
264
|
+
c, -b, -a, v,
|
|
265
|
+
-c, -b, -a, v,
|
|
266
|
+
)).reshape(48, 4)
|
|
267
|
+
return g
|
|
268
|
+
|
|
269
|
+
|
|
270
|
+
def MakeAngularGrid_6():
|
|
271
|
+
grids = []
|
|
272
|
+
a = 0
|
|
273
|
+
b = 0
|
|
274
|
+
v = 0.1666666666666667e+0
|
|
275
|
+
grids.append(SphGenOh(0, a, b, v))
|
|
276
|
+
return np.vstack(grids)
|
|
277
|
+
|
|
278
|
+
|
|
279
|
+
def MakeAngularGrid_14():
|
|
280
|
+
grids = []
|
|
281
|
+
a = 0
|
|
282
|
+
b = 0
|
|
283
|
+
v = 0.6666666666666667e-1
|
|
284
|
+
grids.append(SphGenOh(0, a, b, v))
|
|
285
|
+
v = 0.7500000000000000e-1
|
|
286
|
+
grids.append(SphGenOh(2, a, b, v))
|
|
287
|
+
return np.vstack(grids)
|
|
288
|
+
|
|
289
|
+
|
|
290
|
+
def MakeAngularGrid_26():
|
|
291
|
+
grids = []
|
|
292
|
+
a = 0
|
|
293
|
+
b = 0
|
|
294
|
+
v = 0.4761904761904762e-1
|
|
295
|
+
grids.append(SphGenOh(0, a, b, v))
|
|
296
|
+
v = 0.3809523809523810e-1
|
|
297
|
+
grids.append(SphGenOh(1, a, b, v))
|
|
298
|
+
v = 0.3214285714285714e-1
|
|
299
|
+
grids.append(SphGenOh(2, a, b, v))
|
|
300
|
+
return np.vstack(grids)
|
|
301
|
+
|
|
302
|
+
|
|
303
|
+
def MakeAngularGrid_38():
|
|
304
|
+
grids = []
|
|
305
|
+
a = 0
|
|
306
|
+
b = 0
|
|
307
|
+
v = 0.9523809523809524e-2
|
|
308
|
+
grids.append(SphGenOh(0, a, b, v))
|
|
309
|
+
v = 0.3214285714285714e-1
|
|
310
|
+
grids.append(SphGenOh(2, a, b, v))
|
|
311
|
+
a = 0.4597008433809831e+0
|
|
312
|
+
v = 0.2857142857142857e-1
|
|
313
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
314
|
+
return np.vstack(grids)
|
|
315
|
+
|
|
316
|
+
|
|
317
|
+
def MakeAngularGrid_50():
|
|
318
|
+
grids = []
|
|
319
|
+
a = 0
|
|
320
|
+
b = 0
|
|
321
|
+
v = 0.1269841269841270e-1
|
|
322
|
+
grids.append(SphGenOh(0, a, b, v))
|
|
323
|
+
v = 0.2257495590828924e-1
|
|
324
|
+
grids.append(SphGenOh(1, a, b, v))
|
|
325
|
+
v = 0.2109375000000000e-1
|
|
326
|
+
grids.append(SphGenOh(2, a, b, v))
|
|
327
|
+
a = 0.3015113445777636e+0
|
|
328
|
+
v = 0.2017333553791887e-1
|
|
329
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
330
|
+
return np.vstack(grids)
|
|
331
|
+
|
|
332
|
+
|
|
333
|
+
def MakeAngularGrid_74():
|
|
334
|
+
grids = []
|
|
335
|
+
a = 0
|
|
336
|
+
b = 0
|
|
337
|
+
v = 0.5130671797338464e-3
|
|
338
|
+
grids.append(SphGenOh(0, a, b, v))
|
|
339
|
+
v = 0.1660406956574204e-1
|
|
340
|
+
grids.append(SphGenOh(1, a, b, v))
|
|
341
|
+
v = -0.2958603896103896e-1
|
|
342
|
+
grids.append(SphGenOh(2, a, b, v))
|
|
343
|
+
a = 0.4803844614152614e+0
|
|
344
|
+
v = 0.2657620708215946e-1
|
|
345
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
346
|
+
a = 0.3207726489807764e+0
|
|
347
|
+
v = 0.1652217099371571e-1
|
|
348
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
349
|
+
return np.vstack(grids)
|
|
350
|
+
|
|
351
|
+
|
|
352
|
+
def MakeAngularGrid_86():
|
|
353
|
+
grids = []
|
|
354
|
+
a = 0
|
|
355
|
+
b = 0
|
|
356
|
+
v = 0.1154401154401154e-1
|
|
357
|
+
grids.append(SphGenOh(0, a, b, v))
|
|
358
|
+
v = 0.1194390908585628e-1
|
|
359
|
+
grids.append(SphGenOh(2, a, b, v))
|
|
360
|
+
a = 0.3696028464541502e+0
|
|
361
|
+
v = 0.1111055571060340e-1
|
|
362
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
363
|
+
a = 0.6943540066026664e+0
|
|
364
|
+
v = 0.1187650129453714e-1
|
|
365
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
366
|
+
a = 0.3742430390903412e+0
|
|
367
|
+
v = 0.1181230374690448e-1
|
|
368
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
369
|
+
return np.vstack(grids)
|
|
370
|
+
|
|
371
|
+
|
|
372
|
+
def MakeAngularGrid_110():
|
|
373
|
+
grids = []
|
|
374
|
+
a = 0
|
|
375
|
+
b = 0
|
|
376
|
+
v = 0.3828270494937162e-2
|
|
377
|
+
grids.append(SphGenOh(0, a, b, v))
|
|
378
|
+
v = 0.9793737512487512e-2
|
|
379
|
+
grids.append(SphGenOh(2, a, b, v))
|
|
380
|
+
a = 0.1851156353447362e+0
|
|
381
|
+
v = 0.8211737283191111e-2
|
|
382
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
383
|
+
a = 0.6904210483822922e+0
|
|
384
|
+
v = 0.9942814891178103e-2
|
|
385
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
386
|
+
a = 0.3956894730559419e+0
|
|
387
|
+
v = 0.9595471336070963e-2
|
|
388
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
389
|
+
a = 0.4783690288121502e+0
|
|
390
|
+
v = 0.9694996361663028e-2
|
|
391
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
392
|
+
return np.vstack(grids)
|
|
393
|
+
|
|
394
|
+
|
|
395
|
+
def MakeAngularGrid_146():
|
|
396
|
+
grids = []
|
|
397
|
+
a = 0
|
|
398
|
+
b = 0
|
|
399
|
+
v = 0.5996313688621381e-3
|
|
400
|
+
grids.append(SphGenOh(0, a, b, v))
|
|
401
|
+
v = 0.7372999718620756e-2
|
|
402
|
+
grids.append(SphGenOh(1, a, b, v))
|
|
403
|
+
v = 0.7210515360144488e-2
|
|
404
|
+
grids.append(SphGenOh(2, a, b, v))
|
|
405
|
+
a = 0.6764410400114264e+0
|
|
406
|
+
v = 0.7116355493117555e-2
|
|
407
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
408
|
+
a = 0.4174961227965453e+0
|
|
409
|
+
v = 0.6753829486314477e-2
|
|
410
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
411
|
+
a = 0.1574676672039082e+0
|
|
412
|
+
v = 0.7574394159054034e-2
|
|
413
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
414
|
+
a = 0.1403553811713183e+0
|
|
415
|
+
b = 0.4493328323269557e+0
|
|
416
|
+
v = 0.6991087353303262e-2
|
|
417
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
418
|
+
return np.vstack(grids)
|
|
419
|
+
|
|
420
|
+
|
|
421
|
+
def MakeAngularGrid_170():
|
|
422
|
+
grids = []
|
|
423
|
+
a = 0
|
|
424
|
+
b = 0
|
|
425
|
+
v = 0.5544842902037365e-2
|
|
426
|
+
grids.append(SphGenOh(0, a, b, v))
|
|
427
|
+
v = 0.6071332770670752e-2
|
|
428
|
+
grids.append(SphGenOh(1, a, b, v))
|
|
429
|
+
v = 0.6383674773515093e-2
|
|
430
|
+
grids.append(SphGenOh(2, a, b, v))
|
|
431
|
+
a = 0.2551252621114134e+0
|
|
432
|
+
v = 0.5183387587747790e-2
|
|
433
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
434
|
+
a = 0.6743601460362766e+0
|
|
435
|
+
v = 0.6317929009813725e-2
|
|
436
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
437
|
+
a = 0.4318910696719410e+0
|
|
438
|
+
v = 0.6201670006589077e-2
|
|
439
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
440
|
+
a = 0.2613931360335988e+0
|
|
441
|
+
v = 0.5477143385137348e-2
|
|
442
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
443
|
+
a = 0.4990453161796037e+0
|
|
444
|
+
b = 0.1446630744325115e+0
|
|
445
|
+
v = 0.5968383987681156e-2
|
|
446
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
447
|
+
return np.vstack(grids)
|
|
448
|
+
|
|
449
|
+
|
|
450
|
+
def MakeAngularGrid_194():
|
|
451
|
+
grids = []
|
|
452
|
+
a = 0
|
|
453
|
+
b = 0
|
|
454
|
+
v = 0.1782340447244611e-2
|
|
455
|
+
grids.append(SphGenOh(0, a, b, v))
|
|
456
|
+
v = 0.5716905949977102e-2
|
|
457
|
+
grids.append(SphGenOh(1, a, b, v))
|
|
458
|
+
v = 0.5573383178848738e-2
|
|
459
|
+
grids.append(SphGenOh(2, a, b, v))
|
|
460
|
+
a = 0.6712973442695226e+0
|
|
461
|
+
v = 0.5608704082587997e-2
|
|
462
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
463
|
+
a = 0.2892465627575439e+0
|
|
464
|
+
v = 0.5158237711805383e-2
|
|
465
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
466
|
+
a = 0.4446933178717437e+0
|
|
467
|
+
v = 0.5518771467273614e-2
|
|
468
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
469
|
+
a = 0.1299335447650067e+0
|
|
470
|
+
v = 0.4106777028169394e-2
|
|
471
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
472
|
+
a = 0.3457702197611283e+0
|
|
473
|
+
v = 0.5051846064614808e-2
|
|
474
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
475
|
+
a = 0.1590417105383530e+0
|
|
476
|
+
b = 0.8360360154824589e+0
|
|
477
|
+
v = 0.5530248916233094e-2
|
|
478
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
479
|
+
return np.vstack(grids)
|
|
480
|
+
|
|
481
|
+
|
|
482
|
+
def MakeAngularGrid_230():
|
|
483
|
+
grids = []
|
|
484
|
+
a = 0
|
|
485
|
+
b = 0
|
|
486
|
+
v = -0.5522639919727325e-1
|
|
487
|
+
grids.append(SphGenOh(0, a, b, v))
|
|
488
|
+
v = 0.4450274607445226e-2
|
|
489
|
+
grids.append(SphGenOh(2, a, b, v))
|
|
490
|
+
a = 0.4492044687397611e+0
|
|
491
|
+
v = 0.4496841067921404e-2
|
|
492
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
493
|
+
a = 0.2520419490210201e+0
|
|
494
|
+
v = 0.5049153450478750e-2
|
|
495
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
496
|
+
a = 0.6981906658447242e+0
|
|
497
|
+
v = 0.3976408018051883e-2
|
|
498
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
499
|
+
a = 0.6587405243460960e+0
|
|
500
|
+
v = 0.4401400650381014e-2
|
|
501
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
502
|
+
a = 0.4038544050097660e-1
|
|
503
|
+
v = 0.1724544350544401e-1
|
|
504
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
505
|
+
a = 0.5823842309715585e+0
|
|
506
|
+
v = 0.4231083095357343e-2
|
|
507
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
508
|
+
a = 0.3545877390518688e+0
|
|
509
|
+
v = 0.5198069864064399e-2
|
|
510
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
511
|
+
a = 0.2272181808998187e+0
|
|
512
|
+
b = 0.4864661535886647e+0
|
|
513
|
+
v = 0.4695720972568883e-2
|
|
514
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
515
|
+
return np.vstack(grids)
|
|
516
|
+
|
|
517
|
+
|
|
518
|
+
def MakeAngularGrid_266():
|
|
519
|
+
grids = []
|
|
520
|
+
a = 0
|
|
521
|
+
b = 0
|
|
522
|
+
v = -0.1313769127326952e-2
|
|
523
|
+
grids.append(SphGenOh(0, a, b, v))
|
|
524
|
+
v = -0.2522728704859336e-2
|
|
525
|
+
grids.append(SphGenOh(1, a, b, v))
|
|
526
|
+
v = 0.4186853881700583e-2
|
|
527
|
+
grids.append(SphGenOh(2, a, b, v))
|
|
528
|
+
a = 0.7039373391585475e+0
|
|
529
|
+
v = 0.5315167977810885e-2
|
|
530
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
531
|
+
a = 0.1012526248572414e+0
|
|
532
|
+
v = 0.4047142377086219e-2
|
|
533
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
534
|
+
a = 0.4647448726420539e+0
|
|
535
|
+
v = 0.4112482394406990e-2
|
|
536
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
537
|
+
a = 0.3277420654971629e+0
|
|
538
|
+
v = 0.3595584899758782e-2
|
|
539
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
540
|
+
a = 0.6620338663699974e+0
|
|
541
|
+
v = 0.4256131351428158e-2
|
|
542
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
543
|
+
a = 0.8506508083520399e+0
|
|
544
|
+
v = 0.4229582700647240e-2
|
|
545
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
546
|
+
a = 0.3233484542692899e+0
|
|
547
|
+
b = 0.1153112011009701e+0
|
|
548
|
+
v = 0.4080914225780505e-2
|
|
549
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
550
|
+
a = 0.2314790158712601e+0
|
|
551
|
+
b = 0.5244939240922365e+0
|
|
552
|
+
v = 0.4071467593830964e-2
|
|
553
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
554
|
+
return np.vstack(grids)
|
|
555
|
+
|
|
556
|
+
|
|
557
|
+
def MakeAngularGrid_302():
|
|
558
|
+
grids = []
|
|
559
|
+
a = 0
|
|
560
|
+
b = 0
|
|
561
|
+
v = 0.8545911725128148e-3
|
|
562
|
+
grids.append(SphGenOh(0, a, b, v))
|
|
563
|
+
v = 0.3599119285025571e-2
|
|
564
|
+
grids.append(SphGenOh(2, a, b, v))
|
|
565
|
+
a = 0.3515640345570105e+0
|
|
566
|
+
v = 0.3449788424305883e-2
|
|
567
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
568
|
+
a = 0.6566329410219612e+0
|
|
569
|
+
v = 0.3604822601419882e-2
|
|
570
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
571
|
+
a = 0.4729054132581005e+0
|
|
572
|
+
v = 0.3576729661743367e-2
|
|
573
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
574
|
+
a = 0.9618308522614784e-1
|
|
575
|
+
v = 0.2352101413689164e-2
|
|
576
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
577
|
+
a = 0.2219645236294178e+0
|
|
578
|
+
v = 0.3108953122413675e-2
|
|
579
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
580
|
+
a = 0.7011766416089545e+0
|
|
581
|
+
v = 0.3650045807677255e-2
|
|
582
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
583
|
+
a = 0.2644152887060663e+0
|
|
584
|
+
v = 0.2982344963171804e-2
|
|
585
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
586
|
+
a = 0.5718955891878961e+0
|
|
587
|
+
v = 0.3600820932216460e-2
|
|
588
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
589
|
+
a = 0.2510034751770465e+0
|
|
590
|
+
b = 0.8000727494073952e+0
|
|
591
|
+
v = 0.3571540554273387e-2
|
|
592
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
593
|
+
a = 0.1233548532583327e+0
|
|
594
|
+
b = 0.4127724083168531e+0
|
|
595
|
+
v = 0.3392312205006170e-2
|
|
596
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
597
|
+
return np.vstack(grids)
|
|
598
|
+
|
|
599
|
+
|
|
600
|
+
def MakeAngularGrid_350():
|
|
601
|
+
grids = []
|
|
602
|
+
a = 0
|
|
603
|
+
b = 0
|
|
604
|
+
v = 0.3006796749453936e-2
|
|
605
|
+
grids.append(SphGenOh(0, a, b, v))
|
|
606
|
+
v = 0.3050627745650771e-2
|
|
607
|
+
grids.append(SphGenOh(2, a, b, v))
|
|
608
|
+
a = 0.7068965463912316e+0
|
|
609
|
+
v = 0.1621104600288991e-2
|
|
610
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
611
|
+
a = 0.4794682625712025e+0
|
|
612
|
+
v = 0.3005701484901752e-2
|
|
613
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
614
|
+
a = 0.1927533154878019e+0
|
|
615
|
+
v = 0.2990992529653774e-2
|
|
616
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
617
|
+
a = 0.6930357961327123e+0
|
|
618
|
+
v = 0.2982170644107595e-2
|
|
619
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
620
|
+
a = 0.3608302115520091e+0
|
|
621
|
+
v = 0.2721564237310992e-2
|
|
622
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
623
|
+
a = 0.6498486161496169e+0
|
|
624
|
+
v = 0.3033513795811141e-2
|
|
625
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
626
|
+
a = 0.1932945013230339e+0
|
|
627
|
+
v = 0.3007949555218533e-2
|
|
628
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
629
|
+
a = 0.3800494919899303e+0
|
|
630
|
+
v = 0.2881964603055307e-2
|
|
631
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
632
|
+
a = 0.2899558825499574e+0
|
|
633
|
+
b = 0.7934537856582316e+0
|
|
634
|
+
v = 0.2958357626535696e-2
|
|
635
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
636
|
+
a = 0.9684121455103957e-1
|
|
637
|
+
b = 0.8280801506686862e+0
|
|
638
|
+
v = 0.3036020026407088e-2
|
|
639
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
640
|
+
a = 0.1833434647041659e+0
|
|
641
|
+
b = 0.9074658265305127e+0
|
|
642
|
+
v = 0.2832187403926303e-2
|
|
643
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
644
|
+
return np.vstack(grids)
|
|
645
|
+
|
|
646
|
+
|
|
647
|
+
def MakeAngularGrid_434():
|
|
648
|
+
grids = []
|
|
649
|
+
a = 0
|
|
650
|
+
b = 0
|
|
651
|
+
v = 0.5265897968224436e-3
|
|
652
|
+
grids.append(SphGenOh(0, a, b, v))
|
|
653
|
+
v = 0.2548219972002607e-2
|
|
654
|
+
grids.append(SphGenOh(1, a, b, v))
|
|
655
|
+
v = 0.2512317418927307e-2
|
|
656
|
+
grids.append(SphGenOh(2, a, b, v))
|
|
657
|
+
a = 0.6909346307509111e+0
|
|
658
|
+
v = 0.2530403801186355e-2
|
|
659
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
660
|
+
a = 0.1774836054609158e+0
|
|
661
|
+
v = 0.2014279020918528e-2
|
|
662
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
663
|
+
a = 0.4914342637784746e+0
|
|
664
|
+
v = 0.2501725168402936e-2
|
|
665
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
666
|
+
a = 0.6456664707424256e+0
|
|
667
|
+
v = 0.2513267174597564e-2
|
|
668
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
669
|
+
a = 0.2861289010307638e+0
|
|
670
|
+
v = 0.2302694782227416e-2
|
|
671
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
672
|
+
a = 0.7568084367178018e-1
|
|
673
|
+
v = 0.1462495621594614e-2
|
|
674
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
675
|
+
a = 0.3927259763368002e+0
|
|
676
|
+
v = 0.2445373437312980e-2
|
|
677
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
678
|
+
a = 0.8818132877794288e+0
|
|
679
|
+
v = 0.2417442375638981e-2
|
|
680
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
681
|
+
a = 0.9776428111182649e+0
|
|
682
|
+
v = 0.1910951282179532e-2
|
|
683
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
684
|
+
a = 0.2054823696403044e+0
|
|
685
|
+
b = 0.8689460322872412e+0
|
|
686
|
+
v = 0.2416930044324775e-2
|
|
687
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
688
|
+
a = 0.5905157048925271e+0
|
|
689
|
+
b = 0.7999278543857286e+0
|
|
690
|
+
v = 0.2512236854563495e-2
|
|
691
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
692
|
+
a = 0.5550152361076807e+0
|
|
693
|
+
b = 0.7717462626915901e+0
|
|
694
|
+
v = 0.2496644054553086e-2
|
|
695
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
696
|
+
a = 0.9371809858553722e+0
|
|
697
|
+
b = 0.3344363145343455e+0
|
|
698
|
+
v = 0.2236607760437849e-2
|
|
699
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
700
|
+
return np.vstack(grids)
|
|
701
|
+
|
|
702
|
+
|
|
703
|
+
def MakeAngularGrid_590():
|
|
704
|
+
grids = []
|
|
705
|
+
a = 0
|
|
706
|
+
b = 0
|
|
707
|
+
v = 0.3095121295306187e-3
|
|
708
|
+
grids.append(SphGenOh(0, a, b, v))
|
|
709
|
+
v = 0.1852379698597489e-2
|
|
710
|
+
grids.append(SphGenOh(2, a, b, v))
|
|
711
|
+
a = 0.7040954938227469e+0
|
|
712
|
+
v = 0.1871790639277744e-2
|
|
713
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
714
|
+
a = 0.6807744066455243e+0
|
|
715
|
+
v = 0.1858812585438317e-2
|
|
716
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
717
|
+
a = 0.6372546939258752e+0
|
|
718
|
+
v = 0.1852028828296213e-2
|
|
719
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
720
|
+
a = 0.5044419707800358e+0
|
|
721
|
+
v = 0.1846715956151242e-2
|
|
722
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
723
|
+
a = 0.4215761784010967e+0
|
|
724
|
+
v = 0.1818471778162769e-2
|
|
725
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
726
|
+
a = 0.3317920736472123e+0
|
|
727
|
+
v = 0.1749564657281154e-2
|
|
728
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
729
|
+
a = 0.2384736701421887e+0
|
|
730
|
+
v = 0.1617210647254411e-2
|
|
731
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
732
|
+
a = 0.1459036449157763e+0
|
|
733
|
+
v = 0.1384737234851692e-2
|
|
734
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
735
|
+
a = 0.6095034115507196e-1
|
|
736
|
+
v = 0.9764331165051050e-3
|
|
737
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
738
|
+
a = 0.6116843442009876e+0
|
|
739
|
+
v = 0.1857161196774078e-2
|
|
740
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
741
|
+
a = 0.3964755348199858e+0
|
|
742
|
+
v = 0.1705153996395864e-2
|
|
743
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
744
|
+
a = 0.1724782009907724e+0
|
|
745
|
+
v = 0.1300321685886048e-2
|
|
746
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
747
|
+
a = 0.5610263808622060e+0
|
|
748
|
+
b = 0.3518280927733519e+0
|
|
749
|
+
v = 0.1842866472905286e-2
|
|
750
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
751
|
+
a = 0.4742392842551980e+0
|
|
752
|
+
b = 0.2634716655937950e+0
|
|
753
|
+
v = 0.1802658934377451e-2
|
|
754
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
755
|
+
a = 0.5984126497885380e+0
|
|
756
|
+
b = 0.1816640840360209e+0
|
|
757
|
+
v = 0.1849830560443660e-2
|
|
758
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
759
|
+
a = 0.3791035407695563e+0
|
|
760
|
+
b = 0.1720795225656878e+0
|
|
761
|
+
v = 0.1713904507106709e-2
|
|
762
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
763
|
+
a = 0.2778673190586244e+0
|
|
764
|
+
b = 0.8213021581932511e-1
|
|
765
|
+
v = 0.1555213603396808e-2
|
|
766
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
767
|
+
a = 0.5033564271075117e+0
|
|
768
|
+
b = 0.8999205842074875e-1
|
|
769
|
+
v = 0.1802239128008525e-2
|
|
770
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
771
|
+
return np.vstack(grids)
|
|
772
|
+
|
|
773
|
+
|
|
774
|
+
def MakeAngularGrid_770():
|
|
775
|
+
grids = []
|
|
776
|
+
a = 0
|
|
777
|
+
b = 0
|
|
778
|
+
v = 0.2192942088181184e-3
|
|
779
|
+
grids.append(SphGenOh(0, a, b, v))
|
|
780
|
+
v = 0.1436433617319080e-2
|
|
781
|
+
grids.append(SphGenOh(1, a, b, v))
|
|
782
|
+
v = 0.1421940344335877e-2
|
|
783
|
+
grids.append(SphGenOh(2, a, b, v))
|
|
784
|
+
a = 0.5087204410502360e-1
|
|
785
|
+
v = 0.6798123511050502e-3
|
|
786
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
787
|
+
a = 0.1228198790178831e+0
|
|
788
|
+
v = 0.9913184235294912e-3
|
|
789
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
790
|
+
a = 0.2026890814408786e+0
|
|
791
|
+
v = 0.1180207833238949e-2
|
|
792
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
793
|
+
a = 0.2847745156464294e+0
|
|
794
|
+
v = 0.1296599602080921e-2
|
|
795
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
796
|
+
a = 0.3656719078978026e+0
|
|
797
|
+
v = 0.1365871427428316e-2
|
|
798
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
799
|
+
a = 0.4428264886713469e+0
|
|
800
|
+
v = 0.1402988604775325e-2
|
|
801
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
802
|
+
a = 0.5140619627249735e+0
|
|
803
|
+
v = 0.1418645563595609e-2
|
|
804
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
805
|
+
a = 0.6306401219166803e+0
|
|
806
|
+
v = 0.1421376741851662e-2
|
|
807
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
808
|
+
a = 0.6716883332022612e+0
|
|
809
|
+
v = 0.1423996475490962e-2
|
|
810
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
811
|
+
a = 0.6979792685336881e+0
|
|
812
|
+
v = 0.1431554042178567e-2
|
|
813
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
814
|
+
a = 0.1446865674195309e+0
|
|
815
|
+
v = 0.9254401499865368e-3
|
|
816
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
817
|
+
a = 0.3390263475411216e+0
|
|
818
|
+
v = 0.1250239995053509e-2
|
|
819
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
820
|
+
a = 0.5335804651263506e+0
|
|
821
|
+
v = 0.1394365843329230e-2
|
|
822
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
823
|
+
a = 0.6944024393349413e-1
|
|
824
|
+
b = 0.2355187894242326e+0
|
|
825
|
+
v = 0.1127089094671749e-2
|
|
826
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
827
|
+
a = 0.2269004109529460e+0
|
|
828
|
+
b = 0.4102182474045730e+0
|
|
829
|
+
v = 0.1345753760910670e-2
|
|
830
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
831
|
+
a = 0.8025574607775339e-1
|
|
832
|
+
b = 0.6214302417481605e+0
|
|
833
|
+
v = 0.1424957283316783e-2
|
|
834
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
835
|
+
a = 0.1467999527896572e+0
|
|
836
|
+
b = 0.3245284345717394e+0
|
|
837
|
+
v = 0.1261523341237750e-2
|
|
838
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
839
|
+
a = 0.1571507769824727e+0
|
|
840
|
+
b = 0.5224482189696630e+0
|
|
841
|
+
v = 0.1392547106052696e-2
|
|
842
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
843
|
+
a = 0.2365702993157246e+0
|
|
844
|
+
b = 0.6017546634089558e+0
|
|
845
|
+
v = 0.1418761677877656e-2
|
|
846
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
847
|
+
a = 0.7714815866765732e-1
|
|
848
|
+
b = 0.4346575516141163e+0
|
|
849
|
+
v = 0.1338366684479554e-2
|
|
850
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
851
|
+
a = 0.3062936666210730e+0
|
|
852
|
+
b = 0.4908826589037616e+0
|
|
853
|
+
v = 0.1393700862676131e-2
|
|
854
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
855
|
+
a = 0.3822477379524787e+0
|
|
856
|
+
b = 0.5648768149099500e+0
|
|
857
|
+
v = 0.1415914757466932e-2
|
|
858
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
859
|
+
return np.vstack(grids)
|
|
860
|
+
|
|
861
|
+
|
|
862
|
+
def MakeAngularGrid_974():
|
|
863
|
+
grids = []
|
|
864
|
+
a = 0
|
|
865
|
+
b = 0
|
|
866
|
+
v = 0.1438294190527431e-3
|
|
867
|
+
grids.append(SphGenOh(0, a, b, v))
|
|
868
|
+
v = 0.1125772288287004e-2
|
|
869
|
+
grids.append(SphGenOh(2, a, b, v))
|
|
870
|
+
a = 0.4292963545341347e-1
|
|
871
|
+
v = 0.4948029341949241e-3
|
|
872
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
873
|
+
a = 0.1051426854086404e+0
|
|
874
|
+
v = 0.7357990109125470e-3
|
|
875
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
876
|
+
a = 0.1750024867623087e+0
|
|
877
|
+
v = 0.8889132771304384e-3
|
|
878
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
879
|
+
a = 0.2477653379650257e+0
|
|
880
|
+
v = 0.9888347838921435e-3
|
|
881
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
882
|
+
a = 0.3206567123955957e+0
|
|
883
|
+
v = 0.1053299681709471e-2
|
|
884
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
885
|
+
a = 0.3916520749849983e+0
|
|
886
|
+
v = 0.1092778807014578e-2
|
|
887
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
888
|
+
a = 0.4590825874187624e+0
|
|
889
|
+
v = 0.1114389394063227e-2
|
|
890
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
891
|
+
a = 0.5214563888415861e+0
|
|
892
|
+
v = 0.1123724788051555e-2
|
|
893
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
894
|
+
a = 0.6253170244654199e+0
|
|
895
|
+
v = 0.1125239325243814e-2
|
|
896
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
897
|
+
a = 0.6637926744523170e+0
|
|
898
|
+
v = 0.1126153271815905e-2
|
|
899
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
900
|
+
a = 0.6910410398498301e+0
|
|
901
|
+
v = 0.1130286931123841e-2
|
|
902
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
903
|
+
a = 0.7052907007457760e+0
|
|
904
|
+
v = 0.1134986534363955e-2
|
|
905
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
906
|
+
a = 0.1236686762657990e+0
|
|
907
|
+
v = 0.6823367927109931e-3
|
|
908
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
909
|
+
a = 0.2940777114468387e+0
|
|
910
|
+
v = 0.9454158160447096e-3
|
|
911
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
912
|
+
a = 0.4697753849207649e+0
|
|
913
|
+
v = 0.1074429975385679e-2
|
|
914
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
915
|
+
a = 0.6334563241139567e+0
|
|
916
|
+
v = 0.1129300086569132e-2
|
|
917
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
918
|
+
a = 0.5974048614181342e-1
|
|
919
|
+
b = 0.2029128752777523e+0
|
|
920
|
+
v = 0.8436884500901954e-3
|
|
921
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
922
|
+
a = 0.1375760408473636e+0
|
|
923
|
+
b = 0.4602621942484054e+0
|
|
924
|
+
v = 0.1075255720448885e-2
|
|
925
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
926
|
+
a = 0.3391016526336286e+0
|
|
927
|
+
b = 0.5030673999662036e+0
|
|
928
|
+
v = 0.1108577236864462e-2
|
|
929
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
930
|
+
a = 0.1271675191439820e+0
|
|
931
|
+
b = 0.2817606422442134e+0
|
|
932
|
+
v = 0.9566475323783357e-3
|
|
933
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
934
|
+
a = 0.2693120740413512e+0
|
|
935
|
+
b = 0.4331561291720157e+0
|
|
936
|
+
v = 0.1080663250717391e-2
|
|
937
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
938
|
+
a = 0.1419786452601918e+0
|
|
939
|
+
b = 0.6256167358580814e+0
|
|
940
|
+
v = 0.1126797131196295e-2
|
|
941
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
942
|
+
a = 0.6709284600738255e-1
|
|
943
|
+
b = 0.3798395216859157e+0
|
|
944
|
+
v = 0.1022568715358061e-2
|
|
945
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
946
|
+
a = 0.7057738183256172e-1
|
|
947
|
+
b = 0.5517505421423520e+0
|
|
948
|
+
v = 0.1108960267713108e-2
|
|
949
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
950
|
+
a = 0.2783888477882155e+0
|
|
951
|
+
b = 0.6029619156159187e+0
|
|
952
|
+
v = 0.1122790653435766e-2
|
|
953
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
954
|
+
a = 0.1979578938917407e+0
|
|
955
|
+
b = 0.3589606329589096e+0
|
|
956
|
+
v = 0.1032401847117460e-2
|
|
957
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
958
|
+
a = 0.2087307061103274e+0
|
|
959
|
+
b = 0.5348666438135476e+0
|
|
960
|
+
v = 0.1107249382283854e-2
|
|
961
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
962
|
+
a = 0.4055122137872836e+0
|
|
963
|
+
b = 0.5674997546074373e+0
|
|
964
|
+
v = 0.1121780048519972e-2
|
|
965
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
966
|
+
return np.vstack(grids)
|
|
967
|
+
|
|
968
|
+
|
|
969
|
+
def MakeAngularGrid_1202():
|
|
970
|
+
grids = []
|
|
971
|
+
a = 0
|
|
972
|
+
b = 0
|
|
973
|
+
v = 0.1105189233267572e-3
|
|
974
|
+
grids.append(SphGenOh(0, a, b, v))
|
|
975
|
+
v = 0.9205232738090741e-3
|
|
976
|
+
grids.append(SphGenOh(1, a, b, v))
|
|
977
|
+
v = 0.9133159786443561e-3
|
|
978
|
+
grids.append(SphGenOh(2, a, b, v))
|
|
979
|
+
a = 0.3712636449657089e-1
|
|
980
|
+
v = 0.3690421898017899e-3
|
|
981
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
982
|
+
a = 0.9140060412262223e-1
|
|
983
|
+
v = 0.5603990928680660e-3
|
|
984
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
985
|
+
a = 0.1531077852469906e+0
|
|
986
|
+
v = 0.6865297629282609e-3
|
|
987
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
988
|
+
a = 0.2180928891660612e+0
|
|
989
|
+
v = 0.7720338551145630e-3
|
|
990
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
991
|
+
a = 0.2839874532200175e+0
|
|
992
|
+
v = 0.8301545958894795e-3
|
|
993
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
994
|
+
a = 0.3491177600963764e+0
|
|
995
|
+
v = 0.8686692550179628e-3
|
|
996
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
997
|
+
a = 0.4121431461444309e+0
|
|
998
|
+
v = 0.8927076285846890e-3
|
|
999
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1000
|
+
a = 0.4718993627149127e+0
|
|
1001
|
+
v = 0.9060820238568219e-3
|
|
1002
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1003
|
+
a = 0.5273145452842337e+0
|
|
1004
|
+
v = 0.9119777254940867e-3
|
|
1005
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1006
|
+
a = 0.6209475332444019e+0
|
|
1007
|
+
v = 0.9128720138604181e-3
|
|
1008
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1009
|
+
a = 0.6569722711857291e+0
|
|
1010
|
+
v = 0.9130714935691735e-3
|
|
1011
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1012
|
+
a = 0.6841788309070143e+0
|
|
1013
|
+
v = 0.9152873784554116e-3
|
|
1014
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1015
|
+
a = 0.7012604330123631e+0
|
|
1016
|
+
v = 0.9187436274321654e-3
|
|
1017
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1018
|
+
a = 0.1072382215478166e+0
|
|
1019
|
+
v = 0.5176977312965694e-3
|
|
1020
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
1021
|
+
a = 0.2582068959496968e+0
|
|
1022
|
+
v = 0.7331143682101417e-3
|
|
1023
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
1024
|
+
a = 0.4172752955306717e+0
|
|
1025
|
+
v = 0.8463232836379928e-3
|
|
1026
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
1027
|
+
a = 0.5700366911792503e+0
|
|
1028
|
+
v = 0.9031122694253992e-3
|
|
1029
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
1030
|
+
a = 0.9827986018263947e+0
|
|
1031
|
+
b = 0.1771774022615325e+0
|
|
1032
|
+
v = 0.6485778453163257e-3
|
|
1033
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1034
|
+
a = 0.9624249230326228e+0
|
|
1035
|
+
b = 0.2475716463426288e+0
|
|
1036
|
+
v = 0.7435030910982369e-3
|
|
1037
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1038
|
+
a = 0.9402007994128811e+0
|
|
1039
|
+
b = 0.3354616289066489e+0
|
|
1040
|
+
v = 0.7998527891839054e-3
|
|
1041
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1042
|
+
a = 0.9320822040143202e+0
|
|
1043
|
+
b = 0.3173615246611977e+0
|
|
1044
|
+
v = 0.8101731497468018e-3
|
|
1045
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1046
|
+
a = 0.9043674199393299e+0
|
|
1047
|
+
b = 0.4090268427085357e+0
|
|
1048
|
+
v = 0.8483389574594331e-3
|
|
1049
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1050
|
+
a = 0.8912407560074747e+0
|
|
1051
|
+
b = 0.3854291150669224e+0
|
|
1052
|
+
v = 0.8556299257311812e-3
|
|
1053
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1054
|
+
a = 0.8676435628462708e+0
|
|
1055
|
+
b = 0.4932221184851285e+0
|
|
1056
|
+
v = 0.8803208679738260e-3
|
|
1057
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1058
|
+
a = 0.8581979986041619e+0
|
|
1059
|
+
b = 0.4785320675922435e+0
|
|
1060
|
+
v = 0.8811048182425720e-3
|
|
1061
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1062
|
+
a = 0.8396753624049856e+0
|
|
1063
|
+
b = 0.4507422593157064e+0
|
|
1064
|
+
v = 0.8850282341265444e-3
|
|
1065
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1066
|
+
a = 0.8165288564022188e+0
|
|
1067
|
+
b = 0.5632123020762100e+0
|
|
1068
|
+
v = 0.9021342299040653e-3
|
|
1069
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1070
|
+
a = 0.8015469370783529e+0
|
|
1071
|
+
b = 0.5434303569693900e+0
|
|
1072
|
+
v = 0.9010091677105086e-3
|
|
1073
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1074
|
+
a = 0.7773563069070351e+0
|
|
1075
|
+
b = 0.5123518486419871e+0
|
|
1076
|
+
v = 0.9022692938426915e-3
|
|
1077
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1078
|
+
a = 0.7661621213900394e+0
|
|
1079
|
+
b = 0.6394279634749102e+0
|
|
1080
|
+
v = 0.9158016174693465e-3
|
|
1081
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1082
|
+
a = 0.7553584143533510e+0
|
|
1083
|
+
b = 0.6269805509024392e+0
|
|
1084
|
+
v = 0.9131578003189435e-3
|
|
1085
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1086
|
+
a = 0.7344305757559503e+0
|
|
1087
|
+
b = 0.6031161693096310e+0
|
|
1088
|
+
v = 0.9107813579482705e-3
|
|
1089
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1090
|
+
a = 0.7043837184021765e+0
|
|
1091
|
+
b = 0.5693702498468441e+0
|
|
1092
|
+
v = 0.9105760258970126e-3
|
|
1093
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1094
|
+
return np.vstack(grids)
|
|
1095
|
+
|
|
1096
|
+
|
|
1097
|
+
def MakeAngularGrid_1454():
|
|
1098
|
+
grids = []
|
|
1099
|
+
a = 0
|
|
1100
|
+
b = 0
|
|
1101
|
+
v = 0.7777160743261247e-4
|
|
1102
|
+
grids.append(SphGenOh(0, a, b, v))
|
|
1103
|
+
v = 0.7557646413004701e-3
|
|
1104
|
+
grids.append(SphGenOh(2, a, b, v))
|
|
1105
|
+
a = 0.3229290663413854e-1
|
|
1106
|
+
v = 0.2841633806090617e-3
|
|
1107
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1108
|
+
a = 0.8036733271462222e-1
|
|
1109
|
+
v = 0.4374419127053555e-3
|
|
1110
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1111
|
+
a = 0.1354289960531653e+0
|
|
1112
|
+
v = 0.5417174740872172e-3
|
|
1113
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1114
|
+
a = 0.1938963861114426e+0
|
|
1115
|
+
v = 0.6148000891358593e-3
|
|
1116
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1117
|
+
a = 0.2537343715011275e+0
|
|
1118
|
+
v = 0.6664394485800705e-3
|
|
1119
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1120
|
+
a = 0.3135251434752570e+0
|
|
1121
|
+
v = 0.7025039356923220e-3
|
|
1122
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1123
|
+
a = 0.3721558339375338e+0
|
|
1124
|
+
v = 0.7268511789249627e-3
|
|
1125
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1126
|
+
a = 0.4286809575195696e+0
|
|
1127
|
+
v = 0.7422637534208629e-3
|
|
1128
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1129
|
+
a = 0.4822510128282994e+0
|
|
1130
|
+
v = 0.7509545035841214e-3
|
|
1131
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1132
|
+
a = 0.5320679333566263e+0
|
|
1133
|
+
v = 0.7548535057718401e-3
|
|
1134
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1135
|
+
a = 0.6172998195394274e+0
|
|
1136
|
+
v = 0.7554088969774001e-3
|
|
1137
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1138
|
+
a = 0.6510679849127481e+0
|
|
1139
|
+
v = 0.7553147174442808e-3
|
|
1140
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1141
|
+
a = 0.6777315251687360e+0
|
|
1142
|
+
v = 0.7564767653292297e-3
|
|
1143
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1144
|
+
a = 0.6963109410648741e+0
|
|
1145
|
+
v = 0.7587991808518730e-3
|
|
1146
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1147
|
+
a = 0.7058935009831749e+0
|
|
1148
|
+
v = 0.7608261832033027e-3
|
|
1149
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1150
|
+
a = 0.9955546194091857e+0
|
|
1151
|
+
v = 0.4021680447874916e-3
|
|
1152
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
1153
|
+
a = 0.9734115901794209e+0
|
|
1154
|
+
v = 0.5804871793945964e-3
|
|
1155
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
1156
|
+
a = 0.9275693732388626e+0
|
|
1157
|
+
v = 0.6792151955945159e-3
|
|
1158
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
1159
|
+
a = 0.8568022422795103e+0
|
|
1160
|
+
v = 0.7336741211286294e-3
|
|
1161
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
1162
|
+
a = 0.7623495553719372e+0
|
|
1163
|
+
v = 0.7581866300989608e-3
|
|
1164
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
1165
|
+
a = 0.5707522908892223e+0
|
|
1166
|
+
b = 0.4387028039889501e+0
|
|
1167
|
+
v = 0.7538257859800743e-3
|
|
1168
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1169
|
+
a = 0.5196463388403083e+0
|
|
1170
|
+
b = 0.3858908414762617e+0
|
|
1171
|
+
v = 0.7483517247053123e-3
|
|
1172
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1173
|
+
a = 0.4646337531215351e+0
|
|
1174
|
+
b = 0.3301937372343854e+0
|
|
1175
|
+
v = 0.7371763661112059e-3
|
|
1176
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1177
|
+
a = 0.4063901697557691e+0
|
|
1178
|
+
b = 0.2725423573563777e+0
|
|
1179
|
+
v = 0.7183448895756934e-3
|
|
1180
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1181
|
+
a = 0.3456329466643087e+0
|
|
1182
|
+
b = 0.2139510237495250e+0
|
|
1183
|
+
v = 0.6895815529822191e-3
|
|
1184
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1185
|
+
a = 0.2831395121050332e+0
|
|
1186
|
+
b = 0.1555922309786647e+0
|
|
1187
|
+
v = 0.6480105801792886e-3
|
|
1188
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1189
|
+
a = 0.2197682022925330e+0
|
|
1190
|
+
b = 0.9892878979686097e-1
|
|
1191
|
+
v = 0.5897558896594636e-3
|
|
1192
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1193
|
+
a = 0.1564696098650355e+0
|
|
1194
|
+
b = 0.4598642910675510e-1
|
|
1195
|
+
v = 0.5095708849247346e-3
|
|
1196
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1197
|
+
a = 0.6027356673721295e+0
|
|
1198
|
+
b = 0.3376625140173426e+0
|
|
1199
|
+
v = 0.7536906428909755e-3
|
|
1200
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1201
|
+
a = 0.5496032320255096e+0
|
|
1202
|
+
b = 0.2822301309727988e+0
|
|
1203
|
+
v = 0.7472505965575118e-3
|
|
1204
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1205
|
+
a = 0.4921707755234567e+0
|
|
1206
|
+
b = 0.2248632342592540e+0
|
|
1207
|
+
v = 0.7343017132279698e-3
|
|
1208
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1209
|
+
a = 0.4309422998598483e+0
|
|
1210
|
+
b = 0.1666224723456479e+0
|
|
1211
|
+
v = 0.7130871582177445e-3
|
|
1212
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1213
|
+
a = 0.3664108182313672e+0
|
|
1214
|
+
b = 0.1086964901822169e+0
|
|
1215
|
+
v = 0.6817022032112776e-3
|
|
1216
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1217
|
+
a = 0.2990189057758436e+0
|
|
1218
|
+
b = 0.5251989784120085e-1
|
|
1219
|
+
v = 0.6380941145604121e-3
|
|
1220
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1221
|
+
a = 0.6268724013144998e+0
|
|
1222
|
+
b = 0.2297523657550023e+0
|
|
1223
|
+
v = 0.7550381377920310e-3
|
|
1224
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1225
|
+
a = 0.5707324144834607e+0
|
|
1226
|
+
b = 0.1723080607093800e+0
|
|
1227
|
+
v = 0.7478646640144802e-3
|
|
1228
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1229
|
+
a = 0.5096360901960365e+0
|
|
1230
|
+
b = 0.1140238465390513e+0
|
|
1231
|
+
v = 0.7335918720601220e-3
|
|
1232
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1233
|
+
a = 0.4438729938312456e+0
|
|
1234
|
+
b = 0.5611522095882537e-1
|
|
1235
|
+
v = 0.7110120527658118e-3
|
|
1236
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1237
|
+
a = 0.6419978471082389e+0
|
|
1238
|
+
b = 0.1164174423140873e+0
|
|
1239
|
+
v = 0.7571363978689501e-3
|
|
1240
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1241
|
+
a = 0.5817218061802611e+0
|
|
1242
|
+
b = 0.5797589531445219e-1
|
|
1243
|
+
v = 0.7489908329079234e-3
|
|
1244
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1245
|
+
return np.vstack(grids)
|
|
1246
|
+
|
|
1247
|
+
|
|
1248
|
+
def MakeAngularGrid_1730():
|
|
1249
|
+
grids = []
|
|
1250
|
+
a = 0
|
|
1251
|
+
b = 0
|
|
1252
|
+
v = 0.6309049437420976e-4
|
|
1253
|
+
grids.append(SphGenOh(0, a, b, v))
|
|
1254
|
+
v = 0.6398287705571748e-3
|
|
1255
|
+
grids.append(SphGenOh(1, a, b, v))
|
|
1256
|
+
v = 0.6357185073530720e-3
|
|
1257
|
+
grids.append(SphGenOh(2, a, b, v))
|
|
1258
|
+
a = 0.2860923126194662e-1
|
|
1259
|
+
v = 0.2221207162188168e-3
|
|
1260
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1261
|
+
a = 0.7142556767711522e-1
|
|
1262
|
+
v = 0.3475784022286848e-3
|
|
1263
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1264
|
+
a = 0.1209199540995559e+0
|
|
1265
|
+
v = 0.4350742443589804e-3
|
|
1266
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1267
|
+
a = 0.1738673106594379e+0
|
|
1268
|
+
v = 0.4978569136522127e-3
|
|
1269
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1270
|
+
a = 0.2284645438467734e+0
|
|
1271
|
+
v = 0.5435036221998053e-3
|
|
1272
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1273
|
+
a = 0.2834807671701512e+0
|
|
1274
|
+
v = 0.5765913388219542e-3
|
|
1275
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1276
|
+
a = 0.3379680145467339e+0
|
|
1277
|
+
v = 0.6001200359226003e-3
|
|
1278
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1279
|
+
a = 0.3911355454819537e+0
|
|
1280
|
+
v = 0.6162178172717512e-3
|
|
1281
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1282
|
+
a = 0.4422860353001403e+0
|
|
1283
|
+
v = 0.6265218152438485e-3
|
|
1284
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1285
|
+
a = 0.4907781568726057e+0
|
|
1286
|
+
v = 0.6323987160974212e-3
|
|
1287
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1288
|
+
a = 0.5360006153211468e+0
|
|
1289
|
+
v = 0.6350767851540569e-3
|
|
1290
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1291
|
+
a = 0.6142105973596603e+0
|
|
1292
|
+
v = 0.6354362775297107e-3
|
|
1293
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1294
|
+
a = 0.6459300387977504e+0
|
|
1295
|
+
v = 0.6352302462706235e-3
|
|
1296
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1297
|
+
a = 0.6718056125089225e+0
|
|
1298
|
+
v = 0.6358117881417972e-3
|
|
1299
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1300
|
+
a = 0.6910888533186254e+0
|
|
1301
|
+
v = 0.6373101590310117e-3
|
|
1302
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1303
|
+
a = 0.7030467416823252e+0
|
|
1304
|
+
v = 0.6390428961368665e-3
|
|
1305
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1306
|
+
a = 0.8354951166354646e-1
|
|
1307
|
+
v = 0.3186913449946576e-3
|
|
1308
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
1309
|
+
a = 0.2050143009099486e+0
|
|
1310
|
+
v = 0.4678028558591711e-3
|
|
1311
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
1312
|
+
a = 0.3370208290706637e+0
|
|
1313
|
+
v = 0.5538829697598626e-3
|
|
1314
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
1315
|
+
a = 0.4689051484233963e+0
|
|
1316
|
+
v = 0.6044475907190476e-3
|
|
1317
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
1318
|
+
a = 0.5939400424557334e+0
|
|
1319
|
+
v = 0.6313575103509012e-3
|
|
1320
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
1321
|
+
a = 0.1394983311832261e+0
|
|
1322
|
+
b = 0.4097581162050343e-1
|
|
1323
|
+
v = 0.4078626431855630e-3
|
|
1324
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1325
|
+
a = 0.1967999180485014e+0
|
|
1326
|
+
b = 0.8851987391293348e-1
|
|
1327
|
+
v = 0.4759933057812725e-3
|
|
1328
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1329
|
+
a = 0.2546183732548967e+0
|
|
1330
|
+
b = 0.1397680182969819e+0
|
|
1331
|
+
v = 0.5268151186413440e-3
|
|
1332
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1333
|
+
a = 0.3121281074713875e+0
|
|
1334
|
+
b = 0.1929452542226526e+0
|
|
1335
|
+
v = 0.5643048560507316e-3
|
|
1336
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1337
|
+
a = 0.3685981078502492e+0
|
|
1338
|
+
b = 0.2467898337061562e+0
|
|
1339
|
+
v = 0.5914501076613073e-3
|
|
1340
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1341
|
+
a = 0.4233760321547856e+0
|
|
1342
|
+
b = 0.3003104124785409e+0
|
|
1343
|
+
v = 0.6104561257874195e-3
|
|
1344
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1345
|
+
a = 0.4758671236059246e+0
|
|
1346
|
+
b = 0.3526684328175033e+0
|
|
1347
|
+
v = 0.6230252860707806e-3
|
|
1348
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1349
|
+
a = 0.5255178579796463e+0
|
|
1350
|
+
b = 0.4031134861145713e+0
|
|
1351
|
+
v = 0.6305618761760796e-3
|
|
1352
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1353
|
+
a = 0.5718025633734589e+0
|
|
1354
|
+
b = 0.4509426448342351e+0
|
|
1355
|
+
v = 0.6343092767597889e-3
|
|
1356
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1357
|
+
a = 0.2686927772723415e+0
|
|
1358
|
+
b = 0.4711322502423248e-1
|
|
1359
|
+
v = 0.5176268945737826e-3
|
|
1360
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1361
|
+
a = 0.3306006819904809e+0
|
|
1362
|
+
b = 0.9784487303942695e-1
|
|
1363
|
+
v = 0.5564840313313692e-3
|
|
1364
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1365
|
+
a = 0.3904906850594983e+0
|
|
1366
|
+
b = 0.1505395810025273e+0
|
|
1367
|
+
v = 0.5856426671038980e-3
|
|
1368
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1369
|
+
a = 0.4479957951904390e+0
|
|
1370
|
+
b = 0.2039728156296050e+0
|
|
1371
|
+
v = 0.6066386925777091e-3
|
|
1372
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1373
|
+
a = 0.5027076848919780e+0
|
|
1374
|
+
b = 0.2571529941121107e+0
|
|
1375
|
+
v = 0.6208824962234458e-3
|
|
1376
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1377
|
+
a = 0.5542087392260217e+0
|
|
1378
|
+
b = 0.3092191375815670e+0
|
|
1379
|
+
v = 0.6296314297822907e-3
|
|
1380
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1381
|
+
a = 0.6020850887375187e+0
|
|
1382
|
+
b = 0.3593807506130276e+0
|
|
1383
|
+
v = 0.6340423756791859e-3
|
|
1384
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1385
|
+
a = 0.4019851409179594e+0
|
|
1386
|
+
b = 0.5063389934378671e-1
|
|
1387
|
+
v = 0.5829627677107342e-3
|
|
1388
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1389
|
+
a = 0.4635614567449800e+0
|
|
1390
|
+
b = 0.1032422269160612e+0
|
|
1391
|
+
v = 0.6048693376081110e-3
|
|
1392
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1393
|
+
a = 0.5215860931591575e+0
|
|
1394
|
+
b = 0.1566322094006254e+0
|
|
1395
|
+
v = 0.6202362317732461e-3
|
|
1396
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1397
|
+
a = 0.5758202499099271e+0
|
|
1398
|
+
b = 0.2098082827491099e+0
|
|
1399
|
+
v = 0.6299005328403779e-3
|
|
1400
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1401
|
+
a = 0.6259893683876795e+0
|
|
1402
|
+
b = 0.2618824114553391e+0
|
|
1403
|
+
v = 0.6347722390609353e-3
|
|
1404
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1405
|
+
a = 0.5313795124811891e+0
|
|
1406
|
+
b = 0.5263245019338556e-1
|
|
1407
|
+
v = 0.6203778981238834e-3
|
|
1408
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1409
|
+
a = 0.5893317955931995e+0
|
|
1410
|
+
b = 0.1061059730982005e+0
|
|
1411
|
+
v = 0.6308414671239979e-3
|
|
1412
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1413
|
+
a = 0.6426246321215801e+0
|
|
1414
|
+
b = 0.1594171564034221e+0
|
|
1415
|
+
v = 0.6362706466959498e-3
|
|
1416
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1417
|
+
a = 0.6511904367376113e+0
|
|
1418
|
+
b = 0.5354789536565540e-1
|
|
1419
|
+
v = 0.6375414170333233e-3
|
|
1420
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1421
|
+
return np.vstack(grids)
|
|
1422
|
+
|
|
1423
|
+
|
|
1424
|
+
def MakeAngularGrid_2030():
|
|
1425
|
+
grids = []
|
|
1426
|
+
a = 0
|
|
1427
|
+
b = 0
|
|
1428
|
+
v = 0.4656031899197431e-4
|
|
1429
|
+
grids.append(SphGenOh(0, a, b, v))
|
|
1430
|
+
v = 0.5421549195295507e-3
|
|
1431
|
+
grids.append(SphGenOh(2, a, b, v))
|
|
1432
|
+
a = 0.2540835336814348e-1
|
|
1433
|
+
v = 0.1778522133346553e-3
|
|
1434
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1435
|
+
a = 0.6399322800504915e-1
|
|
1436
|
+
v = 0.2811325405682796e-3
|
|
1437
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1438
|
+
a = 0.1088269469804125e+0
|
|
1439
|
+
v = 0.3548896312631459e-3
|
|
1440
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1441
|
+
a = 0.1570670798818287e+0
|
|
1442
|
+
v = 0.4090310897173364e-3
|
|
1443
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1444
|
+
a = 0.2071163932282514e+0
|
|
1445
|
+
v = 0.4493286134169965e-3
|
|
1446
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1447
|
+
a = 0.2578914044450844e+0
|
|
1448
|
+
v = 0.4793728447962723e-3
|
|
1449
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1450
|
+
a = 0.3085687558169623e+0
|
|
1451
|
+
v = 0.5015415319164265e-3
|
|
1452
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1453
|
+
a = 0.3584719706267024e+0
|
|
1454
|
+
v = 0.5175127372677937e-3
|
|
1455
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1456
|
+
a = 0.4070135594428709e+0
|
|
1457
|
+
v = 0.5285522262081019e-3
|
|
1458
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1459
|
+
a = 0.4536618626222638e+0
|
|
1460
|
+
v = 0.5356832703713962e-3
|
|
1461
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1462
|
+
a = 0.4979195686463577e+0
|
|
1463
|
+
v = 0.5397914736175170e-3
|
|
1464
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1465
|
+
a = 0.5393075111126999e+0
|
|
1466
|
+
v = 0.5416899441599930e-3
|
|
1467
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1468
|
+
a = 0.6115617676843916e+0
|
|
1469
|
+
v = 0.5419308476889938e-3
|
|
1470
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1471
|
+
a = 0.6414308435160159e+0
|
|
1472
|
+
v = 0.5416936902030596e-3
|
|
1473
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1474
|
+
a = 0.6664099412721607e+0
|
|
1475
|
+
v = 0.5419544338703164e-3
|
|
1476
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1477
|
+
a = 0.6859161771214913e+0
|
|
1478
|
+
v = 0.5428983656630975e-3
|
|
1479
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1480
|
+
a = 0.6993625593503890e+0
|
|
1481
|
+
v = 0.5442286500098193e-3
|
|
1482
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1483
|
+
a = 0.7062393387719380e+0
|
|
1484
|
+
v = 0.5452250345057301e-3
|
|
1485
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1486
|
+
a = 0.7479028168349763e-1
|
|
1487
|
+
v = 0.2568002497728530e-3
|
|
1488
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
1489
|
+
a = 0.1848951153969366e+0
|
|
1490
|
+
v = 0.3827211700292145e-3
|
|
1491
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
1492
|
+
a = 0.3059529066581305e+0
|
|
1493
|
+
v = 0.4579491561917824e-3
|
|
1494
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
1495
|
+
a = 0.4285556101021362e+0
|
|
1496
|
+
v = 0.5042003969083574e-3
|
|
1497
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
1498
|
+
a = 0.5468758653496526e+0
|
|
1499
|
+
v = 0.5312708889976025e-3
|
|
1500
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
1501
|
+
a = 0.6565821978343439e+0
|
|
1502
|
+
v = 0.5438401790747117e-3
|
|
1503
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
1504
|
+
a = 0.1253901572367117e+0
|
|
1505
|
+
b = 0.3681917226439641e-1
|
|
1506
|
+
v = 0.3316041873197344e-3
|
|
1507
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1508
|
+
a = 0.1775721510383941e+0
|
|
1509
|
+
b = 0.7982487607213301e-1
|
|
1510
|
+
v = 0.3899113567153771e-3
|
|
1511
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1512
|
+
a = 0.2305693358216114e+0
|
|
1513
|
+
b = 0.1264640966592335e+0
|
|
1514
|
+
v = 0.4343343327201309e-3
|
|
1515
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1516
|
+
a = 0.2836502845992063e+0
|
|
1517
|
+
b = 0.1751585683418957e+0
|
|
1518
|
+
v = 0.4679415262318919e-3
|
|
1519
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1520
|
+
a = 0.3361794746232590e+0
|
|
1521
|
+
b = 0.2247995907632670e+0
|
|
1522
|
+
v = 0.4930847981631031e-3
|
|
1523
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1524
|
+
a = 0.3875979172264824e+0
|
|
1525
|
+
b = 0.2745299257422246e+0
|
|
1526
|
+
v = 0.5115031867540091e-3
|
|
1527
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1528
|
+
a = 0.4374019316999074e+0
|
|
1529
|
+
b = 0.3236373482441118e+0
|
|
1530
|
+
v = 0.5245217148457367e-3
|
|
1531
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1532
|
+
a = 0.4851275843340022e+0
|
|
1533
|
+
b = 0.3714967859436741e+0
|
|
1534
|
+
v = 0.5332041499895321e-3
|
|
1535
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1536
|
+
a = 0.5303391803806868e+0
|
|
1537
|
+
b = 0.4175353646321745e+0
|
|
1538
|
+
v = 0.5384583126021542e-3
|
|
1539
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1540
|
+
a = 0.5726197380596287e+0
|
|
1541
|
+
b = 0.4612084406355461e+0
|
|
1542
|
+
v = 0.5411067210798852e-3
|
|
1543
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1544
|
+
a = 0.2431520732564863e+0
|
|
1545
|
+
b = 0.4258040133043952e-1
|
|
1546
|
+
v = 0.4259797391468714e-3
|
|
1547
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1548
|
+
a = 0.3002096800895869e+0
|
|
1549
|
+
b = 0.8869424306722721e-1
|
|
1550
|
+
v = 0.4604931368460021e-3
|
|
1551
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1552
|
+
a = 0.3558554457457432e+0
|
|
1553
|
+
b = 0.1368811706510655e+0
|
|
1554
|
+
v = 0.4871814878255202e-3
|
|
1555
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1556
|
+
a = 0.4097782537048887e+0
|
|
1557
|
+
b = 0.1860739985015033e+0
|
|
1558
|
+
v = 0.5072242910074885e-3
|
|
1559
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1560
|
+
a = 0.4616337666067458e+0
|
|
1561
|
+
b = 0.2354235077395853e+0
|
|
1562
|
+
v = 0.5217069845235350e-3
|
|
1563
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1564
|
+
a = 0.5110707008417874e+0
|
|
1565
|
+
b = 0.2842074921347011e+0
|
|
1566
|
+
v = 0.5315785966280310e-3
|
|
1567
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1568
|
+
a = 0.5577415286163795e+0
|
|
1569
|
+
b = 0.3317784414984102e+0
|
|
1570
|
+
v = 0.5376833708758905e-3
|
|
1571
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1572
|
+
a = 0.6013060431366950e+0
|
|
1573
|
+
b = 0.3775299002040700e+0
|
|
1574
|
+
v = 0.5408032092069521e-3
|
|
1575
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1576
|
+
a = 0.3661596767261781e+0
|
|
1577
|
+
b = 0.4599367887164592e-1
|
|
1578
|
+
v = 0.4842744917904866e-3
|
|
1579
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1580
|
+
a = 0.4237633153506581e+0
|
|
1581
|
+
b = 0.9404893773654421e-1
|
|
1582
|
+
v = 0.5048926076188130e-3
|
|
1583
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1584
|
+
a = 0.4786328454658452e+0
|
|
1585
|
+
b = 0.1431377109091971e+0
|
|
1586
|
+
v = 0.5202607980478373e-3
|
|
1587
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1588
|
+
a = 0.5305702076789774e+0
|
|
1589
|
+
b = 0.1924186388843570e+0
|
|
1590
|
+
v = 0.5309932388325743e-3
|
|
1591
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1592
|
+
a = 0.5793436224231788e+0
|
|
1593
|
+
b = 0.2411590944775190e+0
|
|
1594
|
+
v = 0.5377419770895208e-3
|
|
1595
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1596
|
+
a = 0.6247069017094747e+0
|
|
1597
|
+
b = 0.2886871491583605e+0
|
|
1598
|
+
v = 0.5411696331677717e-3
|
|
1599
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1600
|
+
a = 0.4874315552535204e+0
|
|
1601
|
+
b = 0.4804978774953206e-1
|
|
1602
|
+
v = 0.5197996293282420e-3
|
|
1603
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1604
|
+
a = 0.5427337322059053e+0
|
|
1605
|
+
b = 0.9716857199366665e-1
|
|
1606
|
+
v = 0.5311120836622945e-3
|
|
1607
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1608
|
+
a = 0.5943493747246700e+0
|
|
1609
|
+
b = 0.1465205839795055e+0
|
|
1610
|
+
v = 0.5384309319956951e-3
|
|
1611
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1612
|
+
a = 0.6421314033564943e+0
|
|
1613
|
+
b = 0.1953579449803574e+0
|
|
1614
|
+
v = 0.5421859504051886e-3
|
|
1615
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1616
|
+
a = 0.6020628374713980e+0
|
|
1617
|
+
b = 0.4916375015738108e-1
|
|
1618
|
+
v = 0.5390948355046314e-3
|
|
1619
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1620
|
+
a = 0.6529222529856881e+0
|
|
1621
|
+
b = 0.9861621540127005e-1
|
|
1622
|
+
v = 0.5433312705027845e-3
|
|
1623
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1624
|
+
return np.vstack(grids)
|
|
1625
|
+
|
|
1626
|
+
|
|
1627
|
+
def MakeAngularGrid_2354():
|
|
1628
|
+
grids = []
|
|
1629
|
+
a = 0
|
|
1630
|
+
b = 0
|
|
1631
|
+
v = 0.3922616270665292e-4
|
|
1632
|
+
grids.append(SphGenOh(0, a, b, v))
|
|
1633
|
+
v = 0.4703831750854424e-3
|
|
1634
|
+
grids.append(SphGenOh(1, a, b, v))
|
|
1635
|
+
v = 0.4678202801282136e-3
|
|
1636
|
+
grids.append(SphGenOh(2, a, b, v))
|
|
1637
|
+
a = 0.2290024646530589e-1
|
|
1638
|
+
v = 0.1437832228979900e-3
|
|
1639
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1640
|
+
a = 0.5779086652271284e-1
|
|
1641
|
+
v = 0.2303572493577644e-3
|
|
1642
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1643
|
+
a = 0.9863103576375984e-1
|
|
1644
|
+
v = 0.2933110752447454e-3
|
|
1645
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1646
|
+
a = 0.1428155792982185e+0
|
|
1647
|
+
v = 0.3402905998359838e-3
|
|
1648
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1649
|
+
a = 0.1888978116601463e+0
|
|
1650
|
+
v = 0.3759138466870372e-3
|
|
1651
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1652
|
+
a = 0.2359091682970210e+0
|
|
1653
|
+
v = 0.4030638447899798e-3
|
|
1654
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1655
|
+
a = 0.2831228833706171e+0
|
|
1656
|
+
v = 0.4236591432242211e-3
|
|
1657
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1658
|
+
a = 0.3299495857966693e+0
|
|
1659
|
+
v = 0.4390522656946746e-3
|
|
1660
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1661
|
+
a = 0.3758840802660796e+0
|
|
1662
|
+
v = 0.4502523466626247e-3
|
|
1663
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1664
|
+
a = 0.4204751831009480e+0
|
|
1665
|
+
v = 0.4580577727783541e-3
|
|
1666
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1667
|
+
a = 0.4633068518751051e+0
|
|
1668
|
+
v = 0.4631391616615899e-3
|
|
1669
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1670
|
+
a = 0.5039849474507313e+0
|
|
1671
|
+
v = 0.4660928953698676e-3
|
|
1672
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1673
|
+
a = 0.5421265793440747e+0
|
|
1674
|
+
v = 0.4674751807936953e-3
|
|
1675
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1676
|
+
a = 0.6092660230557310e+0
|
|
1677
|
+
v = 0.4676414903932920e-3
|
|
1678
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1679
|
+
a = 0.6374654204984869e+0
|
|
1680
|
+
v = 0.4674086492347870e-3
|
|
1681
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1682
|
+
a = 0.6615136472609892e+0
|
|
1683
|
+
v = 0.4674928539483207e-3
|
|
1684
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1685
|
+
a = 0.6809487285958127e+0
|
|
1686
|
+
v = 0.4680748979686447e-3
|
|
1687
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1688
|
+
a = 0.6952980021665196e+0
|
|
1689
|
+
v = 0.4690449806389040e-3
|
|
1690
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1691
|
+
a = 0.7041245497695400e+0
|
|
1692
|
+
v = 0.4699877075860818e-3
|
|
1693
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1694
|
+
a = 0.6744033088306065e-1
|
|
1695
|
+
v = 0.2099942281069176e-3
|
|
1696
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
1697
|
+
a = 0.1678684485334166e+0
|
|
1698
|
+
v = 0.3172269150712804e-3
|
|
1699
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
1700
|
+
a = 0.2793559049539613e+0
|
|
1701
|
+
v = 0.3832051358546523e-3
|
|
1702
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
1703
|
+
a = 0.3935264218057639e+0
|
|
1704
|
+
v = 0.4252193818146985e-3
|
|
1705
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
1706
|
+
a = 0.5052629268232558e+0
|
|
1707
|
+
v = 0.4513807963755000e-3
|
|
1708
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
1709
|
+
a = 0.6107905315437531e+0
|
|
1710
|
+
v = 0.4657797469114178e-3
|
|
1711
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
1712
|
+
a = 0.1135081039843524e+0
|
|
1713
|
+
b = 0.3331954884662588e-1
|
|
1714
|
+
v = 0.2733362800522836e-3
|
|
1715
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1716
|
+
a = 0.1612866626099378e+0
|
|
1717
|
+
b = 0.7247167465436538e-1
|
|
1718
|
+
v = 0.3235485368463559e-3
|
|
1719
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1720
|
+
a = 0.2100786550168205e+0
|
|
1721
|
+
b = 0.1151539110849745e+0
|
|
1722
|
+
v = 0.3624908726013453e-3
|
|
1723
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1724
|
+
a = 0.2592282009459942e+0
|
|
1725
|
+
b = 0.1599491097143677e+0
|
|
1726
|
+
v = 0.3925540070712828e-3
|
|
1727
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1728
|
+
a = 0.3081740561320203e+0
|
|
1729
|
+
b = 0.2058699956028027e+0
|
|
1730
|
+
v = 0.4156129781116235e-3
|
|
1731
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1732
|
+
a = 0.3564289781578164e+0
|
|
1733
|
+
b = 0.2521624953502911e+0
|
|
1734
|
+
v = 0.4330644984623263e-3
|
|
1735
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1736
|
+
a = 0.4035587288240703e+0
|
|
1737
|
+
b = 0.2982090785797674e+0
|
|
1738
|
+
v = 0.4459677725921312e-3
|
|
1739
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1740
|
+
a = 0.4491671196373903e+0
|
|
1741
|
+
b = 0.3434762087235733e+0
|
|
1742
|
+
v = 0.4551593004456795e-3
|
|
1743
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1744
|
+
a = 0.4928854782917489e+0
|
|
1745
|
+
b = 0.3874831357203437e+0
|
|
1746
|
+
v = 0.4613341462749918e-3
|
|
1747
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1748
|
+
a = 0.5343646791958988e+0
|
|
1749
|
+
b = 0.4297814821746926e+0
|
|
1750
|
+
v = 0.4651019618269806e-3
|
|
1751
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1752
|
+
a = 0.5732683216530990e+0
|
|
1753
|
+
b = 0.4699402260943537e+0
|
|
1754
|
+
v = 0.4670249536100625e-3
|
|
1755
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1756
|
+
a = 0.2214131583218986e+0
|
|
1757
|
+
b = 0.3873602040643895e-1
|
|
1758
|
+
v = 0.3549555576441708e-3
|
|
1759
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1760
|
+
a = 0.2741796504750071e+0
|
|
1761
|
+
b = 0.8089496256902013e-1
|
|
1762
|
+
v = 0.3856108245249010e-3
|
|
1763
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1764
|
+
a = 0.3259797439149485e+0
|
|
1765
|
+
b = 0.1251732177620872e+0
|
|
1766
|
+
v = 0.4098622845756882e-3
|
|
1767
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1768
|
+
a = 0.3765441148826891e+0
|
|
1769
|
+
b = 0.1706260286403185e+0
|
|
1770
|
+
v = 0.4286328604268950e-3
|
|
1771
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1772
|
+
a = 0.4255773574530558e+0
|
|
1773
|
+
b = 0.2165115147300408e+0
|
|
1774
|
+
v = 0.4427802198993945e-3
|
|
1775
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1776
|
+
a = 0.4727795117058430e+0
|
|
1777
|
+
b = 0.2622089812225259e+0
|
|
1778
|
+
v = 0.4530473511488561e-3
|
|
1779
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1780
|
+
a = 0.5178546895819012e+0
|
|
1781
|
+
b = 0.3071721431296201e+0
|
|
1782
|
+
v = 0.4600805475703138e-3
|
|
1783
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1784
|
+
a = 0.5605141192097460e+0
|
|
1785
|
+
b = 0.3508998998801138e+0
|
|
1786
|
+
v = 0.4644599059958017e-3
|
|
1787
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1788
|
+
a = 0.6004763319352512e+0
|
|
1789
|
+
b = 0.3929160876166931e+0
|
|
1790
|
+
v = 0.4667274455712508e-3
|
|
1791
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1792
|
+
a = 0.3352842634946949e+0
|
|
1793
|
+
b = 0.4202563457288019e-1
|
|
1794
|
+
v = 0.4069360518020356e-3
|
|
1795
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1796
|
+
a = 0.3891971629814670e+0
|
|
1797
|
+
b = 0.8614309758870850e-1
|
|
1798
|
+
v = 0.4260442819919195e-3
|
|
1799
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1800
|
+
a = 0.4409875565542281e+0
|
|
1801
|
+
b = 0.1314500879380001e+0
|
|
1802
|
+
v = 0.4408678508029063e-3
|
|
1803
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1804
|
+
a = 0.4904893058592484e+0
|
|
1805
|
+
b = 0.1772189657383859e+0
|
|
1806
|
+
v = 0.4518748115548597e-3
|
|
1807
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1808
|
+
a = 0.5375056138769549e+0
|
|
1809
|
+
b = 0.2228277110050294e+0
|
|
1810
|
+
v = 0.4595564875375116e-3
|
|
1811
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1812
|
+
a = 0.5818255708669969e+0
|
|
1813
|
+
b = 0.2677179935014386e+0
|
|
1814
|
+
v = 0.4643988774315846e-3
|
|
1815
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1816
|
+
a = 0.6232334858144959e+0
|
|
1817
|
+
b = 0.3113675035544165e+0
|
|
1818
|
+
v = 0.4668827491646946e-3
|
|
1819
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1820
|
+
a = 0.4489485354492058e+0
|
|
1821
|
+
b = 0.4409162378368174e-1
|
|
1822
|
+
v = 0.4400541823741973e-3
|
|
1823
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1824
|
+
a = 0.5015136875933150e+0
|
|
1825
|
+
b = 0.8939009917748489e-1
|
|
1826
|
+
v = 0.4514512890193797e-3
|
|
1827
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1828
|
+
a = 0.5511300550512623e+0
|
|
1829
|
+
b = 0.1351806029383365e+0
|
|
1830
|
+
v = 0.4596198627347549e-3
|
|
1831
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1832
|
+
a = 0.5976720409858000e+0
|
|
1833
|
+
b = 0.1808370355053196e+0
|
|
1834
|
+
v = 0.4648659016801781e-3
|
|
1835
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1836
|
+
a = 0.6409956378989354e+0
|
|
1837
|
+
b = 0.2257852192301602e+0
|
|
1838
|
+
v = 0.4675502017157673e-3
|
|
1839
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1840
|
+
a = 0.5581222330827514e+0
|
|
1841
|
+
b = 0.4532173421637160e-1
|
|
1842
|
+
v = 0.4598494476455523e-3
|
|
1843
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1844
|
+
a = 0.6074705984161695e+0
|
|
1845
|
+
b = 0.9117488031840314e-1
|
|
1846
|
+
v = 0.4654916955152048e-3
|
|
1847
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1848
|
+
a = 0.6532272537379033e+0
|
|
1849
|
+
b = 0.1369294213140155e+0
|
|
1850
|
+
v = 0.4684709779505137e-3
|
|
1851
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1852
|
+
a = 0.6594761494500487e+0
|
|
1853
|
+
b = 0.4589901487275583e-1
|
|
1854
|
+
v = 0.4691445539106986e-3
|
|
1855
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1856
|
+
return np.vstack(grids)
|
|
1857
|
+
|
|
1858
|
+
|
|
1859
|
+
def MakeAngularGrid_2702():
|
|
1860
|
+
grids = []
|
|
1861
|
+
a = 0
|
|
1862
|
+
b = 0
|
|
1863
|
+
v = 0.2998675149888161e-4
|
|
1864
|
+
grids.append(SphGenOh(0, a, b, v))
|
|
1865
|
+
v = 0.4077860529495355e-3
|
|
1866
|
+
grids.append(SphGenOh(2, a, b, v))
|
|
1867
|
+
a = 0.2065562538818703e-1
|
|
1868
|
+
v = 0.1185349192520667e-3
|
|
1869
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1870
|
+
a = 0.5250918173022379e-1
|
|
1871
|
+
v = 0.1913408643425751e-3
|
|
1872
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1873
|
+
a = 0.8993480082038376e-1
|
|
1874
|
+
v = 0.2452886577209897e-3
|
|
1875
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1876
|
+
a = 0.1306023924436019e+0
|
|
1877
|
+
v = 0.2862408183288702e-3
|
|
1878
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1879
|
+
a = 0.1732060388531418e+0
|
|
1880
|
+
v = 0.3178032258257357e-3
|
|
1881
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1882
|
+
a = 0.2168727084820249e+0
|
|
1883
|
+
v = 0.3422945667633690e-3
|
|
1884
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1885
|
+
a = 0.2609528309173586e+0
|
|
1886
|
+
v = 0.3612790520235922e-3
|
|
1887
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1888
|
+
a = 0.3049252927938952e+0
|
|
1889
|
+
v = 0.3758638229818521e-3
|
|
1890
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1891
|
+
a = 0.3483484138084404e+0
|
|
1892
|
+
v = 0.3868711798859953e-3
|
|
1893
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1894
|
+
a = 0.3908321549106406e+0
|
|
1895
|
+
v = 0.3949429933189938e-3
|
|
1896
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1897
|
+
a = 0.4320210071894814e+0
|
|
1898
|
+
v = 0.4006068107541156e-3
|
|
1899
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1900
|
+
a = 0.4715824795890053e+0
|
|
1901
|
+
v = 0.4043192149672723e-3
|
|
1902
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1903
|
+
a = 0.5091984794078453e+0
|
|
1904
|
+
v = 0.4064947495808078e-3
|
|
1905
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1906
|
+
a = 0.5445580145650803e+0
|
|
1907
|
+
v = 0.4075245619813152e-3
|
|
1908
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1909
|
+
a = 0.6072575796841768e+0
|
|
1910
|
+
v = 0.4076423540893566e-3
|
|
1911
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1912
|
+
a = 0.6339484505755803e+0
|
|
1913
|
+
v = 0.4074280862251555e-3
|
|
1914
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1915
|
+
a = 0.6570718257486958e+0
|
|
1916
|
+
v = 0.4074163756012244e-3
|
|
1917
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1918
|
+
a = 0.6762557330090709e+0
|
|
1919
|
+
v = 0.4077647795071246e-3
|
|
1920
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1921
|
+
a = 0.6911161696923790e+0
|
|
1922
|
+
v = 0.4084517552782530e-3
|
|
1923
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1924
|
+
a = 0.7012841911659961e+0
|
|
1925
|
+
v = 0.4092468459224052e-3
|
|
1926
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1927
|
+
a = 0.7064559272410020e+0
|
|
1928
|
+
v = 0.4097872687240906e-3
|
|
1929
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
1930
|
+
a = 0.6123554989894765e-1
|
|
1931
|
+
v = 0.1738986811745028e-3
|
|
1932
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
1933
|
+
a = 0.1533070348312393e+0
|
|
1934
|
+
v = 0.2659616045280191e-3
|
|
1935
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
1936
|
+
a = 0.2563902605244206e+0
|
|
1937
|
+
v = 0.3240596008171533e-3
|
|
1938
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
1939
|
+
a = 0.3629346991663361e+0
|
|
1940
|
+
v = 0.3621195964432943e-3
|
|
1941
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
1942
|
+
a = 0.4683949968987538e+0
|
|
1943
|
+
v = 0.3868838330760539e-3
|
|
1944
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
1945
|
+
a = 0.5694479240657952e+0
|
|
1946
|
+
v = 0.4018911532693111e-3
|
|
1947
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
1948
|
+
a = 0.6634465430993955e+0
|
|
1949
|
+
v = 0.4089929432983252e-3
|
|
1950
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
1951
|
+
a = 0.1033958573552305e+0
|
|
1952
|
+
b = 0.3034544009063584e-1
|
|
1953
|
+
v = 0.2279907527706409e-3
|
|
1954
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1955
|
+
a = 0.1473521412414395e+0
|
|
1956
|
+
b = 0.6618803044247135e-1
|
|
1957
|
+
v = 0.2715205490578897e-3
|
|
1958
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1959
|
+
a = 0.1924552158705967e+0
|
|
1960
|
+
b = 0.1054431128987715e+0
|
|
1961
|
+
v = 0.3057917896703976e-3
|
|
1962
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1963
|
+
a = 0.2381094362890328e+0
|
|
1964
|
+
b = 0.1468263551238858e+0
|
|
1965
|
+
v = 0.3326913052452555e-3
|
|
1966
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1967
|
+
a = 0.2838121707936760e+0
|
|
1968
|
+
b = 0.1894486108187886e+0
|
|
1969
|
+
v = 0.3537334711890037e-3
|
|
1970
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1971
|
+
a = 0.3291323133373415e+0
|
|
1972
|
+
b = 0.2326374238761579e+0
|
|
1973
|
+
v = 0.3700567500783129e-3
|
|
1974
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1975
|
+
a = 0.3736896978741460e+0
|
|
1976
|
+
b = 0.2758485808485768e+0
|
|
1977
|
+
v = 0.3825245372589122e-3
|
|
1978
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1979
|
+
a = 0.4171406040760013e+0
|
|
1980
|
+
b = 0.3186179331996921e+0
|
|
1981
|
+
v = 0.3918125171518296e-3
|
|
1982
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1983
|
+
a = 0.4591677985256915e+0
|
|
1984
|
+
b = 0.3605329796303794e+0
|
|
1985
|
+
v = 0.3984720419937579e-3
|
|
1986
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1987
|
+
a = 0.4994733831718418e+0
|
|
1988
|
+
b = 0.4012147253586509e+0
|
|
1989
|
+
v = 0.4029746003338211e-3
|
|
1990
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1991
|
+
a = 0.5377731830445096e+0
|
|
1992
|
+
b = 0.4403050025570692e+0
|
|
1993
|
+
v = 0.4057428632156627e-3
|
|
1994
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1995
|
+
a = 0.5737917830001331e+0
|
|
1996
|
+
b = 0.4774565904277483e+0
|
|
1997
|
+
v = 0.4071719274114857e-3
|
|
1998
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
1999
|
+
a = 0.2027323586271389e+0
|
|
2000
|
+
b = 0.3544122504976147e-1
|
|
2001
|
+
v = 0.2990236950664119e-3
|
|
2002
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2003
|
+
a = 0.2516942375187273e+0
|
|
2004
|
+
b = 0.7418304388646328e-1
|
|
2005
|
+
v = 0.3262951734212878e-3
|
|
2006
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2007
|
+
a = 0.3000227995257181e+0
|
|
2008
|
+
b = 0.1150502745727186e+0
|
|
2009
|
+
v = 0.3482634608242413e-3
|
|
2010
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2011
|
+
a = 0.3474806691046342e+0
|
|
2012
|
+
b = 0.1571963371209364e+0
|
|
2013
|
+
v = 0.3656596681700892e-3
|
|
2014
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2015
|
+
a = 0.3938103180359209e+0
|
|
2016
|
+
b = 0.1999631877247100e+0
|
|
2017
|
+
v = 0.3791740467794218e-3
|
|
2018
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2019
|
+
a = 0.4387519590455703e+0
|
|
2020
|
+
b = 0.2428073457846535e+0
|
|
2021
|
+
v = 0.3894034450156905e-3
|
|
2022
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2023
|
+
a = 0.4820503960077787e+0
|
|
2024
|
+
b = 0.2852575132906155e+0
|
|
2025
|
+
v = 0.3968600245508371e-3
|
|
2026
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2027
|
+
a = 0.5234573778475101e+0
|
|
2028
|
+
b = 0.3268884208674639e+0
|
|
2029
|
+
v = 0.4019931351420050e-3
|
|
2030
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2031
|
+
a = 0.5627318647235282e+0
|
|
2032
|
+
b = 0.3673033321675939e+0
|
|
2033
|
+
v = 0.4052108801278599e-3
|
|
2034
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2035
|
+
a = 0.5996390607156954e+0
|
|
2036
|
+
b = 0.4061211551830290e+0
|
|
2037
|
+
v = 0.4068978613940934e-3
|
|
2038
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2039
|
+
a = 0.3084780753791947e+0
|
|
2040
|
+
b = 0.3860125523100059e-1
|
|
2041
|
+
v = 0.3454275351319704e-3
|
|
2042
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2043
|
+
a = 0.3589988275920223e+0
|
|
2044
|
+
b = 0.7928938987104867e-1
|
|
2045
|
+
v = 0.3629963537007920e-3
|
|
2046
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2047
|
+
a = 0.4078628415881973e+0
|
|
2048
|
+
b = 0.1212614643030087e+0
|
|
2049
|
+
v = 0.3770187233889873e-3
|
|
2050
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2051
|
+
a = 0.4549287258889735e+0
|
|
2052
|
+
b = 0.1638770827382693e+0
|
|
2053
|
+
v = 0.3878608613694378e-3
|
|
2054
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2055
|
+
a = 0.5000278512957279e+0
|
|
2056
|
+
b = 0.2065965798260176e+0
|
|
2057
|
+
v = 0.3959065270221274e-3
|
|
2058
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2059
|
+
a = 0.5429785044928199e+0
|
|
2060
|
+
b = 0.2489436378852235e+0
|
|
2061
|
+
v = 0.4015286975463570e-3
|
|
2062
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2063
|
+
a = 0.5835939850491711e+0
|
|
2064
|
+
b = 0.2904811368946891e+0
|
|
2065
|
+
v = 0.4050866785614717e-3
|
|
2066
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2067
|
+
a = 0.6216870353444856e+0
|
|
2068
|
+
b = 0.3307941957666609e+0
|
|
2069
|
+
v = 0.4069320185051913e-3
|
|
2070
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2071
|
+
a = 0.4151104662709091e+0
|
|
2072
|
+
b = 0.4064829146052554e-1
|
|
2073
|
+
v = 0.3760120964062763e-3
|
|
2074
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2075
|
+
a = 0.4649804275009218e+0
|
|
2076
|
+
b = 0.8258424547294755e-1
|
|
2077
|
+
v = 0.3870969564418064e-3
|
|
2078
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2079
|
+
a = 0.5124695757009662e+0
|
|
2080
|
+
b = 0.1251841962027289e+0
|
|
2081
|
+
v = 0.3955287790534055e-3
|
|
2082
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2083
|
+
a = 0.5574711100606224e+0
|
|
2084
|
+
b = 0.1679107505976331e+0
|
|
2085
|
+
v = 0.4015361911302668e-3
|
|
2086
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2087
|
+
a = 0.5998597333287227e+0
|
|
2088
|
+
b = 0.2102805057358715e+0
|
|
2089
|
+
v = 0.4053836986719548e-3
|
|
2090
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2091
|
+
a = 0.6395007148516600e+0
|
|
2092
|
+
b = 0.2518418087774107e+0
|
|
2093
|
+
v = 0.4073578673299117e-3
|
|
2094
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2095
|
+
a = 0.5188456224746252e+0
|
|
2096
|
+
b = 0.4194321676077518e-1
|
|
2097
|
+
v = 0.3954628379231406e-3
|
|
2098
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2099
|
+
a = 0.5664190707942778e+0
|
|
2100
|
+
b = 0.8457661551921499e-1
|
|
2101
|
+
v = 0.4017645508847530e-3
|
|
2102
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2103
|
+
a = 0.6110464353283153e+0
|
|
2104
|
+
b = 0.1273652932519396e+0
|
|
2105
|
+
v = 0.4059030348651293e-3
|
|
2106
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2107
|
+
a = 0.6526430302051563e+0
|
|
2108
|
+
b = 0.1698173239076354e+0
|
|
2109
|
+
v = 0.4080565809484880e-3
|
|
2110
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2111
|
+
a = 0.6167551880377548e+0
|
|
2112
|
+
b = 0.4266398851548864e-1
|
|
2113
|
+
v = 0.4063018753664651e-3
|
|
2114
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2115
|
+
a = 0.6607195418355383e+0
|
|
2116
|
+
b = 0.8551925814238349e-1
|
|
2117
|
+
v = 0.4087191292799671e-3
|
|
2118
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2119
|
+
return np.vstack(grids)
|
|
2120
|
+
|
|
2121
|
+
|
|
2122
|
+
def MakeAngularGrid_3074():
|
|
2123
|
+
grids = []
|
|
2124
|
+
a = 0
|
|
2125
|
+
b = 0
|
|
2126
|
+
v = 0.2599095953754734e-4
|
|
2127
|
+
grids.append(SphGenOh(0, a, b, v))
|
|
2128
|
+
v = 0.3603134089687541e-3
|
|
2129
|
+
grids.append(SphGenOh(1, a, b, v))
|
|
2130
|
+
v = 0.3586067974412447e-3
|
|
2131
|
+
grids.append(SphGenOh(2, a, b, v))
|
|
2132
|
+
a = 0.1886108518723392e-1
|
|
2133
|
+
v = 0.9831528474385880e-4
|
|
2134
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2135
|
+
a = 0.4800217244625303e-1
|
|
2136
|
+
v = 0.1605023107954450e-3
|
|
2137
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2138
|
+
a = 0.8244922058397242e-1
|
|
2139
|
+
v = 0.2072200131464099e-3
|
|
2140
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2141
|
+
a = 0.1200408362484023e+0
|
|
2142
|
+
v = 0.2431297618814187e-3
|
|
2143
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2144
|
+
a = 0.1595773530809965e+0
|
|
2145
|
+
v = 0.2711819064496707e-3
|
|
2146
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2147
|
+
a = 0.2002635973434064e+0
|
|
2148
|
+
v = 0.2932762038321116e-3
|
|
2149
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2150
|
+
a = 0.2415127590139982e+0
|
|
2151
|
+
v = 0.3107032514197368e-3
|
|
2152
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2153
|
+
a = 0.2828584158458477e+0
|
|
2154
|
+
v = 0.3243808058921213e-3
|
|
2155
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2156
|
+
a = 0.3239091015338138e+0
|
|
2157
|
+
v = 0.3349899091374030e-3
|
|
2158
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2159
|
+
a = 0.3643225097962194e+0
|
|
2160
|
+
v = 0.3430580688505218e-3
|
|
2161
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2162
|
+
a = 0.4037897083691802e+0
|
|
2163
|
+
v = 0.3490124109290343e-3
|
|
2164
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2165
|
+
a = 0.4420247515194127e+0
|
|
2166
|
+
v = 0.3532148948561955e-3
|
|
2167
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2168
|
+
a = 0.4787572538464938e+0
|
|
2169
|
+
v = 0.3559862669062833e-3
|
|
2170
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2171
|
+
a = 0.5137265251275234e+0
|
|
2172
|
+
v = 0.3576224317551411e-3
|
|
2173
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2174
|
+
a = 0.5466764056654611e+0
|
|
2175
|
+
v = 0.3584050533086076e-3
|
|
2176
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2177
|
+
a = 0.6054859420813535e+0
|
|
2178
|
+
v = 0.3584903581373224e-3
|
|
2179
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2180
|
+
a = 0.6308106701764562e+0
|
|
2181
|
+
v = 0.3582991879040586e-3
|
|
2182
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2183
|
+
a = 0.6530369230179584e+0
|
|
2184
|
+
v = 0.3582371187963125e-3
|
|
2185
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2186
|
+
a = 0.6718609524611158e+0
|
|
2187
|
+
v = 0.3584353631122350e-3
|
|
2188
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2189
|
+
a = 0.6869676499894013e+0
|
|
2190
|
+
v = 0.3589120166517785e-3
|
|
2191
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2192
|
+
a = 0.6980467077240748e+0
|
|
2193
|
+
v = 0.3595445704531601e-3
|
|
2194
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2195
|
+
a = 0.7048241721250522e+0
|
|
2196
|
+
v = 0.3600943557111074e-3
|
|
2197
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2198
|
+
a = 0.5591105222058232e-1
|
|
2199
|
+
v = 0.1456447096742039e-3
|
|
2200
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
2201
|
+
a = 0.1407384078513916e+0
|
|
2202
|
+
v = 0.2252370188283782e-3
|
|
2203
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
2204
|
+
a = 0.2364035438976309e+0
|
|
2205
|
+
v = 0.2766135443474897e-3
|
|
2206
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
2207
|
+
a = 0.3360602737818170e+0
|
|
2208
|
+
v = 0.3110729491500851e-3
|
|
2209
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
2210
|
+
a = 0.4356292630054665e+0
|
|
2211
|
+
v = 0.3342506712303391e-3
|
|
2212
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
2213
|
+
a = 0.5321569415256174e+0
|
|
2214
|
+
v = 0.3491981834026860e-3
|
|
2215
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
2216
|
+
a = 0.6232956305040554e+0
|
|
2217
|
+
v = 0.3576003604348932e-3
|
|
2218
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
2219
|
+
a = 0.9469870086838469e-1
|
|
2220
|
+
b = 0.2778748387309470e-1
|
|
2221
|
+
v = 0.1921921305788564e-3
|
|
2222
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2223
|
+
a = 0.1353170300568141e+0
|
|
2224
|
+
b = 0.6076569878628364e-1
|
|
2225
|
+
v = 0.2301458216495632e-3
|
|
2226
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2227
|
+
a = 0.1771679481726077e+0
|
|
2228
|
+
b = 0.9703072762711040e-1
|
|
2229
|
+
v = 0.2604248549522893e-3
|
|
2230
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2231
|
+
a = 0.2197066664231751e+0
|
|
2232
|
+
b = 0.1354112458524762e+0
|
|
2233
|
+
v = 0.2845275425870697e-3
|
|
2234
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2235
|
+
a = 0.2624783557374927e+0
|
|
2236
|
+
b = 0.1750996479744100e+0
|
|
2237
|
+
v = 0.3036870897974840e-3
|
|
2238
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2239
|
+
a = 0.3050969521214442e+0
|
|
2240
|
+
b = 0.2154896907449802e+0
|
|
2241
|
+
v = 0.3188414832298066e-3
|
|
2242
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2243
|
+
a = 0.3472252637196021e+0
|
|
2244
|
+
b = 0.2560954625740152e+0
|
|
2245
|
+
v = 0.3307046414722089e-3
|
|
2246
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2247
|
+
a = 0.3885610219026360e+0
|
|
2248
|
+
b = 0.2965070050624096e+0
|
|
2249
|
+
v = 0.3398330969031360e-3
|
|
2250
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2251
|
+
a = 0.4288273776062765e+0
|
|
2252
|
+
b = 0.3363641488734497e+0
|
|
2253
|
+
v = 0.3466757899705373e-3
|
|
2254
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2255
|
+
a = 0.4677662471302948e+0
|
|
2256
|
+
b = 0.3753400029836788e+0
|
|
2257
|
+
v = 0.3516095923230054e-3
|
|
2258
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2259
|
+
a = 0.5051333589553359e+0
|
|
2260
|
+
b = 0.4131297522144286e+0
|
|
2261
|
+
v = 0.3549645184048486e-3
|
|
2262
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2263
|
+
a = 0.5406942145810492e+0
|
|
2264
|
+
b = 0.4494423776081795e+0
|
|
2265
|
+
v = 0.3570415969441392e-3
|
|
2266
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2267
|
+
a = 0.5742204122576457e+0
|
|
2268
|
+
b = 0.4839938958841502e+0
|
|
2269
|
+
v = 0.3581251798496118e-3
|
|
2270
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2271
|
+
a = 0.1865407027225188e+0
|
|
2272
|
+
b = 0.3259144851070796e-1
|
|
2273
|
+
v = 0.2543491329913348e-3
|
|
2274
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2275
|
+
a = 0.2321186453689432e+0
|
|
2276
|
+
b = 0.6835679505297343e-1
|
|
2277
|
+
v = 0.2786711051330776e-3
|
|
2278
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2279
|
+
a = 0.2773159142523882e+0
|
|
2280
|
+
b = 0.1062284864451989e+0
|
|
2281
|
+
v = 0.2985552361083679e-3
|
|
2282
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2283
|
+
a = 0.3219200192237254e+0
|
|
2284
|
+
b = 0.1454404409323047e+0
|
|
2285
|
+
v = 0.3145867929154039e-3
|
|
2286
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2287
|
+
a = 0.3657032593944029e+0
|
|
2288
|
+
b = 0.1854018282582510e+0
|
|
2289
|
+
v = 0.3273290662067609e-3
|
|
2290
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2291
|
+
a = 0.4084376778363622e+0
|
|
2292
|
+
b = 0.2256297412014750e+0
|
|
2293
|
+
v = 0.3372705511943501e-3
|
|
2294
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2295
|
+
a = 0.4499004945751427e+0
|
|
2296
|
+
b = 0.2657104425000896e+0
|
|
2297
|
+
v = 0.3448274437851510e-3
|
|
2298
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2299
|
+
a = 0.4898758141326335e+0
|
|
2300
|
+
b = 0.3052755487631557e+0
|
|
2301
|
+
v = 0.3503592783048583e-3
|
|
2302
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2303
|
+
a = 0.5281547442266309e+0
|
|
2304
|
+
b = 0.3439863920645423e+0
|
|
2305
|
+
v = 0.3541854792663162e-3
|
|
2306
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2307
|
+
a = 0.5645346989813992e+0
|
|
2308
|
+
b = 0.3815229456121914e+0
|
|
2309
|
+
v = 0.3565995517909428e-3
|
|
2310
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2311
|
+
a = 0.5988181252159848e+0
|
|
2312
|
+
b = 0.4175752420966734e+0
|
|
2313
|
+
v = 0.3578802078302898e-3
|
|
2314
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2315
|
+
a = 0.2850425424471603e+0
|
|
2316
|
+
b = 0.3562149509862536e-1
|
|
2317
|
+
v = 0.2958644592860982e-3
|
|
2318
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2319
|
+
a = 0.3324619433027876e+0
|
|
2320
|
+
b = 0.7330318886871096e-1
|
|
2321
|
+
v = 0.3119548129116835e-3
|
|
2322
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2323
|
+
a = 0.3785848333076282e+0
|
|
2324
|
+
b = 0.1123226296008472e+0
|
|
2325
|
+
v = 0.3250745225005984e-3
|
|
2326
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2327
|
+
a = 0.4232891028562115e+0
|
|
2328
|
+
b = 0.1521084193337708e+0
|
|
2329
|
+
v = 0.3355153415935208e-3
|
|
2330
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2331
|
+
a = 0.4664287050829722e+0
|
|
2332
|
+
b = 0.1921844459223610e+0
|
|
2333
|
+
v = 0.3435847568549328e-3
|
|
2334
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2335
|
+
a = 0.5078458493735726e+0
|
|
2336
|
+
b = 0.2321360989678303e+0
|
|
2337
|
+
v = 0.3495786831622488e-3
|
|
2338
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2339
|
+
a = 0.5473779816204180e+0
|
|
2340
|
+
b = 0.2715886486360520e+0
|
|
2341
|
+
v = 0.3537767805534621e-3
|
|
2342
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2343
|
+
a = 0.5848617133811376e+0
|
|
2344
|
+
b = 0.3101924707571355e+0
|
|
2345
|
+
v = 0.3564459815421428e-3
|
|
2346
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2347
|
+
a = 0.6201348281584888e+0
|
|
2348
|
+
b = 0.3476121052890973e+0
|
|
2349
|
+
v = 0.3578464061225468e-3
|
|
2350
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2351
|
+
a = 0.3852191185387871e+0
|
|
2352
|
+
b = 0.3763224880035108e-1
|
|
2353
|
+
v = 0.3239748762836212e-3
|
|
2354
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2355
|
+
a = 0.4325025061073423e+0
|
|
2356
|
+
b = 0.7659581935637135e-1
|
|
2357
|
+
v = 0.3345491784174287e-3
|
|
2358
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2359
|
+
a = 0.4778486229734490e+0
|
|
2360
|
+
b = 0.1163381306083900e+0
|
|
2361
|
+
v = 0.3429126177301782e-3
|
|
2362
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2363
|
+
a = 0.5211663693009000e+0
|
|
2364
|
+
b = 0.1563890598752899e+0
|
|
2365
|
+
v = 0.3492420343097421e-3
|
|
2366
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2367
|
+
a = 0.5623469504853703e+0
|
|
2368
|
+
b = 0.1963320810149200e+0
|
|
2369
|
+
v = 0.3537399050235257e-3
|
|
2370
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2371
|
+
a = 0.6012718188659246e+0
|
|
2372
|
+
b = 0.2357847407258738e+0
|
|
2373
|
+
v = 0.3566209152659172e-3
|
|
2374
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2375
|
+
a = 0.6378179206390117e+0
|
|
2376
|
+
b = 0.2743846121244060e+0
|
|
2377
|
+
v = 0.3581084321919782e-3
|
|
2378
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2379
|
+
a = 0.4836936460214534e+0
|
|
2380
|
+
b = 0.3895902610739024e-1
|
|
2381
|
+
v = 0.3426522117591512e-3
|
|
2382
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2383
|
+
a = 0.5293792562683797e+0
|
|
2384
|
+
b = 0.7871246819312640e-1
|
|
2385
|
+
v = 0.3491848770121379e-3
|
|
2386
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2387
|
+
a = 0.5726281253100033e+0
|
|
2388
|
+
b = 0.1187963808202981e+0
|
|
2389
|
+
v = 0.3539318235231476e-3
|
|
2390
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2391
|
+
a = 0.6133658776169068e+0
|
|
2392
|
+
b = 0.1587914708061787e+0
|
|
2393
|
+
v = 0.3570231438458694e-3
|
|
2394
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2395
|
+
a = 0.6515085491865307e+0
|
|
2396
|
+
b = 0.1983058575227646e+0
|
|
2397
|
+
v = 0.3586207335051714e-3
|
|
2398
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2399
|
+
a = 0.5778692716064976e+0
|
|
2400
|
+
b = 0.3977209689791542e-1
|
|
2401
|
+
v = 0.3541196205164025e-3
|
|
2402
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2403
|
+
a = 0.6207904288086192e+0
|
|
2404
|
+
b = 0.7990157592981152e-1
|
|
2405
|
+
v = 0.3574296911573953e-3
|
|
2406
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2407
|
+
a = 0.6608688171046802e+0
|
|
2408
|
+
b = 0.1199671308754309e+0
|
|
2409
|
+
v = 0.3591993279818963e-3
|
|
2410
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2411
|
+
a = 0.6656263089489130e+0
|
|
2412
|
+
b = 0.4015955957805969e-1
|
|
2413
|
+
v = 0.3595855034661997e-3
|
|
2414
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2415
|
+
return np.vstack(grids)
|
|
2416
|
+
|
|
2417
|
+
|
|
2418
|
+
def MakeAngularGrid_3470():
|
|
2419
|
+
grids = []
|
|
2420
|
+
a = 0
|
|
2421
|
+
b = 0
|
|
2422
|
+
v = 0.2040382730826330e-4
|
|
2423
|
+
grids.append(SphGenOh(0, a, b, v))
|
|
2424
|
+
v = 0.3178149703889544e-3
|
|
2425
|
+
grids.append(SphGenOh(2, a, b, v))
|
|
2426
|
+
a = 0.1721420832906233e-1
|
|
2427
|
+
v = 0.8288115128076110e-4
|
|
2428
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2429
|
+
a = 0.4408875374981770e-1
|
|
2430
|
+
v = 0.1360883192522954e-3
|
|
2431
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2432
|
+
a = 0.7594680813878681e-1
|
|
2433
|
+
v = 0.1766854454542662e-3
|
|
2434
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2435
|
+
a = 0.1108335359204799e+0
|
|
2436
|
+
v = 0.2083153161230153e-3
|
|
2437
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2438
|
+
a = 0.1476517054388567e+0
|
|
2439
|
+
v = 0.2333279544657158e-3
|
|
2440
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2441
|
+
a = 0.1856731870860615e+0
|
|
2442
|
+
v = 0.2532809539930247e-3
|
|
2443
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2444
|
+
a = 0.2243634099428821e+0
|
|
2445
|
+
v = 0.2692472184211158e-3
|
|
2446
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2447
|
+
a = 0.2633006881662727e+0
|
|
2448
|
+
v = 0.2819949946811885e-3
|
|
2449
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2450
|
+
a = 0.3021340904916283e+0
|
|
2451
|
+
v = 0.2920953593973030e-3
|
|
2452
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2453
|
+
a = 0.3405594048030089e+0
|
|
2454
|
+
v = 0.2999889782948352e-3
|
|
2455
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2456
|
+
a = 0.3783044434007372e+0
|
|
2457
|
+
v = 0.3060292120496902e-3
|
|
2458
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2459
|
+
a = 0.4151194767407910e+0
|
|
2460
|
+
v = 0.3105109167522192e-3
|
|
2461
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2462
|
+
a = 0.4507705766443257e+0
|
|
2463
|
+
v = 0.3136902387550312e-3
|
|
2464
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2465
|
+
a = 0.4850346056573187e+0
|
|
2466
|
+
v = 0.3157984652454632e-3
|
|
2467
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2468
|
+
a = 0.5176950817792470e+0
|
|
2469
|
+
v = 0.3170516518425422e-3
|
|
2470
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2471
|
+
a = 0.5485384240820989e+0
|
|
2472
|
+
v = 0.3176568425633755e-3
|
|
2473
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2474
|
+
a = 0.6039117238943308e+0
|
|
2475
|
+
v = 0.3177198411207062e-3
|
|
2476
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2477
|
+
a = 0.6279956655573113e+0
|
|
2478
|
+
v = 0.3175519492394733e-3
|
|
2479
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2480
|
+
a = 0.6493636169568952e+0
|
|
2481
|
+
v = 0.3174654952634756e-3
|
|
2482
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2483
|
+
a = 0.6677644117704504e+0
|
|
2484
|
+
v = 0.3175676415467654e-3
|
|
2485
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2486
|
+
a = 0.6829368572115624e+0
|
|
2487
|
+
v = 0.3178923417835410e-3
|
|
2488
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2489
|
+
a = 0.6946195818184121e+0
|
|
2490
|
+
v = 0.3183788287531909e-3
|
|
2491
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2492
|
+
a = 0.7025711542057026e+0
|
|
2493
|
+
v = 0.3188755151918807e-3
|
|
2494
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2495
|
+
a = 0.7066004767140119e+0
|
|
2496
|
+
v = 0.3191916889313849e-3
|
|
2497
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2498
|
+
a = 0.5132537689946062e-1
|
|
2499
|
+
v = 0.1231779611744508e-3
|
|
2500
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
2501
|
+
a = 0.1297994661331225e+0
|
|
2502
|
+
v = 0.1924661373839880e-3
|
|
2503
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
2504
|
+
a = 0.2188852049401307e+0
|
|
2505
|
+
v = 0.2380881867403424e-3
|
|
2506
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
2507
|
+
a = 0.3123174824903457e+0
|
|
2508
|
+
v = 0.2693100663037885e-3
|
|
2509
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
2510
|
+
a = 0.4064037620738195e+0
|
|
2511
|
+
v = 0.2908673382834366e-3
|
|
2512
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
2513
|
+
a = 0.4984958396944782e+0
|
|
2514
|
+
v = 0.3053914619381535e-3
|
|
2515
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
2516
|
+
a = 0.5864975046021365e+0
|
|
2517
|
+
v = 0.3143916684147777e-3
|
|
2518
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
2519
|
+
a = 0.6686711634580175e+0
|
|
2520
|
+
v = 0.3187042244055363e-3
|
|
2521
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
2522
|
+
a = 0.8715738780835950e-1
|
|
2523
|
+
b = 0.2557175233367578e-1
|
|
2524
|
+
v = 0.1635219535869790e-3
|
|
2525
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2526
|
+
a = 0.1248383123134007e+0
|
|
2527
|
+
b = 0.5604823383376681e-1
|
|
2528
|
+
v = 0.1968109917696070e-3
|
|
2529
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2530
|
+
a = 0.1638062693383378e+0
|
|
2531
|
+
b = 0.8968568601900765e-1
|
|
2532
|
+
v = 0.2236754342249974e-3
|
|
2533
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2534
|
+
a = 0.2035586203373176e+0
|
|
2535
|
+
b = 0.1254086651976279e+0
|
|
2536
|
+
v = 0.2453186687017181e-3
|
|
2537
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2538
|
+
a = 0.2436798975293774e+0
|
|
2539
|
+
b = 0.1624780150162012e+0
|
|
2540
|
+
v = 0.2627551791580541e-3
|
|
2541
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2542
|
+
a = 0.2838207507773806e+0
|
|
2543
|
+
b = 0.2003422342683208e+0
|
|
2544
|
+
v = 0.2767654860152220e-3
|
|
2545
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2546
|
+
a = 0.3236787502217692e+0
|
|
2547
|
+
b = 0.2385628026255263e+0
|
|
2548
|
+
v = 0.2879467027765895e-3
|
|
2549
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2550
|
+
a = 0.3629849554840691e+0
|
|
2551
|
+
b = 0.2767731148783578e+0
|
|
2552
|
+
v = 0.2967639918918702e-3
|
|
2553
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2554
|
+
a = 0.4014948081992087e+0
|
|
2555
|
+
b = 0.3146542308245309e+0
|
|
2556
|
+
v = 0.3035900684660351e-3
|
|
2557
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2558
|
+
a = 0.4389818379260225e+0
|
|
2559
|
+
b = 0.3519196415895088e+0
|
|
2560
|
+
v = 0.3087338237298308e-3
|
|
2561
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2562
|
+
a = 0.4752331143674377e+0
|
|
2563
|
+
b = 0.3883050984023654e+0
|
|
2564
|
+
v = 0.3124608838860167e-3
|
|
2565
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2566
|
+
a = 0.5100457318374018e+0
|
|
2567
|
+
b = 0.4235613423908649e+0
|
|
2568
|
+
v = 0.3150084294226743e-3
|
|
2569
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2570
|
+
a = 0.5432238388954868e+0
|
|
2571
|
+
b = 0.4574484717196220e+0
|
|
2572
|
+
v = 0.3165958398598402e-3
|
|
2573
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2574
|
+
a = 0.5745758685072442e+0
|
|
2575
|
+
b = 0.4897311639255524e+0
|
|
2576
|
+
v = 0.3174320440957372e-3
|
|
2577
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2578
|
+
a = 0.1723981437592809e+0
|
|
2579
|
+
b = 0.3010630597881105e-1
|
|
2580
|
+
v = 0.2182188909812599e-3
|
|
2581
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2582
|
+
a = 0.2149553257844597e+0
|
|
2583
|
+
b = 0.6326031554204694e-1
|
|
2584
|
+
v = 0.2399727933921445e-3
|
|
2585
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2586
|
+
a = 0.2573256081247422e+0
|
|
2587
|
+
b = 0.9848566980258631e-1
|
|
2588
|
+
v = 0.2579796133514652e-3
|
|
2589
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2590
|
+
a = 0.2993163751238106e+0
|
|
2591
|
+
b = 0.1350835952384266e+0
|
|
2592
|
+
v = 0.2727114052623535e-3
|
|
2593
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2594
|
+
a = 0.3407238005148000e+0
|
|
2595
|
+
b = 0.1725184055442181e+0
|
|
2596
|
+
v = 0.2846327656281355e-3
|
|
2597
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2598
|
+
a = 0.3813454978483264e+0
|
|
2599
|
+
b = 0.2103559279730725e+0
|
|
2600
|
+
v = 0.2941491102051334e-3
|
|
2601
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2602
|
+
a = 0.4209848104423343e+0
|
|
2603
|
+
b = 0.2482278774554860e+0
|
|
2604
|
+
v = 0.3016049492136107e-3
|
|
2605
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2606
|
+
a = 0.4594519699996300e+0
|
|
2607
|
+
b = 0.2858099509982883e+0
|
|
2608
|
+
v = 0.3072949726175648e-3
|
|
2609
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2610
|
+
a = 0.4965640166185930e+0
|
|
2611
|
+
b = 0.3228075659915428e+0
|
|
2612
|
+
v = 0.3114768142886460e-3
|
|
2613
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2614
|
+
a = 0.5321441655571562e+0
|
|
2615
|
+
b = 0.3589459907204151e+0
|
|
2616
|
+
v = 0.3143823673666223e-3
|
|
2617
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2618
|
+
a = 0.5660208438582166e+0
|
|
2619
|
+
b = 0.3939630088864310e+0
|
|
2620
|
+
v = 0.3162269764661535e-3
|
|
2621
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2622
|
+
a = 0.5980264315964364e+0
|
|
2623
|
+
b = 0.4276029922949089e+0
|
|
2624
|
+
v = 0.3172164663759821e-3
|
|
2625
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2626
|
+
a = 0.2644215852350733e+0
|
|
2627
|
+
b = 0.3300939429072552e-1
|
|
2628
|
+
v = 0.2554575398967435e-3
|
|
2629
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2630
|
+
a = 0.3090113743443063e+0
|
|
2631
|
+
b = 0.6803887650078501e-1
|
|
2632
|
+
v = 0.2701704069135677e-3
|
|
2633
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2634
|
+
a = 0.3525871079197808e+0
|
|
2635
|
+
b = 0.1044326136206709e+0
|
|
2636
|
+
v = 0.2823693413468940e-3
|
|
2637
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2638
|
+
a = 0.3950418005354029e+0
|
|
2639
|
+
b = 0.1416751597517679e+0
|
|
2640
|
+
v = 0.2922898463214289e-3
|
|
2641
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2642
|
+
a = 0.4362475663430163e+0
|
|
2643
|
+
b = 0.1793408610504821e+0
|
|
2644
|
+
v = 0.3001829062162428e-3
|
|
2645
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2646
|
+
a = 0.4760661812145854e+0
|
|
2647
|
+
b = 0.2170630750175722e+0
|
|
2648
|
+
v = 0.3062890864542953e-3
|
|
2649
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2650
|
+
a = 0.5143551042512103e+0
|
|
2651
|
+
b = 0.2545145157815807e+0
|
|
2652
|
+
v = 0.3108328279264746e-3
|
|
2653
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2654
|
+
a = 0.5509709026935597e+0
|
|
2655
|
+
b = 0.2913940101706601e+0
|
|
2656
|
+
v = 0.3140243146201245e-3
|
|
2657
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2658
|
+
a = 0.5857711030329428e+0
|
|
2659
|
+
b = 0.3274169910910705e+0
|
|
2660
|
+
v = 0.3160638030977130e-3
|
|
2661
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2662
|
+
a = 0.6186149917404392e+0
|
|
2663
|
+
b = 0.3623081329317265e+0
|
|
2664
|
+
v = 0.3171462882206275e-3
|
|
2665
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2666
|
+
a = 0.3586894569557064e+0
|
|
2667
|
+
b = 0.3497354386450040e-1
|
|
2668
|
+
v = 0.2812388416031796e-3
|
|
2669
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2670
|
+
a = 0.4035266610019441e+0
|
|
2671
|
+
b = 0.7129736739757095e-1
|
|
2672
|
+
v = 0.2912137500288045e-3
|
|
2673
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2674
|
+
a = 0.4467775312332510e+0
|
|
2675
|
+
b = 0.1084758620193165e+0
|
|
2676
|
+
v = 0.2993241256502206e-3
|
|
2677
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2678
|
+
a = 0.4883638346608543e+0
|
|
2679
|
+
b = 0.1460915689241772e+0
|
|
2680
|
+
v = 0.3057101738983822e-3
|
|
2681
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2682
|
+
a = 0.5281908348434601e+0
|
|
2683
|
+
b = 0.1837790832369980e+0
|
|
2684
|
+
v = 0.3105319326251432e-3
|
|
2685
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2686
|
+
a = 0.5661542687149311e+0
|
|
2687
|
+
b = 0.2212075390874021e+0
|
|
2688
|
+
v = 0.3139565514428167e-3
|
|
2689
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2690
|
+
a = 0.6021450102031452e+0
|
|
2691
|
+
b = 0.2580682841160985e+0
|
|
2692
|
+
v = 0.3161543006806366e-3
|
|
2693
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2694
|
+
a = 0.6360520783610050e+0
|
|
2695
|
+
b = 0.2940656362094121e+0
|
|
2696
|
+
v = 0.3172985960613294e-3
|
|
2697
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2698
|
+
a = 0.4521611065087196e+0
|
|
2699
|
+
b = 0.3631055365867002e-1
|
|
2700
|
+
v = 0.2989400336901431e-3
|
|
2701
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2702
|
+
a = 0.4959365651560963e+0
|
|
2703
|
+
b = 0.7348318468484350e-1
|
|
2704
|
+
v = 0.3054555883947677e-3
|
|
2705
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2706
|
+
a = 0.5376815804038283e+0
|
|
2707
|
+
b = 0.1111087643812648e+0
|
|
2708
|
+
v = 0.3104764960807702e-3
|
|
2709
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2710
|
+
a = 0.5773314480243768e+0
|
|
2711
|
+
b = 0.1488226085145408e+0
|
|
2712
|
+
v = 0.3141015825977616e-3
|
|
2713
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2714
|
+
a = 0.6148113245575056e+0
|
|
2715
|
+
b = 0.1862892274135151e+0
|
|
2716
|
+
v = 0.3164520621159896e-3
|
|
2717
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2718
|
+
a = 0.6500407462842380e+0
|
|
2719
|
+
b = 0.2231909701714456e+0
|
|
2720
|
+
v = 0.3176652305912204e-3
|
|
2721
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2722
|
+
a = 0.5425151448707213e+0
|
|
2723
|
+
b = 0.3718201306118944e-1
|
|
2724
|
+
v = 0.3105097161023939e-3
|
|
2725
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2726
|
+
a = 0.5841860556907931e+0
|
|
2727
|
+
b = 0.7483616335067346e-1
|
|
2728
|
+
v = 0.3143014117890550e-3
|
|
2729
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2730
|
+
a = 0.6234632186851500e+0
|
|
2731
|
+
b = 0.1125990834266120e+0
|
|
2732
|
+
v = 0.3168172866287200e-3
|
|
2733
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2734
|
+
a = 0.6602934551848843e+0
|
|
2735
|
+
b = 0.1501303813157619e+0
|
|
2736
|
+
v = 0.3181401865570968e-3
|
|
2737
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2738
|
+
a = 0.6278573968375105e+0
|
|
2739
|
+
b = 0.3767559930245720e-1
|
|
2740
|
+
v = 0.3170663659156037e-3
|
|
2741
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2742
|
+
a = 0.6665611711264577e+0
|
|
2743
|
+
b = 0.7548443301360158e-1
|
|
2744
|
+
v = 0.3185447944625510e-3
|
|
2745
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2746
|
+
return np.vstack(grids)
|
|
2747
|
+
|
|
2748
|
+
|
|
2749
|
+
def MakeAngularGrid_3890():
|
|
2750
|
+
grids = []
|
|
2751
|
+
a = 0
|
|
2752
|
+
b = 0
|
|
2753
|
+
v = 0.1807395252196920e-4
|
|
2754
|
+
grids.append(SphGenOh(0, a, b, v))
|
|
2755
|
+
v = 0.2848008782238827e-3
|
|
2756
|
+
grids.append(SphGenOh(1, a, b, v))
|
|
2757
|
+
v = 0.2836065837530581e-3
|
|
2758
|
+
grids.append(SphGenOh(2, a, b, v))
|
|
2759
|
+
a = 0.1587876419858352e-1
|
|
2760
|
+
v = 0.7013149266673816e-4
|
|
2761
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2762
|
+
a = 0.4069193593751206e-1
|
|
2763
|
+
v = 0.1162798021956766e-3
|
|
2764
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2765
|
+
a = 0.7025888115257997e-1
|
|
2766
|
+
v = 0.1518728583972105e-3
|
|
2767
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2768
|
+
a = 0.1027495450028704e+0
|
|
2769
|
+
v = 0.1798796108216934e-3
|
|
2770
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2771
|
+
a = 0.1371457730893426e+0
|
|
2772
|
+
v = 0.2022593385972785e-3
|
|
2773
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2774
|
+
a = 0.1727758532671953e+0
|
|
2775
|
+
v = 0.2203093105575464e-3
|
|
2776
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2777
|
+
a = 0.2091492038929037e+0
|
|
2778
|
+
v = 0.2349294234299855e-3
|
|
2779
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2780
|
+
a = 0.2458813281751915e+0
|
|
2781
|
+
v = 0.2467682058747003e-3
|
|
2782
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2783
|
+
a = 0.2826545859450066e+0
|
|
2784
|
+
v = 0.2563092683572224e-3
|
|
2785
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2786
|
+
a = 0.3191957291799622e+0
|
|
2787
|
+
v = 0.2639253896763318e-3
|
|
2788
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2789
|
+
a = 0.3552621469299578e+0
|
|
2790
|
+
v = 0.2699137479265108e-3
|
|
2791
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2792
|
+
a = 0.3906329503406230e+0
|
|
2793
|
+
v = 0.2745196420166739e-3
|
|
2794
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2795
|
+
a = 0.4251028614093031e+0
|
|
2796
|
+
v = 0.2779529197397593e-3
|
|
2797
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2798
|
+
a = 0.4584777520111870e+0
|
|
2799
|
+
v = 0.2803996086684265e-3
|
|
2800
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2801
|
+
a = 0.4905711358710193e+0
|
|
2802
|
+
v = 0.2820302356715842e-3
|
|
2803
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2804
|
+
a = 0.5212011669847385e+0
|
|
2805
|
+
v = 0.2830056747491068e-3
|
|
2806
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2807
|
+
a = 0.5501878488737995e+0
|
|
2808
|
+
v = 0.2834808950776839e-3
|
|
2809
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2810
|
+
a = 0.6025037877479342e+0
|
|
2811
|
+
v = 0.2835282339078929e-3
|
|
2812
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2813
|
+
a = 0.6254572689549016e+0
|
|
2814
|
+
v = 0.2833819267065800e-3
|
|
2815
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2816
|
+
a = 0.6460107179528248e+0
|
|
2817
|
+
v = 0.2832858336906784e-3
|
|
2818
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2819
|
+
a = 0.6639541138154251e+0
|
|
2820
|
+
v = 0.2833268235451244e-3
|
|
2821
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2822
|
+
a = 0.6790688515667495e+0
|
|
2823
|
+
v = 0.2835432677029253e-3
|
|
2824
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2825
|
+
a = 0.6911338580371512e+0
|
|
2826
|
+
v = 0.2839091722743049e-3
|
|
2827
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2828
|
+
a = 0.6999385956126490e+0
|
|
2829
|
+
v = 0.2843308178875841e-3
|
|
2830
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2831
|
+
a = 0.7053037748656896e+0
|
|
2832
|
+
v = 0.2846703550533846e-3
|
|
2833
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
2834
|
+
a = 0.4732224387180115e-1
|
|
2835
|
+
v = 0.1051193406971900e-3
|
|
2836
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
2837
|
+
a = 0.1202100529326803e+0
|
|
2838
|
+
v = 0.1657871838796974e-3
|
|
2839
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
2840
|
+
a = 0.2034304820664855e+0
|
|
2841
|
+
v = 0.2064648113714232e-3
|
|
2842
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
2843
|
+
a = 0.2912285643573002e+0
|
|
2844
|
+
v = 0.2347942745819741e-3
|
|
2845
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
2846
|
+
a = 0.3802361792726768e+0
|
|
2847
|
+
v = 0.2547775326597726e-3
|
|
2848
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
2849
|
+
a = 0.4680598511056146e+0
|
|
2850
|
+
v = 0.2686876684847025e-3
|
|
2851
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
2852
|
+
a = 0.5528151052155599e+0
|
|
2853
|
+
v = 0.2778665755515867e-3
|
|
2854
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
2855
|
+
a = 0.6329386307803041e+0
|
|
2856
|
+
v = 0.2830996616782929e-3
|
|
2857
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
2858
|
+
a = 0.8056516651369069e-1
|
|
2859
|
+
b = 0.2363454684003124e-1
|
|
2860
|
+
v = 0.1403063340168372e-3
|
|
2861
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2862
|
+
a = 0.1156476077139389e+0
|
|
2863
|
+
b = 0.5191291632545936e-1
|
|
2864
|
+
v = 0.1696504125939477e-3
|
|
2865
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2866
|
+
a = 0.1520473382760421e+0
|
|
2867
|
+
b = 0.8322715736994519e-1
|
|
2868
|
+
v = 0.1935787242745390e-3
|
|
2869
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2870
|
+
a = 0.1892986699745931e+0
|
|
2871
|
+
b = 0.1165855667993712e+0
|
|
2872
|
+
v = 0.2130614510521968e-3
|
|
2873
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2874
|
+
a = 0.2270194446777792e+0
|
|
2875
|
+
b = 0.1513077167409504e+0
|
|
2876
|
+
v = 0.2289381265931048e-3
|
|
2877
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2878
|
+
a = 0.2648908185093273e+0
|
|
2879
|
+
b = 0.1868882025807859e+0
|
|
2880
|
+
v = 0.2418630292816186e-3
|
|
2881
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2882
|
+
a = 0.3026389259574136e+0
|
|
2883
|
+
b = 0.2229277629776224e+0
|
|
2884
|
+
v = 0.2523400495631193e-3
|
|
2885
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2886
|
+
a = 0.3400220296151384e+0
|
|
2887
|
+
b = 0.2590951840746235e+0
|
|
2888
|
+
v = 0.2607623973449605e-3
|
|
2889
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2890
|
+
a = 0.3768217953335510e+0
|
|
2891
|
+
b = 0.2951047291750847e+0
|
|
2892
|
+
v = 0.2674441032689209e-3
|
|
2893
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2894
|
+
a = 0.4128372900921884e+0
|
|
2895
|
+
b = 0.3307019714169930e+0
|
|
2896
|
+
v = 0.2726432360343356e-3
|
|
2897
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2898
|
+
a = 0.4478807131815630e+0
|
|
2899
|
+
b = 0.3656544101087634e+0
|
|
2900
|
+
v = 0.2765787685924545e-3
|
|
2901
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2902
|
+
a = 0.4817742034089257e+0
|
|
2903
|
+
b = 0.3997448951939695e+0
|
|
2904
|
+
v = 0.2794428690642224e-3
|
|
2905
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2906
|
+
a = 0.5143472814653344e+0
|
|
2907
|
+
b = 0.4327667110812024e+0
|
|
2908
|
+
v = 0.2814099002062895e-3
|
|
2909
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2910
|
+
a = 0.5454346213905650e+0
|
|
2911
|
+
b = 0.4645196123532293e+0
|
|
2912
|
+
v = 0.2826429531578994e-3
|
|
2913
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2914
|
+
a = 0.5748739313170252e+0
|
|
2915
|
+
b = 0.4948063555703345e+0
|
|
2916
|
+
v = 0.2832983542550884e-3
|
|
2917
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2918
|
+
a = 0.1599598738286342e+0
|
|
2919
|
+
b = 0.2792357590048985e-1
|
|
2920
|
+
v = 0.1886695565284976e-3
|
|
2921
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2922
|
+
a = 0.1998097412500951e+0
|
|
2923
|
+
b = 0.5877141038139065e-1
|
|
2924
|
+
v = 0.2081867882748234e-3
|
|
2925
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2926
|
+
a = 0.2396228952566202e+0
|
|
2927
|
+
b = 0.9164573914691377e-1
|
|
2928
|
+
v = 0.2245148680600796e-3
|
|
2929
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2930
|
+
a = 0.2792228341097746e+0
|
|
2931
|
+
b = 0.1259049641962687e+0
|
|
2932
|
+
v = 0.2380370491511872e-3
|
|
2933
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2934
|
+
a = 0.3184251107546741e+0
|
|
2935
|
+
b = 0.1610594823400863e+0
|
|
2936
|
+
v = 0.2491398041852455e-3
|
|
2937
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2938
|
+
a = 0.3570481164426244e+0
|
|
2939
|
+
b = 0.1967151653460898e+0
|
|
2940
|
+
v = 0.2581632405881230e-3
|
|
2941
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2942
|
+
a = 0.3949164710492144e+0
|
|
2943
|
+
b = 0.2325404606175168e+0
|
|
2944
|
+
v = 0.2653965506227417e-3
|
|
2945
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2946
|
+
a = 0.4318617293970503e+0
|
|
2947
|
+
b = 0.2682461141151439e+0
|
|
2948
|
+
v = 0.2710857216747087e-3
|
|
2949
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2950
|
+
a = 0.4677221009931678e+0
|
|
2951
|
+
b = 0.3035720116011973e+0
|
|
2952
|
+
v = 0.2754434093903659e-3
|
|
2953
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2954
|
+
a = 0.5023417939270955e+0
|
|
2955
|
+
b = 0.3382781859197439e+0
|
|
2956
|
+
v = 0.2786579932519380e-3
|
|
2957
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2958
|
+
a = 0.5355701836636128e+0
|
|
2959
|
+
b = 0.3721383065625942e+0
|
|
2960
|
+
v = 0.2809011080679474e-3
|
|
2961
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2962
|
+
a = 0.5672608451328771e+0
|
|
2963
|
+
b = 0.4049346360466055e+0
|
|
2964
|
+
v = 0.2823336184560987e-3
|
|
2965
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2966
|
+
a = 0.5972704202540162e+0
|
|
2967
|
+
b = 0.4364538098633802e+0
|
|
2968
|
+
v = 0.2831101175806309e-3
|
|
2969
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2970
|
+
a = 0.2461687022333596e+0
|
|
2971
|
+
b = 0.3070423166833368e-1
|
|
2972
|
+
v = 0.2221679970354546e-3
|
|
2973
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2974
|
+
a = 0.2881774566286831e+0
|
|
2975
|
+
b = 0.6338034669281885e-1
|
|
2976
|
+
v = 0.2356185734270703e-3
|
|
2977
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2978
|
+
a = 0.3293963604116978e+0
|
|
2979
|
+
b = 0.9742862487067941e-1
|
|
2980
|
+
v = 0.2469228344805590e-3
|
|
2981
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2982
|
+
a = 0.3697303822241377e+0
|
|
2983
|
+
b = 0.1323799532282290e+0
|
|
2984
|
+
v = 0.2562726348642046e-3
|
|
2985
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2986
|
+
a = 0.4090663023135127e+0
|
|
2987
|
+
b = 0.1678497018129336e+0
|
|
2988
|
+
v = 0.2638756726753028e-3
|
|
2989
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2990
|
+
a = 0.4472819355411712e+0
|
|
2991
|
+
b = 0.2035095105326114e+0
|
|
2992
|
+
v = 0.2699311157390862e-3
|
|
2993
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2994
|
+
a = 0.4842513377231437e+0
|
|
2995
|
+
b = 0.2390692566672091e+0
|
|
2996
|
+
v = 0.2746233268403837e-3
|
|
2997
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
2998
|
+
a = 0.5198477629962928e+0
|
|
2999
|
+
b = 0.2742649818076149e+0
|
|
3000
|
+
v = 0.2781225674454771e-3
|
|
3001
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3002
|
+
a = 0.5539453011883145e+0
|
|
3003
|
+
b = 0.3088503806580094e+0
|
|
3004
|
+
v = 0.2805881254045684e-3
|
|
3005
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3006
|
+
a = 0.5864196762401251e+0
|
|
3007
|
+
b = 0.3425904245906614e+0
|
|
3008
|
+
v = 0.2821719877004913e-3
|
|
3009
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3010
|
+
a = 0.6171484466668390e+0
|
|
3011
|
+
b = 0.3752562294789468e+0
|
|
3012
|
+
v = 0.2830222502333124e-3
|
|
3013
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3014
|
+
a = 0.3350337830565727e+0
|
|
3015
|
+
b = 0.3261589934634747e-1
|
|
3016
|
+
v = 0.2457995956744870e-3
|
|
3017
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3018
|
+
a = 0.3775773224758284e+0
|
|
3019
|
+
b = 0.6658438928081572e-1
|
|
3020
|
+
v = 0.2551474407503706e-3
|
|
3021
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3022
|
+
a = 0.4188155229848973e+0
|
|
3023
|
+
b = 0.1014565797157954e+0
|
|
3024
|
+
v = 0.2629065335195311e-3
|
|
3025
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3026
|
+
a = 0.4586805892009344e+0
|
|
3027
|
+
b = 0.1368573320843822e+0
|
|
3028
|
+
v = 0.2691900449925075e-3
|
|
3029
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3030
|
+
a = 0.4970895714224235e+0
|
|
3031
|
+
b = 0.1724614851951608e+0
|
|
3032
|
+
v = 0.2741275485754276e-3
|
|
3033
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3034
|
+
a = 0.5339505133960747e+0
|
|
3035
|
+
b = 0.2079779381416412e+0
|
|
3036
|
+
v = 0.2778530970122595e-3
|
|
3037
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3038
|
+
a = 0.5691665792531440e+0
|
|
3039
|
+
b = 0.2431385788322288e+0
|
|
3040
|
+
v = 0.2805010567646741e-3
|
|
3041
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3042
|
+
a = 0.6026387682680377e+0
|
|
3043
|
+
b = 0.2776901883049853e+0
|
|
3044
|
+
v = 0.2822055834031040e-3
|
|
3045
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3046
|
+
a = 0.6342676150163307e+0
|
|
3047
|
+
b = 0.3113881356386632e+0
|
|
3048
|
+
v = 0.2831016901243473e-3
|
|
3049
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3050
|
+
a = 0.4237951119537067e+0
|
|
3051
|
+
b = 0.3394877848664351e-1
|
|
3052
|
+
v = 0.2624474901131803e-3
|
|
3053
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3054
|
+
a = 0.4656918683234929e+0
|
|
3055
|
+
b = 0.6880219556291447e-1
|
|
3056
|
+
v = 0.2688034163039377e-3
|
|
3057
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3058
|
+
a = 0.5058857069185980e+0
|
|
3059
|
+
b = 0.1041946859721635e+0
|
|
3060
|
+
v = 0.2738932751287636e-3
|
|
3061
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3062
|
+
a = 0.5443204666713996e+0
|
|
3063
|
+
b = 0.1398039738736393e+0
|
|
3064
|
+
v = 0.2777944791242523e-3
|
|
3065
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3066
|
+
a = 0.5809298813759742e+0
|
|
3067
|
+
b = 0.1753373381196155e+0
|
|
3068
|
+
v = 0.2806011661660987e-3
|
|
3069
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3070
|
+
a = 0.6156416039447128e+0
|
|
3071
|
+
b = 0.2105215793514010e+0
|
|
3072
|
+
v = 0.2824181456597460e-3
|
|
3073
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3074
|
+
a = 0.6483801351066604e+0
|
|
3075
|
+
b = 0.2450953312157051e+0
|
|
3076
|
+
v = 0.2833585216577828e-3
|
|
3077
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3078
|
+
a = 0.5103616577251688e+0
|
|
3079
|
+
b = 0.3485560643800719e-1
|
|
3080
|
+
v = 0.2738165236962878e-3
|
|
3081
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3082
|
+
a = 0.5506738792580681e+0
|
|
3083
|
+
b = 0.7026308631512033e-1
|
|
3084
|
+
v = 0.2778365208203180e-3
|
|
3085
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3086
|
+
a = 0.5889573040995292e+0
|
|
3087
|
+
b = 0.1059035061296403e+0
|
|
3088
|
+
v = 0.2807852940418966e-3
|
|
3089
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3090
|
+
a = 0.6251641589516930e+0
|
|
3091
|
+
b = 0.1414823925236026e+0
|
|
3092
|
+
v = 0.2827245949674705e-3
|
|
3093
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3094
|
+
a = 0.6592414921570178e+0
|
|
3095
|
+
b = 0.1767207908214530e+0
|
|
3096
|
+
v = 0.2837342344829828e-3
|
|
3097
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3098
|
+
a = 0.5930314017533384e+0
|
|
3099
|
+
b = 0.3542189339561672e-1
|
|
3100
|
+
v = 0.2809233907610981e-3
|
|
3101
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3102
|
+
a = 0.6309812253390175e+0
|
|
3103
|
+
b = 0.7109574040369549e-1
|
|
3104
|
+
v = 0.2829930809742694e-3
|
|
3105
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3106
|
+
a = 0.6666296011353230e+0
|
|
3107
|
+
b = 0.1067259792282730e+0
|
|
3108
|
+
v = 0.2841097874111479e-3
|
|
3109
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3110
|
+
a = 0.6703715271049922e+0
|
|
3111
|
+
b = 0.3569455268820809e-1
|
|
3112
|
+
v = 0.2843455206008783e-3
|
|
3113
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3114
|
+
return np.vstack(grids)
|
|
3115
|
+
|
|
3116
|
+
|
|
3117
|
+
def MakeAngularGrid_4334():
|
|
3118
|
+
grids = []
|
|
3119
|
+
a = 0
|
|
3120
|
+
b = 0
|
|
3121
|
+
v = 0.1449063022537883e-4
|
|
3122
|
+
grids.append(SphGenOh(0, a, b, v))
|
|
3123
|
+
v = 0.2546377329828424e-3
|
|
3124
|
+
grids.append(SphGenOh(2, a, b, v))
|
|
3125
|
+
a = 0.1462896151831013e-1
|
|
3126
|
+
v = 0.6018432961087496e-4
|
|
3127
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3128
|
+
a = 0.3769840812493139e-1
|
|
3129
|
+
v = 0.1002286583263673e-3
|
|
3130
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3131
|
+
a = 0.6524701904096891e-1
|
|
3132
|
+
v = 0.1315222931028093e-3
|
|
3133
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3134
|
+
a = 0.9560543416134648e-1
|
|
3135
|
+
v = 0.1564213746876724e-3
|
|
3136
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3137
|
+
a = 0.1278335898929198e+0
|
|
3138
|
+
v = 0.1765118841507736e-3
|
|
3139
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3140
|
+
a = 0.1613096104466031e+0
|
|
3141
|
+
v = 0.1928737099311080e-3
|
|
3142
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3143
|
+
a = 0.1955806225745371e+0
|
|
3144
|
+
v = 0.2062658534263270e-3
|
|
3145
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3146
|
+
a = 0.2302935218498028e+0
|
|
3147
|
+
v = 0.2172395445953787e-3
|
|
3148
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3149
|
+
a = 0.2651584344113027e+0
|
|
3150
|
+
v = 0.2262076188876047e-3
|
|
3151
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3152
|
+
a = 0.2999276825183209e+0
|
|
3153
|
+
v = 0.2334885699462397e-3
|
|
3154
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3155
|
+
a = 0.3343828669718798e+0
|
|
3156
|
+
v = 0.2393355273179203e-3
|
|
3157
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3158
|
+
a = 0.3683265013750518e+0
|
|
3159
|
+
v = 0.2439559200468863e-3
|
|
3160
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3161
|
+
a = 0.4015763206518108e+0
|
|
3162
|
+
v = 0.2475251866060002e-3
|
|
3163
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3164
|
+
a = 0.4339612026399770e+0
|
|
3165
|
+
v = 0.2501965558158773e-3
|
|
3166
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3167
|
+
a = 0.4653180651114582e+0
|
|
3168
|
+
v = 0.2521081407925925e-3
|
|
3169
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3170
|
+
a = 0.4954893331080803e+0
|
|
3171
|
+
v = 0.2533881002388081e-3
|
|
3172
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3173
|
+
a = 0.5243207068924930e+0
|
|
3174
|
+
v = 0.2541582900848261e-3
|
|
3175
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3176
|
+
a = 0.5516590479041704e+0
|
|
3177
|
+
v = 0.2545365737525860e-3
|
|
3178
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3179
|
+
a = 0.6012371927804176e+0
|
|
3180
|
+
v = 0.2545726993066799e-3
|
|
3181
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3182
|
+
a = 0.6231574466449819e+0
|
|
3183
|
+
v = 0.2544456197465555e-3
|
|
3184
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3185
|
+
a = 0.6429416514181271e+0
|
|
3186
|
+
v = 0.2543481596881064e-3
|
|
3187
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3188
|
+
a = 0.6604124272943595e+0
|
|
3189
|
+
v = 0.2543506451429194e-3
|
|
3190
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3191
|
+
a = 0.6753851470408250e+0
|
|
3192
|
+
v = 0.2544905675493763e-3
|
|
3193
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3194
|
+
a = 0.6876717970626160e+0
|
|
3195
|
+
v = 0.2547611407344429e-3
|
|
3196
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3197
|
+
a = 0.6970895061319234e+0
|
|
3198
|
+
v = 0.2551060375448869e-3
|
|
3199
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3200
|
+
a = 0.7034746912553310e+0
|
|
3201
|
+
v = 0.2554291933816039e-3
|
|
3202
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3203
|
+
a = 0.7067017217542295e+0
|
|
3204
|
+
v = 0.2556255710686343e-3
|
|
3205
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3206
|
+
a = 0.4382223501131123e-1
|
|
3207
|
+
v = 0.9041339695118195e-4
|
|
3208
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
3209
|
+
a = 0.1117474077400006e+0
|
|
3210
|
+
v = 0.1438426330079022e-3
|
|
3211
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
3212
|
+
a = 0.1897153252911440e+0
|
|
3213
|
+
v = 0.1802523089820518e-3
|
|
3214
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
3215
|
+
a = 0.2724023009910331e+0
|
|
3216
|
+
v = 0.2060052290565496e-3
|
|
3217
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
3218
|
+
a = 0.3567163308709902e+0
|
|
3219
|
+
v = 0.2245002248967466e-3
|
|
3220
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
3221
|
+
a = 0.4404784483028087e+0
|
|
3222
|
+
v = 0.2377059847731150e-3
|
|
3223
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
3224
|
+
a = 0.5219833154161411e+0
|
|
3225
|
+
v = 0.2468118955882525e-3
|
|
3226
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
3227
|
+
a = 0.5998179868977553e+0
|
|
3228
|
+
v = 0.2525410872966528e-3
|
|
3229
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
3230
|
+
a = 0.6727803154548222e+0
|
|
3231
|
+
v = 0.2553101409933397e-3
|
|
3232
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
3233
|
+
a = 0.7476563943166086e-1
|
|
3234
|
+
b = 0.2193168509461185e-1
|
|
3235
|
+
v = 0.1212879733668632e-3
|
|
3236
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3237
|
+
a = 0.1075341482001416e+0
|
|
3238
|
+
b = 0.4826419281533887e-1
|
|
3239
|
+
v = 0.1472872881270931e-3
|
|
3240
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3241
|
+
a = 0.1416344885203259e+0
|
|
3242
|
+
b = 0.7751191883575742e-1
|
|
3243
|
+
v = 0.1686846601010828e-3
|
|
3244
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3245
|
+
a = 0.1766325315388586e+0
|
|
3246
|
+
b = 0.1087558139247680e+0
|
|
3247
|
+
v = 0.1862698414660208e-3
|
|
3248
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3249
|
+
a = 0.2121744174481514e+0
|
|
3250
|
+
b = 0.1413661374253096e+0
|
|
3251
|
+
v = 0.2007430956991861e-3
|
|
3252
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3253
|
+
a = 0.2479669443408145e+0
|
|
3254
|
+
b = 0.1748768214258880e+0
|
|
3255
|
+
v = 0.2126568125394796e-3
|
|
3256
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3257
|
+
a = 0.2837600452294113e+0
|
|
3258
|
+
b = 0.2089216406612073e+0
|
|
3259
|
+
v = 0.2224394603372113e-3
|
|
3260
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3261
|
+
a = 0.3193344933193984e+0
|
|
3262
|
+
b = 0.2431987685545972e+0
|
|
3263
|
+
v = 0.2304264522673135e-3
|
|
3264
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3265
|
+
a = 0.3544935442438745e+0
|
|
3266
|
+
b = 0.2774497054377770e+0
|
|
3267
|
+
v = 0.2368854288424087e-3
|
|
3268
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3269
|
+
a = 0.3890571932288154e+0
|
|
3270
|
+
b = 0.3114460356156915e+0
|
|
3271
|
+
v = 0.2420352089461772e-3
|
|
3272
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3273
|
+
a = 0.4228581214259090e+0
|
|
3274
|
+
b = 0.3449806851913012e+0
|
|
3275
|
+
v = 0.2460597113081295e-3
|
|
3276
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3277
|
+
a = 0.4557387211304052e+0
|
|
3278
|
+
b = 0.3778618641248256e+0
|
|
3279
|
+
v = 0.2491181912257687e-3
|
|
3280
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3281
|
+
a = 0.4875487950541643e+0
|
|
3282
|
+
b = 0.4099086391698978e+0
|
|
3283
|
+
v = 0.2513528194205857e-3
|
|
3284
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3285
|
+
a = 0.5181436529962997e+0
|
|
3286
|
+
b = 0.4409474925853973e+0
|
|
3287
|
+
v = 0.2528943096693220e-3
|
|
3288
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3289
|
+
a = 0.5473824095600661e+0
|
|
3290
|
+
b = 0.4708094517711291e+0
|
|
3291
|
+
v = 0.2538660368488136e-3
|
|
3292
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3293
|
+
a = 0.5751263398976174e+0
|
|
3294
|
+
b = 0.4993275140354637e+0
|
|
3295
|
+
v = 0.2543868648299022e-3
|
|
3296
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3297
|
+
a = 0.1489515746840028e+0
|
|
3298
|
+
b = 0.2599381993267017e-1
|
|
3299
|
+
v = 0.1642595537825183e-3
|
|
3300
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3301
|
+
a = 0.1863656444351767e+0
|
|
3302
|
+
b = 0.5479286532462190e-1
|
|
3303
|
+
v = 0.1818246659849308e-3
|
|
3304
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3305
|
+
a = 0.2238602880356348e+0
|
|
3306
|
+
b = 0.8556763251425254e-1
|
|
3307
|
+
v = 0.1966565649492420e-3
|
|
3308
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3309
|
+
a = 0.2612723375728160e+0
|
|
3310
|
+
b = 0.1177257802267011e+0
|
|
3311
|
+
v = 0.2090677905657991e-3
|
|
3312
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3313
|
+
a = 0.2984332990206190e+0
|
|
3314
|
+
b = 0.1508168456192700e+0
|
|
3315
|
+
v = 0.2193820409510504e-3
|
|
3316
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3317
|
+
a = 0.3351786584663333e+0
|
|
3318
|
+
b = 0.1844801892177727e+0
|
|
3319
|
+
v = 0.2278870827661928e-3
|
|
3320
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3321
|
+
a = 0.3713505522209120e+0
|
|
3322
|
+
b = 0.2184145236087598e+0
|
|
3323
|
+
v = 0.2348283192282090e-3
|
|
3324
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3325
|
+
a = 0.4067981098954663e+0
|
|
3326
|
+
b = 0.2523590641486229e+0
|
|
3327
|
+
v = 0.2404139755581477e-3
|
|
3328
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3329
|
+
a = 0.4413769993687534e+0
|
|
3330
|
+
b = 0.2860812976901373e+0
|
|
3331
|
+
v = 0.2448227407760734e-3
|
|
3332
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3333
|
+
a = 0.4749487182516394e+0
|
|
3334
|
+
b = 0.3193686757808996e+0
|
|
3335
|
+
v = 0.2482110455592573e-3
|
|
3336
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3337
|
+
a = 0.5073798105075426e+0
|
|
3338
|
+
b = 0.3520226949547602e+0
|
|
3339
|
+
v = 0.2507192397774103e-3
|
|
3340
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3341
|
+
a = 0.5385410448878654e+0
|
|
3342
|
+
b = 0.3838544395667890e+0
|
|
3343
|
+
v = 0.2524765968534880e-3
|
|
3344
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3345
|
+
a = 0.5683065353670530e+0
|
|
3346
|
+
b = 0.4146810037640963e+0
|
|
3347
|
+
v = 0.2536052388539425e-3
|
|
3348
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3349
|
+
a = 0.5965527620663510e+0
|
|
3350
|
+
b = 0.4443224094681121e+0
|
|
3351
|
+
v = 0.2542230588033068e-3
|
|
3352
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3353
|
+
a = 0.2299227700856157e+0
|
|
3354
|
+
b = 0.2865757664057584e-1
|
|
3355
|
+
v = 0.1944817013047896e-3
|
|
3356
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3357
|
+
a = 0.2695752998553267e+0
|
|
3358
|
+
b = 0.5923421684485993e-1
|
|
3359
|
+
v = 0.2067862362746635e-3
|
|
3360
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3361
|
+
a = 0.3086178716611389e+0
|
|
3362
|
+
b = 0.9117817776057715e-1
|
|
3363
|
+
v = 0.2172440734649114e-3
|
|
3364
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3365
|
+
a = 0.3469649871659077e+0
|
|
3366
|
+
b = 0.1240593814082605e+0
|
|
3367
|
+
v = 0.2260125991723423e-3
|
|
3368
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3369
|
+
a = 0.3845153566319655e+0
|
|
3370
|
+
b = 0.1575272058259175e+0
|
|
3371
|
+
v = 0.2332655008689523e-3
|
|
3372
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3373
|
+
a = 0.4211600033403215e+0
|
|
3374
|
+
b = 0.1912845163525413e+0
|
|
3375
|
+
v = 0.2391699681532458e-3
|
|
3376
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3377
|
+
a = 0.4567867834329882e+0
|
|
3378
|
+
b = 0.2250710177858171e+0
|
|
3379
|
+
v = 0.2438801528273928e-3
|
|
3380
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3381
|
+
a = 0.4912829319232061e+0
|
|
3382
|
+
b = 0.2586521303440910e+0
|
|
3383
|
+
v = 0.2475370504260665e-3
|
|
3384
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3385
|
+
a = 0.5245364793303812e+0
|
|
3386
|
+
b = 0.2918112242865407e+0
|
|
3387
|
+
v = 0.2502707235640574e-3
|
|
3388
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3389
|
+
a = 0.5564369788915756e+0
|
|
3390
|
+
b = 0.3243439239067890e+0
|
|
3391
|
+
v = 0.2522031701054241e-3
|
|
3392
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3393
|
+
a = 0.5868757697775287e+0
|
|
3394
|
+
b = 0.3560536787835351e+0
|
|
3395
|
+
v = 0.2534511269978784e-3
|
|
3396
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3397
|
+
a = 0.6157458853519617e+0
|
|
3398
|
+
b = 0.3867480821242581e+0
|
|
3399
|
+
v = 0.2541284914955151e-3
|
|
3400
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3401
|
+
a = 0.3138461110672113e+0
|
|
3402
|
+
b = 0.3051374637507278e-1
|
|
3403
|
+
v = 0.2161509250688394e-3
|
|
3404
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3405
|
+
a = 0.3542495872050569e+0
|
|
3406
|
+
b = 0.6237111233730755e-1
|
|
3407
|
+
v = 0.2248778513437852e-3
|
|
3408
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3409
|
+
a = 0.3935751553120181e+0
|
|
3410
|
+
b = 0.9516223952401907e-1
|
|
3411
|
+
v = 0.2322388803404617e-3
|
|
3412
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3413
|
+
a = 0.4317634668111147e+0
|
|
3414
|
+
b = 0.1285467341508517e+0
|
|
3415
|
+
v = 0.2383265471001355e-3
|
|
3416
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3417
|
+
a = 0.4687413842250821e+0
|
|
3418
|
+
b = 0.1622318931656033e+0
|
|
3419
|
+
v = 0.2432476675019525e-3
|
|
3420
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3421
|
+
a = 0.5044274237060283e+0
|
|
3422
|
+
b = 0.1959581153836453e+0
|
|
3423
|
+
v = 0.2471122223750674e-3
|
|
3424
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3425
|
+
a = 0.5387354077925727e+0
|
|
3426
|
+
b = 0.2294888081183837e+0
|
|
3427
|
+
v = 0.2500291752486870e-3
|
|
3428
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3429
|
+
a = 0.5715768898356105e+0
|
|
3430
|
+
b = 0.2626031152713945e+0
|
|
3431
|
+
v = 0.2521055942764682e-3
|
|
3432
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3433
|
+
a = 0.6028627200136111e+0
|
|
3434
|
+
b = 0.2950904075286713e+0
|
|
3435
|
+
v = 0.2534472785575503e-3
|
|
3436
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3437
|
+
a = 0.6325039812653463e+0
|
|
3438
|
+
b = 0.3267458451113286e+0
|
|
3439
|
+
v = 0.2541599713080121e-3
|
|
3440
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3441
|
+
a = 0.3981986708423407e+0
|
|
3442
|
+
b = 0.3183291458749821e-1
|
|
3443
|
+
v = 0.2317380975862936e-3
|
|
3444
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3445
|
+
a = 0.4382791182133300e+0
|
|
3446
|
+
b = 0.6459548193880908e-1
|
|
3447
|
+
v = 0.2378550733719775e-3
|
|
3448
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3449
|
+
a = 0.4769233057218166e+0
|
|
3450
|
+
b = 0.9795757037087952e-1
|
|
3451
|
+
v = 0.2428884456739118e-3
|
|
3452
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3453
|
+
a = 0.5140823911194238e+0
|
|
3454
|
+
b = 0.1316307235126655e+0
|
|
3455
|
+
v = 0.2469002655757292e-3
|
|
3456
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3457
|
+
a = 0.5496977833862983e+0
|
|
3458
|
+
b = 0.1653556486358704e+0
|
|
3459
|
+
v = 0.2499657574265851e-3
|
|
3460
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3461
|
+
a = 0.5837047306512727e+0
|
|
3462
|
+
b = 0.1988931724126510e+0
|
|
3463
|
+
v = 0.2521676168486082e-3
|
|
3464
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3465
|
+
a = 0.6160349566926879e+0
|
|
3466
|
+
b = 0.2320174581438950e+0
|
|
3467
|
+
v = 0.2535935662645334e-3
|
|
3468
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3469
|
+
a = 0.6466185353209440e+0
|
|
3470
|
+
b = 0.2645106562168662e+0
|
|
3471
|
+
v = 0.2543356743363214e-3
|
|
3472
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3473
|
+
a = 0.4810835158795404e+0
|
|
3474
|
+
b = 0.3275917807743992e-1
|
|
3475
|
+
v = 0.2427353285201535e-3
|
|
3476
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3477
|
+
a = 0.5199925041324341e+0
|
|
3478
|
+
b = 0.6612546183967181e-1
|
|
3479
|
+
v = 0.2468258039744386e-3
|
|
3480
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3481
|
+
a = 0.5571717692207494e+0
|
|
3482
|
+
b = 0.9981498331474143e-1
|
|
3483
|
+
v = 0.2500060956440310e-3
|
|
3484
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3485
|
+
a = 0.5925789250836378e+0
|
|
3486
|
+
b = 0.1335687001410374e+0
|
|
3487
|
+
v = 0.2523238365420979e-3
|
|
3488
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3489
|
+
a = 0.6261658523859670e+0
|
|
3490
|
+
b = 0.1671444402896463e+0
|
|
3491
|
+
v = 0.2538399260252846e-3
|
|
3492
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3493
|
+
a = 0.6578811126669331e+0
|
|
3494
|
+
b = 0.2003106382156076e+0
|
|
3495
|
+
v = 0.2546255927268069e-3
|
|
3496
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3497
|
+
a = 0.5609624612998100e+0
|
|
3498
|
+
b = 0.3337500940231335e-1
|
|
3499
|
+
v = 0.2500583360048449e-3
|
|
3500
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3501
|
+
a = 0.5979959659984670e+0
|
|
3502
|
+
b = 0.6708750335901803e-1
|
|
3503
|
+
v = 0.2524777638260203e-3
|
|
3504
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3505
|
+
a = 0.6330523711054002e+0
|
|
3506
|
+
b = 0.1008792126424850e+0
|
|
3507
|
+
v = 0.2540951193860656e-3
|
|
3508
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3509
|
+
a = 0.6660960998103972e+0
|
|
3510
|
+
b = 0.1345050343171794e+0
|
|
3511
|
+
v = 0.2549524085027472e-3
|
|
3512
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3513
|
+
a = 0.6365384364585819e+0
|
|
3514
|
+
b = 0.3372799460737052e-1
|
|
3515
|
+
v = 0.2542569507009158e-3
|
|
3516
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3517
|
+
a = 0.6710994302899275e+0
|
|
3518
|
+
b = 0.6755249309678028e-1
|
|
3519
|
+
v = 0.2552114127580376e-3
|
|
3520
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3521
|
+
return np.vstack(grids)
|
|
3522
|
+
|
|
3523
|
+
|
|
3524
|
+
def MakeAngularGrid_4802():
|
|
3525
|
+
grids = []
|
|
3526
|
+
a = 0
|
|
3527
|
+
b = 0
|
|
3528
|
+
v = 0.9687521879420705e-4
|
|
3529
|
+
grids.append(SphGenOh(0, a, b, v))
|
|
3530
|
+
v = 0.2307897895367918e-3
|
|
3531
|
+
grids.append(SphGenOh(1, a, b, v))
|
|
3532
|
+
v = 0.2297310852498558e-3
|
|
3533
|
+
grids.append(SphGenOh(2, a, b, v))
|
|
3534
|
+
a = 0.2335728608887064e-1
|
|
3535
|
+
v = 0.7386265944001919e-4
|
|
3536
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3537
|
+
a = 0.4352987836550653e-1
|
|
3538
|
+
v = 0.8257977698542210e-4
|
|
3539
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3540
|
+
a = 0.6439200521088801e-1
|
|
3541
|
+
v = 0.9706044762057630e-4
|
|
3542
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3543
|
+
a = 0.9003943631993181e-1
|
|
3544
|
+
v = 0.1302393847117003e-3
|
|
3545
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3546
|
+
a = 0.1196706615548473e+0
|
|
3547
|
+
v = 0.1541957004600968e-3
|
|
3548
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3549
|
+
a = 0.1511715412838134e+0
|
|
3550
|
+
v = 0.1704459770092199e-3
|
|
3551
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3552
|
+
a = 0.1835982828503801e+0
|
|
3553
|
+
v = 0.1827374890942906e-3
|
|
3554
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3555
|
+
a = 0.2165081259155405e+0
|
|
3556
|
+
v = 0.1926360817436107e-3
|
|
3557
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3558
|
+
a = 0.2496208720417563e+0
|
|
3559
|
+
v = 0.2008010239494833e-3
|
|
3560
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3561
|
+
a = 0.2827200673567900e+0
|
|
3562
|
+
v = 0.2075635983209175e-3
|
|
3563
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3564
|
+
a = 0.3156190823994346e+0
|
|
3565
|
+
v = 0.2131306638690909e-3
|
|
3566
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3567
|
+
a = 0.3481476793749115e+0
|
|
3568
|
+
v = 0.2176562329937335e-3
|
|
3569
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3570
|
+
a = 0.3801466086947226e+0
|
|
3571
|
+
v = 0.2212682262991018e-3
|
|
3572
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3573
|
+
a = 0.4114652119634011e+0
|
|
3574
|
+
v = 0.2240799515668565e-3
|
|
3575
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3576
|
+
a = 0.4419598786519751e+0
|
|
3577
|
+
v = 0.2261959816187525e-3
|
|
3578
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3579
|
+
a = 0.4714925949329543e+0
|
|
3580
|
+
v = 0.2277156368808855e-3
|
|
3581
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3582
|
+
a = 0.4999293972879466e+0
|
|
3583
|
+
v = 0.2287351772128336e-3
|
|
3584
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3585
|
+
a = 0.5271387221431248e+0
|
|
3586
|
+
v = 0.2293490814084085e-3
|
|
3587
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3588
|
+
a = 0.5529896780837761e+0
|
|
3589
|
+
v = 0.2296505312376273e-3
|
|
3590
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3591
|
+
a = 0.6000856099481712e+0
|
|
3592
|
+
v = 0.2296793832318756e-3
|
|
3593
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3594
|
+
a = 0.6210562192785175e+0
|
|
3595
|
+
v = 0.2295785443842974e-3
|
|
3596
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3597
|
+
a = 0.6401165879934240e+0
|
|
3598
|
+
v = 0.2295017931529102e-3
|
|
3599
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3600
|
+
a = 0.6571144029244334e+0
|
|
3601
|
+
v = 0.2295059638184868e-3
|
|
3602
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3603
|
+
a = 0.6718910821718863e+0
|
|
3604
|
+
v = 0.2296232343237362e-3
|
|
3605
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3606
|
+
a = 0.6842845591099010e+0
|
|
3607
|
+
v = 0.2298530178740771e-3
|
|
3608
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3609
|
+
a = 0.6941353476269816e+0
|
|
3610
|
+
v = 0.2301579790280501e-3
|
|
3611
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3612
|
+
a = 0.7012965242212991e+0
|
|
3613
|
+
v = 0.2304690404996513e-3
|
|
3614
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3615
|
+
a = 0.7056471428242644e+0
|
|
3616
|
+
v = 0.2307027995907102e-3
|
|
3617
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3618
|
+
a = 0.4595557643585895e-1
|
|
3619
|
+
v = 0.9312274696671092e-4
|
|
3620
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
3621
|
+
a = 0.1049316742435023e+0
|
|
3622
|
+
v = 0.1199919385876926e-3
|
|
3623
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
3624
|
+
a = 0.1773548879549274e+0
|
|
3625
|
+
v = 0.1598039138877690e-3
|
|
3626
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
3627
|
+
a = 0.2559071411236127e+0
|
|
3628
|
+
v = 0.1822253763574900e-3
|
|
3629
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
3630
|
+
a = 0.3358156837985898e+0
|
|
3631
|
+
v = 0.1988579593655040e-3
|
|
3632
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
3633
|
+
a = 0.4155835743763893e+0
|
|
3634
|
+
v = 0.2112620102533307e-3
|
|
3635
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
3636
|
+
a = 0.4937894296167472e+0
|
|
3637
|
+
v = 0.2201594887699007e-3
|
|
3638
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
3639
|
+
a = 0.5691569694793316e+0
|
|
3640
|
+
v = 0.2261622590895036e-3
|
|
3641
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
3642
|
+
a = 0.6405840854894251e+0
|
|
3643
|
+
v = 0.2296458453435705e-3
|
|
3644
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
3645
|
+
a = 0.7345133894143348e-1
|
|
3646
|
+
b = 0.2177844081486067e-1
|
|
3647
|
+
v = 0.1006006990267000e-3
|
|
3648
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3649
|
+
a = 0.1009859834044931e+0
|
|
3650
|
+
b = 0.4590362185775188e-1
|
|
3651
|
+
v = 0.1227676689635876e-3
|
|
3652
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3653
|
+
a = 0.1324289619748758e+0
|
|
3654
|
+
b = 0.7255063095690877e-1
|
|
3655
|
+
v = 0.1467864280270117e-3
|
|
3656
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3657
|
+
a = 0.1654272109607127e+0
|
|
3658
|
+
b = 0.1017825451960684e+0
|
|
3659
|
+
v = 0.1644178912101232e-3
|
|
3660
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3661
|
+
a = 0.1990767186776461e+0
|
|
3662
|
+
b = 0.1325652320980364e+0
|
|
3663
|
+
v = 0.1777664890718961e-3
|
|
3664
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3665
|
+
a = 0.2330125945523278e+0
|
|
3666
|
+
b = 0.1642765374496765e+0
|
|
3667
|
+
v = 0.1884825664516690e-3
|
|
3668
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3669
|
+
a = 0.2670080611108287e+0
|
|
3670
|
+
b = 0.1965360374337889e+0
|
|
3671
|
+
v = 0.1973269246453848e-3
|
|
3672
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3673
|
+
a = 0.3008753376294316e+0
|
|
3674
|
+
b = 0.2290726770542238e+0
|
|
3675
|
+
v = 0.2046767775855328e-3
|
|
3676
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3677
|
+
a = 0.3344475596167860e+0
|
|
3678
|
+
b = 0.2616645495370823e+0
|
|
3679
|
+
v = 0.2107600125918040e-3
|
|
3680
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3681
|
+
a = 0.3675709724070786e+0
|
|
3682
|
+
b = 0.2941150728843141e+0
|
|
3683
|
+
v = 0.2157416362266829e-3
|
|
3684
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3685
|
+
a = 0.4001000887587812e+0
|
|
3686
|
+
b = 0.3262440400919066e+0
|
|
3687
|
+
v = 0.2197557816920721e-3
|
|
3688
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3689
|
+
a = 0.4318956350436028e+0
|
|
3690
|
+
b = 0.3578835350611916e+0
|
|
3691
|
+
v = 0.2229192611835437e-3
|
|
3692
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3693
|
+
a = 0.4628239056795531e+0
|
|
3694
|
+
b = 0.3888751854043678e+0
|
|
3695
|
+
v = 0.2253385110212775e-3
|
|
3696
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3697
|
+
a = 0.4927563229773636e+0
|
|
3698
|
+
b = 0.4190678003222840e+0
|
|
3699
|
+
v = 0.2271137107548774e-3
|
|
3700
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3701
|
+
a = 0.5215687136707969e+0
|
|
3702
|
+
b = 0.4483151836883852e+0
|
|
3703
|
+
v = 0.2283414092917525e-3
|
|
3704
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3705
|
+
a = 0.5491402346984905e+0
|
|
3706
|
+
b = 0.4764740676087880e+0
|
|
3707
|
+
v = 0.2291161673130077e-3
|
|
3708
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3709
|
+
a = 0.5753520160126075e+0
|
|
3710
|
+
b = 0.5034021310998277e+0
|
|
3711
|
+
v = 0.2295313908576598e-3
|
|
3712
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3713
|
+
a = 0.1388326356417754e+0
|
|
3714
|
+
b = 0.2435436510372806e-1
|
|
3715
|
+
v = 0.1438204721359031e-3
|
|
3716
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3717
|
+
a = 0.1743686900537244e+0
|
|
3718
|
+
b = 0.5118897057342652e-1
|
|
3719
|
+
v = 0.1607738025495257e-3
|
|
3720
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3721
|
+
a = 0.2099737037950268e+0
|
|
3722
|
+
b = 0.8014695048539634e-1
|
|
3723
|
+
v = 0.1741483853528379e-3
|
|
3724
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3725
|
+
a = 0.2454492590908548e+0
|
|
3726
|
+
b = 0.1105117874155699e+0
|
|
3727
|
+
v = 0.1851918467519151e-3
|
|
3728
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3729
|
+
a = 0.2807219257864278e+0
|
|
3730
|
+
b = 0.1417950531570966e+0
|
|
3731
|
+
v = 0.1944628638070613e-3
|
|
3732
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3733
|
+
a = 0.3156842271975842e+0
|
|
3734
|
+
b = 0.1736604945719597e+0
|
|
3735
|
+
v = 0.2022495446275152e-3
|
|
3736
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3737
|
+
a = 0.3502090945177752e+0
|
|
3738
|
+
b = 0.2058466324693981e+0
|
|
3739
|
+
v = 0.2087462382438514e-3
|
|
3740
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3741
|
+
a = 0.3841684849519686e+0
|
|
3742
|
+
b = 0.2381284261195919e+0
|
|
3743
|
+
v = 0.2141074754818308e-3
|
|
3744
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3745
|
+
a = 0.4174372367906016e+0
|
|
3746
|
+
b = 0.2703031270422569e+0
|
|
3747
|
+
v = 0.2184640913748162e-3
|
|
3748
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3749
|
+
a = 0.4498926465011892e+0
|
|
3750
|
+
b = 0.3021845683091309e+0
|
|
3751
|
+
v = 0.2219309165220329e-3
|
|
3752
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3753
|
+
a = 0.4814146229807701e+0
|
|
3754
|
+
b = 0.3335993355165720e+0
|
|
3755
|
+
v = 0.2246123118340624e-3
|
|
3756
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3757
|
+
a = 0.5118863625734701e+0
|
|
3758
|
+
b = 0.3643833735518232e+0
|
|
3759
|
+
v = 0.2266062766915125e-3
|
|
3760
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3761
|
+
a = 0.5411947455119144e+0
|
|
3762
|
+
b = 0.3943789541958179e+0
|
|
3763
|
+
v = 0.2280072952230796e-3
|
|
3764
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3765
|
+
a = 0.5692301500357246e+0
|
|
3766
|
+
b = 0.4234320144403542e+0
|
|
3767
|
+
v = 0.2289082025202583e-3
|
|
3768
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3769
|
+
a = 0.5958857204139576e+0
|
|
3770
|
+
b = 0.4513897947419260e+0
|
|
3771
|
+
v = 0.2294012695120025e-3
|
|
3772
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3773
|
+
a = 0.2156270284785766e+0
|
|
3774
|
+
b = 0.2681225755444491e-1
|
|
3775
|
+
v = 0.1722434488736947e-3
|
|
3776
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3777
|
+
a = 0.2532385054909710e+0
|
|
3778
|
+
b = 0.5557495747805614e-1
|
|
3779
|
+
v = 0.1830237421455091e-3
|
|
3780
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3781
|
+
a = 0.2902564617771537e+0
|
|
3782
|
+
b = 0.8569368062950249e-1
|
|
3783
|
+
v = 0.1923855349997633e-3
|
|
3784
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3785
|
+
a = 0.3266979823143256e+0
|
|
3786
|
+
b = 0.1167367450324135e+0
|
|
3787
|
+
v = 0.2004067861936271e-3
|
|
3788
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3789
|
+
a = 0.3625039627493614e+0
|
|
3790
|
+
b = 0.1483861994003304e+0
|
|
3791
|
+
v = 0.2071817297354263e-3
|
|
3792
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3793
|
+
a = 0.3975838937548699e+0
|
|
3794
|
+
b = 0.1803821503011405e+0
|
|
3795
|
+
v = 0.2128250834102103e-3
|
|
3796
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3797
|
+
a = 0.4318396099009774e+0
|
|
3798
|
+
b = 0.2124962965666424e+0
|
|
3799
|
+
v = 0.2174513719440102e-3
|
|
3800
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3801
|
+
a = 0.4651706555732742e+0
|
|
3802
|
+
b = 0.2445221837805913e+0
|
|
3803
|
+
v = 0.2211661839150214e-3
|
|
3804
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3805
|
+
a = 0.4974752649620969e+0
|
|
3806
|
+
b = 0.2762701224322987e+0
|
|
3807
|
+
v = 0.2240665257813102e-3
|
|
3808
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3809
|
+
a = 0.5286517579627517e+0
|
|
3810
|
+
b = 0.3075627775211328e+0
|
|
3811
|
+
v = 0.2262439516632620e-3
|
|
3812
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3813
|
+
a = 0.5586001195731895e+0
|
|
3814
|
+
b = 0.3382311089826877e+0
|
|
3815
|
+
v = 0.2277874557231869e-3
|
|
3816
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3817
|
+
a = 0.5872229902021319e+0
|
|
3818
|
+
b = 0.3681108834741399e+0
|
|
3819
|
+
v = 0.2287854314454994e-3
|
|
3820
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3821
|
+
a = 0.6144258616235123e+0
|
|
3822
|
+
b = 0.3970397446872839e+0
|
|
3823
|
+
v = 0.2293268499615575e-3
|
|
3824
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3825
|
+
a = 0.2951676508064861e+0
|
|
3826
|
+
b = 0.2867499538750441e-1
|
|
3827
|
+
v = 0.1912628201529828e-3
|
|
3828
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3829
|
+
a = 0.3335085485472725e+0
|
|
3830
|
+
b = 0.5867879341903510e-1
|
|
3831
|
+
v = 0.1992499672238701e-3
|
|
3832
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3833
|
+
a = 0.3709561760636381e+0
|
|
3834
|
+
b = 0.8961099205022284e-1
|
|
3835
|
+
v = 0.2061275533454027e-3
|
|
3836
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3837
|
+
a = 0.4074722861667498e+0
|
|
3838
|
+
b = 0.1211627927626297e+0
|
|
3839
|
+
v = 0.2119318215968572e-3
|
|
3840
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3841
|
+
a = 0.4429923648839117e+0
|
|
3842
|
+
b = 0.1530748903554898e+0
|
|
3843
|
+
v = 0.2167416581882652e-3
|
|
3844
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3845
|
+
a = 0.4774428052721736e+0
|
|
3846
|
+
b = 0.1851176436721877e+0
|
|
3847
|
+
v = 0.2206430730516600e-3
|
|
3848
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3849
|
+
a = 0.5107446539535904e+0
|
|
3850
|
+
b = 0.2170829107658179e+0
|
|
3851
|
+
v = 0.2237186938699523e-3
|
|
3852
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3853
|
+
a = 0.5428151370542935e+0
|
|
3854
|
+
b = 0.2487786689026271e+0
|
|
3855
|
+
v = 0.2260480075032884e-3
|
|
3856
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3857
|
+
a = 0.5735699292556964e+0
|
|
3858
|
+
b = 0.2800239952795016e+0
|
|
3859
|
+
v = 0.2277098884558542e-3
|
|
3860
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3861
|
+
a = 0.6029253794562866e+0
|
|
3862
|
+
b = 0.3106445702878119e+0
|
|
3863
|
+
v = 0.2287845715109671e-3
|
|
3864
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3865
|
+
a = 0.6307998987073145e+0
|
|
3866
|
+
b = 0.3404689500841194e+0
|
|
3867
|
+
v = 0.2293547268236294e-3
|
|
3868
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3869
|
+
a = 0.3752652273692719e+0
|
|
3870
|
+
b = 0.2997145098184479e-1
|
|
3871
|
+
v = 0.2056073839852528e-3
|
|
3872
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3873
|
+
a = 0.4135383879344028e+0
|
|
3874
|
+
b = 0.6086725898678011e-1
|
|
3875
|
+
v = 0.2114235865831876e-3
|
|
3876
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3877
|
+
a = 0.4506113885153907e+0
|
|
3878
|
+
b = 0.9238849548435643e-1
|
|
3879
|
+
v = 0.2163175629770551e-3
|
|
3880
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3881
|
+
a = 0.4864401554606072e+0
|
|
3882
|
+
b = 0.1242786603851851e+0
|
|
3883
|
+
v = 0.2203392158111650e-3
|
|
3884
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3885
|
+
a = 0.5209708076611709e+0
|
|
3886
|
+
b = 0.1563086731483386e+0
|
|
3887
|
+
v = 0.2235473176847839e-3
|
|
3888
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3889
|
+
a = 0.5541422135830122e+0
|
|
3890
|
+
b = 0.1882696509388506e+0
|
|
3891
|
+
v = 0.2260024141501235e-3
|
|
3892
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3893
|
+
a = 0.5858880915113817e+0
|
|
3894
|
+
b = 0.2199672979126059e+0
|
|
3895
|
+
v = 0.2277675929329182e-3
|
|
3896
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3897
|
+
a = 0.6161399390603444e+0
|
|
3898
|
+
b = 0.2512165482924867e+0
|
|
3899
|
+
v = 0.2289102112284834e-3
|
|
3900
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3901
|
+
a = 0.6448296482255090e+0
|
|
3902
|
+
b = 0.2818368701871888e+0
|
|
3903
|
+
v = 0.2295027954625118e-3
|
|
3904
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3905
|
+
a = 0.4544796274917948e+0
|
|
3906
|
+
b = 0.3088970405060312e-1
|
|
3907
|
+
v = 0.2161281589879992e-3
|
|
3908
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3909
|
+
a = 0.4919389072146628e+0
|
|
3910
|
+
b = 0.6240947677636835e-1
|
|
3911
|
+
v = 0.2201980477395102e-3
|
|
3912
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3913
|
+
a = 0.5279313026985183e+0
|
|
3914
|
+
b = 0.9430706144280313e-1
|
|
3915
|
+
v = 0.2234952066593166e-3
|
|
3916
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3917
|
+
a = 0.5624169925571135e+0
|
|
3918
|
+
b = 0.1263547818770374e+0
|
|
3919
|
+
v = 0.2260540098520838e-3
|
|
3920
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3921
|
+
a = 0.5953484627093287e+0
|
|
3922
|
+
b = 0.1583430788822594e+0
|
|
3923
|
+
v = 0.2279157981899988e-3
|
|
3924
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3925
|
+
a = 0.6266730715339185e+0
|
|
3926
|
+
b = 0.1900748462555988e+0
|
|
3927
|
+
v = 0.2291296918565571e-3
|
|
3928
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3929
|
+
a = 0.6563363204278871e+0
|
|
3930
|
+
b = 0.2213599519592567e+0
|
|
3931
|
+
v = 0.2297533752536649e-3
|
|
3932
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3933
|
+
a = 0.5314574716585696e+0
|
|
3934
|
+
b = 0.3152508811515374e-1
|
|
3935
|
+
v = 0.2234927356465995e-3
|
|
3936
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3937
|
+
a = 0.5674614932298185e+0
|
|
3938
|
+
b = 0.6343865291465561e-1
|
|
3939
|
+
v = 0.2261288012985219e-3
|
|
3940
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3941
|
+
a = 0.6017706004970264e+0
|
|
3942
|
+
b = 0.9551503504223951e-1
|
|
3943
|
+
v = 0.2280818160923688e-3
|
|
3944
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3945
|
+
a = 0.6343471270264178e+0
|
|
3946
|
+
b = 0.1275440099801196e+0
|
|
3947
|
+
v = 0.2293773295180159e-3
|
|
3948
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3949
|
+
a = 0.6651494599127802e+0
|
|
3950
|
+
b = 0.1593252037671960e+0
|
|
3951
|
+
v = 0.2300528767338634e-3
|
|
3952
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3953
|
+
a = 0.6050184986005704e+0
|
|
3954
|
+
b = 0.3192538338496105e-1
|
|
3955
|
+
v = 0.2281893855065666e-3
|
|
3956
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3957
|
+
a = 0.6390163550880400e+0
|
|
3958
|
+
b = 0.6402824353962306e-1
|
|
3959
|
+
v = 0.2295720444840727e-3
|
|
3960
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3961
|
+
a = 0.6711199107088448e+0
|
|
3962
|
+
b = 0.9609805077002909e-1
|
|
3963
|
+
v = 0.2303227649026753e-3
|
|
3964
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3965
|
+
a = 0.6741354429572275e+0
|
|
3966
|
+
b = 0.3211853196273233e-1
|
|
3967
|
+
v = 0.2304831913227114e-3
|
|
3968
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
3969
|
+
return np.vstack(grids)
|
|
3970
|
+
|
|
3971
|
+
|
|
3972
|
+
def MakeAngularGrid_5294():
|
|
3973
|
+
grids = []
|
|
3974
|
+
a = 0
|
|
3975
|
+
b = 0
|
|
3976
|
+
v = 0.9080510764308163e-4
|
|
3977
|
+
grids.append(SphGenOh(0, a, b, v))
|
|
3978
|
+
v = 0.2084824361987793e-3
|
|
3979
|
+
grids.append(SphGenOh(2, a, b, v))
|
|
3980
|
+
a = 0.2303261686261450e-1
|
|
3981
|
+
v = 0.5011105657239616e-4
|
|
3982
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3983
|
+
a = 0.3757208620162394e-1
|
|
3984
|
+
v = 0.5942520409683854e-4
|
|
3985
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3986
|
+
a = 0.5821912033821852e-1
|
|
3987
|
+
v = 0.9564394826109721e-4
|
|
3988
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3989
|
+
a = 0.8403127529194872e-1
|
|
3990
|
+
v = 0.1185530657126338e-3
|
|
3991
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3992
|
+
a = 0.1122927798060578e+0
|
|
3993
|
+
v = 0.1364510114230331e-3
|
|
3994
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3995
|
+
a = 0.1420125319192987e+0
|
|
3996
|
+
v = 0.1505828825605415e-3
|
|
3997
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
3998
|
+
a = 0.1726396437341978e+0
|
|
3999
|
+
v = 0.1619298749867023e-3
|
|
4000
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4001
|
+
a = 0.2038170058115696e+0
|
|
4002
|
+
v = 0.1712450504267789e-3
|
|
4003
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4004
|
+
a = 0.2352849892876508e+0
|
|
4005
|
+
v = 0.1789891098164999e-3
|
|
4006
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4007
|
+
a = 0.2668363354312461e+0
|
|
4008
|
+
v = 0.1854474955629795e-3
|
|
4009
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4010
|
+
a = 0.2982941279900452e+0
|
|
4011
|
+
v = 0.1908148636673661e-3
|
|
4012
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4013
|
+
a = 0.3295002922087076e+0
|
|
4014
|
+
v = 0.1952377405281833e-3
|
|
4015
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4016
|
+
a = 0.3603094918363593e+0
|
|
4017
|
+
v = 0.1988349254282232e-3
|
|
4018
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4019
|
+
a = 0.3905857895173920e+0
|
|
4020
|
+
v = 0.2017079807160050e-3
|
|
4021
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4022
|
+
a = 0.4202005758160837e+0
|
|
4023
|
+
v = 0.2039473082709094e-3
|
|
4024
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4025
|
+
a = 0.4490310061597227e+0
|
|
4026
|
+
v = 0.2056360279288953e-3
|
|
4027
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4028
|
+
a = 0.4769586160311491e+0
|
|
4029
|
+
v = 0.2068525823066865e-3
|
|
4030
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4031
|
+
a = 0.5038679887049750e+0
|
|
4032
|
+
v = 0.2076724877534488e-3
|
|
4033
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4034
|
+
a = 0.5296454286519961e+0
|
|
4035
|
+
v = 0.2081694278237885e-3
|
|
4036
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4037
|
+
a = 0.5541776207164850e+0
|
|
4038
|
+
v = 0.2084157631219326e-3
|
|
4039
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4040
|
+
a = 0.5990467321921213e+0
|
|
4041
|
+
v = 0.2084381531128593e-3
|
|
4042
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4043
|
+
a = 0.6191467096294587e+0
|
|
4044
|
+
v = 0.2083476277129307e-3
|
|
4045
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4046
|
+
a = 0.6375251212901849e+0
|
|
4047
|
+
v = 0.2082686194459732e-3
|
|
4048
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4049
|
+
a = 0.6540514381131168e+0
|
|
4050
|
+
v = 0.2082475686112415e-3
|
|
4051
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4052
|
+
a = 0.6685899064391510e+0
|
|
4053
|
+
v = 0.2083139860289915e-3
|
|
4054
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4055
|
+
a = 0.6810013009681648e+0
|
|
4056
|
+
v = 0.2084745561831237e-3
|
|
4057
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4058
|
+
a = 0.6911469578730340e+0
|
|
4059
|
+
v = 0.2087091313375890e-3
|
|
4060
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4061
|
+
a = 0.6988956915141736e+0
|
|
4062
|
+
v = 0.2089718413297697e-3
|
|
4063
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4064
|
+
a = 0.7041335794868720e+0
|
|
4065
|
+
v = 0.2092003303479793e-3
|
|
4066
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4067
|
+
a = 0.7067754398018567e+0
|
|
4068
|
+
v = 0.2093336148263241e-3
|
|
4069
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4070
|
+
a = 0.3840368707853623e-1
|
|
4071
|
+
v = 0.7591708117365267e-4
|
|
4072
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
4073
|
+
a = 0.9835485954117399e-1
|
|
4074
|
+
v = 0.1083383968169186e-3
|
|
4075
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
4076
|
+
a = 0.1665774947612998e+0
|
|
4077
|
+
v = 0.1403019395292510e-3
|
|
4078
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
4079
|
+
a = 0.2405702335362910e+0
|
|
4080
|
+
v = 0.1615970179286436e-3
|
|
4081
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
4082
|
+
a = 0.3165270770189046e+0
|
|
4083
|
+
v = 0.1771144187504911e-3
|
|
4084
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
4085
|
+
a = 0.3927386145645443e+0
|
|
4086
|
+
v = 0.1887760022988168e-3
|
|
4087
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
4088
|
+
a = 0.4678825918374656e+0
|
|
4089
|
+
v = 0.1973474670768214e-3
|
|
4090
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
4091
|
+
a = 0.5408022024266935e+0
|
|
4092
|
+
v = 0.2033787661234659e-3
|
|
4093
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
4094
|
+
a = 0.6104967445752438e+0
|
|
4095
|
+
v = 0.2072343626517331e-3
|
|
4096
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
4097
|
+
a = 0.6760910702685738e+0
|
|
4098
|
+
v = 0.2091177834226918e-3
|
|
4099
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
4100
|
+
a = 0.6655644120217392e-1
|
|
4101
|
+
b = 0.1936508874588424e-1
|
|
4102
|
+
v = 0.9316684484675566e-4
|
|
4103
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4104
|
+
a = 0.9446246161270182e-1
|
|
4105
|
+
b = 0.4252442002115869e-1
|
|
4106
|
+
v = 0.1116193688682976e-3
|
|
4107
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4108
|
+
a = 0.1242651925452509e+0
|
|
4109
|
+
b = 0.6806529315354374e-1
|
|
4110
|
+
v = 0.1298623551559414e-3
|
|
4111
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4112
|
+
a = 0.1553438064846751e+0
|
|
4113
|
+
b = 0.9560957491205369e-1
|
|
4114
|
+
v = 0.1450236832456426e-3
|
|
4115
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4116
|
+
a = 0.1871137110542670e+0
|
|
4117
|
+
b = 0.1245931657452888e+0
|
|
4118
|
+
v = 0.1572719958149914e-3
|
|
4119
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4120
|
+
a = 0.2192612628836257e+0
|
|
4121
|
+
b = 0.1545385828778978e+0
|
|
4122
|
+
v = 0.1673234785867195e-3
|
|
4123
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4124
|
+
a = 0.2515682807206955e+0
|
|
4125
|
+
b = 0.1851004249723368e+0
|
|
4126
|
+
v = 0.1756860118725188e-3
|
|
4127
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4128
|
+
a = 0.2838535866287290e+0
|
|
4129
|
+
b = 0.2160182608272384e+0
|
|
4130
|
+
v = 0.1826776290439367e-3
|
|
4131
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4132
|
+
a = 0.3159578817528521e+0
|
|
4133
|
+
b = 0.2470799012277111e+0
|
|
4134
|
+
v = 0.1885116347992865e-3
|
|
4135
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4136
|
+
a = 0.3477370882791392e+0
|
|
4137
|
+
b = 0.2781014208986402e+0
|
|
4138
|
+
v = 0.1933457860170574e-3
|
|
4139
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4140
|
+
a = 0.3790576960890540e+0
|
|
4141
|
+
b = 0.3089172523515731e+0
|
|
4142
|
+
v = 0.1973060671902064e-3
|
|
4143
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4144
|
+
a = 0.4097938317810200e+0
|
|
4145
|
+
b = 0.3393750055472244e+0
|
|
4146
|
+
v = 0.2004987099616311e-3
|
|
4147
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4148
|
+
a = 0.4398256572859637e+0
|
|
4149
|
+
b = 0.3693322470987730e+0
|
|
4150
|
+
v = 0.2030170909281499e-3
|
|
4151
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4152
|
+
a = 0.4690384114718480e+0
|
|
4153
|
+
b = 0.3986541005609877e+0
|
|
4154
|
+
v = 0.2049461460119080e-3
|
|
4155
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4156
|
+
a = 0.4973216048301053e+0
|
|
4157
|
+
b = 0.4272112491408562e+0
|
|
4158
|
+
v = 0.2063653565200186e-3
|
|
4159
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4160
|
+
a = 0.5245681526132446e+0
|
|
4161
|
+
b = 0.4548781735309936e+0
|
|
4162
|
+
v = 0.2073507927381027e-3
|
|
4163
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4164
|
+
a = 0.5506733911803888e+0
|
|
4165
|
+
b = 0.4815315355023251e+0
|
|
4166
|
+
v = 0.2079764593256122e-3
|
|
4167
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4168
|
+
a = 0.5755339829522475e+0
|
|
4169
|
+
b = 0.5070486445801855e+0
|
|
4170
|
+
v = 0.2083150534968778e-3
|
|
4171
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4172
|
+
a = 0.1305472386056362e+0
|
|
4173
|
+
b = 0.2284970375722366e-1
|
|
4174
|
+
v = 0.1262715121590664e-3
|
|
4175
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4176
|
+
a = 0.1637327908216477e+0
|
|
4177
|
+
b = 0.4812254338288384e-1
|
|
4178
|
+
v = 0.1414386128545972e-3
|
|
4179
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4180
|
+
a = 0.1972734634149637e+0
|
|
4181
|
+
b = 0.7531734457511935e-1
|
|
4182
|
+
v = 0.1538740401313898e-3
|
|
4183
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4184
|
+
a = 0.2308694653110130e+0
|
|
4185
|
+
b = 0.1039043639882017e+0
|
|
4186
|
+
v = 0.1642434942331432e-3
|
|
4187
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4188
|
+
a = 0.2643899218338160e+0
|
|
4189
|
+
b = 0.1334526587117626e+0
|
|
4190
|
+
v = 0.1729790609237496e-3
|
|
4191
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4192
|
+
a = 0.2977171599622171e+0
|
|
4193
|
+
b = 0.1636414868936382e+0
|
|
4194
|
+
v = 0.1803505190260828e-3
|
|
4195
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4196
|
+
a = 0.3307293903032310e+0
|
|
4197
|
+
b = 0.1942195406166568e+0
|
|
4198
|
+
v = 0.1865475350079657e-3
|
|
4199
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4200
|
+
a = 0.3633069198219073e+0
|
|
4201
|
+
b = 0.2249752879943753e+0
|
|
4202
|
+
v = 0.1917182669679069e-3
|
|
4203
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4204
|
+
a = 0.3953346955922727e+0
|
|
4205
|
+
b = 0.2557218821820032e+0
|
|
4206
|
+
v = 0.1959851709034382e-3
|
|
4207
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4208
|
+
a = 0.4267018394184914e+0
|
|
4209
|
+
b = 0.2862897925213193e+0
|
|
4210
|
+
v = 0.1994529548117882e-3
|
|
4211
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4212
|
+
a = 0.4573009622571704e+0
|
|
4213
|
+
b = 0.3165224536636518e+0
|
|
4214
|
+
v = 0.2022138911146548e-3
|
|
4215
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4216
|
+
a = 0.4870279559856109e+0
|
|
4217
|
+
b = 0.3462730221636496e+0
|
|
4218
|
+
v = 0.2043518024208592e-3
|
|
4219
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4220
|
+
a = 0.5157819581450322e+0
|
|
4221
|
+
b = 0.3754016870282835e+0
|
|
4222
|
+
v = 0.2059450313018110e-3
|
|
4223
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4224
|
+
a = 0.5434651666465393e+0
|
|
4225
|
+
b = 0.4037733784993613e+0
|
|
4226
|
+
v = 0.2070685715318472e-3
|
|
4227
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4228
|
+
a = 0.5699823887764627e+0
|
|
4229
|
+
b = 0.4312557784139123e+0
|
|
4230
|
+
v = 0.2077955310694373e-3
|
|
4231
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4232
|
+
a = 0.5952403350947741e+0
|
|
4233
|
+
b = 0.4577175367122110e+0
|
|
4234
|
+
v = 0.2081980387824712e-3
|
|
4235
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4236
|
+
a = 0.2025152599210369e+0
|
|
4237
|
+
b = 0.2520253617719557e-1
|
|
4238
|
+
v = 0.1521318610377956e-3
|
|
4239
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4240
|
+
a = 0.2381066653274425e+0
|
|
4241
|
+
b = 0.5223254506119000e-1
|
|
4242
|
+
v = 0.1622772720185755e-3
|
|
4243
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4244
|
+
a = 0.2732823383651612e+0
|
|
4245
|
+
b = 0.8060669688588620e-1
|
|
4246
|
+
v = 0.1710498139420709e-3
|
|
4247
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4248
|
+
a = 0.3080137692611118e+0
|
|
4249
|
+
b = 0.1099335754081255e+0
|
|
4250
|
+
v = 0.1785911149448736e-3
|
|
4251
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4252
|
+
a = 0.3422405614587601e+0
|
|
4253
|
+
b = 0.1399120955959857e+0
|
|
4254
|
+
v = 0.1850125313687736e-3
|
|
4255
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4256
|
+
a = 0.3758808773890420e+0
|
|
4257
|
+
b = 0.1702977801651705e+0
|
|
4258
|
+
v = 0.1904229703933298e-3
|
|
4259
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4260
|
+
a = 0.4088458383438932e+0
|
|
4261
|
+
b = 0.2008799256601680e+0
|
|
4262
|
+
v = 0.1949259956121987e-3
|
|
4263
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4264
|
+
a = 0.4410450550841152e+0
|
|
4265
|
+
b = 0.2314703052180836e+0
|
|
4266
|
+
v = 0.1986161545363960e-3
|
|
4267
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4268
|
+
a = 0.4723879420561312e+0
|
|
4269
|
+
b = 0.2618972111375892e+0
|
|
4270
|
+
v = 0.2015790585641370e-3
|
|
4271
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4272
|
+
a = 0.5027843561874343e+0
|
|
4273
|
+
b = 0.2920013195600270e+0
|
|
4274
|
+
v = 0.2038934198707418e-3
|
|
4275
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4276
|
+
a = 0.5321453674452458e+0
|
|
4277
|
+
b = 0.3216322555190551e+0
|
|
4278
|
+
v = 0.2056334060538251e-3
|
|
4279
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4280
|
+
a = 0.5603839113834030e+0
|
|
4281
|
+
b = 0.3506456615934198e+0
|
|
4282
|
+
v = 0.2068705959462289e-3
|
|
4283
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4284
|
+
a = 0.5874150706875146e+0
|
|
4285
|
+
b = 0.3789007181306267e+0
|
|
4286
|
+
v = 0.2076753906106002e-3
|
|
4287
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4288
|
+
a = 0.6131559381660038e+0
|
|
4289
|
+
b = 0.4062580170572782e+0
|
|
4290
|
+
v = 0.2081179391734803e-3
|
|
4291
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4292
|
+
a = 0.2778497016394506e+0
|
|
4293
|
+
b = 0.2696271276876226e-1
|
|
4294
|
+
v = 0.1700345216228943e-3
|
|
4295
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4296
|
+
a = 0.3143733562261912e+0
|
|
4297
|
+
b = 0.5523469316960465e-1
|
|
4298
|
+
v = 0.1774906779990410e-3
|
|
4299
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4300
|
+
a = 0.3501485810261827e+0
|
|
4301
|
+
b = 0.8445193201626464e-1
|
|
4302
|
+
v = 0.1839659377002642e-3
|
|
4303
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4304
|
+
a = 0.3851430322303653e+0
|
|
4305
|
+
b = 0.1143263119336083e+0
|
|
4306
|
+
v = 0.1894987462975169e-3
|
|
4307
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4308
|
+
a = 0.4193013979470415e+0
|
|
4309
|
+
b = 0.1446177898344475e+0
|
|
4310
|
+
v = 0.1941548809452595e-3
|
|
4311
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4312
|
+
a = 0.4525585960458567e+0
|
|
4313
|
+
b = 0.1751165438438091e+0
|
|
4314
|
+
v = 0.1980078427252384e-3
|
|
4315
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4316
|
+
a = 0.4848447779622947e+0
|
|
4317
|
+
b = 0.2056338306745660e+0
|
|
4318
|
+
v = 0.2011296284744488e-3
|
|
4319
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4320
|
+
a = 0.5160871208276894e+0
|
|
4321
|
+
b = 0.2359965487229226e+0
|
|
4322
|
+
v = 0.2035888456966776e-3
|
|
4323
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4324
|
+
a = 0.5462112185696926e+0
|
|
4325
|
+
b = 0.2660430223139146e+0
|
|
4326
|
+
v = 0.2054516325352142e-3
|
|
4327
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4328
|
+
a = 0.5751425068101757e+0
|
|
4329
|
+
b = 0.2956193664498032e+0
|
|
4330
|
+
v = 0.2067831033092635e-3
|
|
4331
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4332
|
+
a = 0.6028073872853596e+0
|
|
4333
|
+
b = 0.3245763905312779e+0
|
|
4334
|
+
v = 0.2076485320284876e-3
|
|
4335
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4336
|
+
a = 0.6291338275278409e+0
|
|
4337
|
+
b = 0.3527670026206972e+0
|
|
4338
|
+
v = 0.2081141439525255e-3
|
|
4339
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4340
|
+
a = 0.3541797528439391e+0
|
|
4341
|
+
b = 0.2823853479435550e-1
|
|
4342
|
+
v = 0.1834383015469222e-3
|
|
4343
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4344
|
+
a = 0.3908234972074657e+0
|
|
4345
|
+
b = 0.5741296374713106e-1
|
|
4346
|
+
v = 0.1889540591777677e-3
|
|
4347
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4348
|
+
a = 0.4264408450107590e+0
|
|
4349
|
+
b = 0.8724646633650199e-1
|
|
4350
|
+
v = 0.1936677023597375e-3
|
|
4351
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4352
|
+
a = 0.4609949666553286e+0
|
|
4353
|
+
b = 0.1175034422915616e+0
|
|
4354
|
+
v = 0.1976176495066504e-3
|
|
4355
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4356
|
+
a = 0.4944389496536006e+0
|
|
4357
|
+
b = 0.1479755652628428e+0
|
|
4358
|
+
v = 0.2008536004560983e-3
|
|
4359
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4360
|
+
a = 0.5267194884346086e+0
|
|
4361
|
+
b = 0.1784740659484352e+0
|
|
4362
|
+
v = 0.2034280351712291e-3
|
|
4363
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4364
|
+
a = 0.5577787810220990e+0
|
|
4365
|
+
b = 0.2088245700431244e+0
|
|
4366
|
+
v = 0.2053944466027758e-3
|
|
4367
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4368
|
+
a = 0.5875563763536670e+0
|
|
4369
|
+
b = 0.2388628136570763e+0
|
|
4370
|
+
v = 0.2068077642882360e-3
|
|
4371
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4372
|
+
a = 0.6159910016391269e+0
|
|
4373
|
+
b = 0.2684308928769185e+0
|
|
4374
|
+
v = 0.2077250949661599e-3
|
|
4375
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4376
|
+
a = 0.6430219602956268e+0
|
|
4377
|
+
b = 0.2973740761960252e+0
|
|
4378
|
+
v = 0.2082062440705320e-3
|
|
4379
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4380
|
+
a = 0.4300647036213646e+0
|
|
4381
|
+
b = 0.2916399920493977e-1
|
|
4382
|
+
v = 0.1934374486546626e-3
|
|
4383
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4384
|
+
a = 0.4661486308935531e+0
|
|
4385
|
+
b = 0.5898803024755659e-1
|
|
4386
|
+
v = 0.1974107010484300e-3
|
|
4387
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4388
|
+
a = 0.5009658555287261e+0
|
|
4389
|
+
b = 0.8924162698525409e-1
|
|
4390
|
+
v = 0.2007129290388658e-3
|
|
4391
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4392
|
+
a = 0.5344824270447704e+0
|
|
4393
|
+
b = 0.1197185199637321e+0
|
|
4394
|
+
v = 0.2033736947471293e-3
|
|
4395
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4396
|
+
a = 0.5666575997416371e+0
|
|
4397
|
+
b = 0.1502300756161382e+0
|
|
4398
|
+
v = 0.2054287125902493e-3
|
|
4399
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4400
|
+
a = 0.5974457471404752e+0
|
|
4401
|
+
b = 0.1806004191913564e+0
|
|
4402
|
+
v = 0.2069184936818894e-3
|
|
4403
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4404
|
+
a = 0.6267984444116886e+0
|
|
4405
|
+
b = 0.2106621764786252e+0
|
|
4406
|
+
v = 0.2078883689808782e-3
|
|
4407
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4408
|
+
a = 0.6546664713575417e+0
|
|
4409
|
+
b = 0.2402526932671914e+0
|
|
4410
|
+
v = 0.2083886366116359e-3
|
|
4411
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4412
|
+
a = 0.5042711004437253e+0
|
|
4413
|
+
b = 0.2982529203607657e-1
|
|
4414
|
+
v = 0.2006593275470817e-3
|
|
4415
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4416
|
+
a = 0.5392127456774380e+0
|
|
4417
|
+
b = 0.6008728062339922e-1
|
|
4418
|
+
v = 0.2033728426135397e-3
|
|
4419
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4420
|
+
a = 0.5726819437668618e+0
|
|
4421
|
+
b = 0.9058227674571398e-1
|
|
4422
|
+
v = 0.2055008781377608e-3
|
|
4423
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4424
|
+
a = 0.6046469254207278e+0
|
|
4425
|
+
b = 0.1211219235803400e+0
|
|
4426
|
+
v = 0.2070651783518502e-3
|
|
4427
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4428
|
+
a = 0.6350716157434952e+0
|
|
4429
|
+
b = 0.1515286404791580e+0
|
|
4430
|
+
v = 0.2080953335094320e-3
|
|
4431
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4432
|
+
a = 0.6639177679185454e+0
|
|
4433
|
+
b = 0.1816314681255552e+0
|
|
4434
|
+
v = 0.2086284998988521e-3
|
|
4435
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4436
|
+
a = 0.5757276040972253e+0
|
|
4437
|
+
b = 0.3026991752575440e-1
|
|
4438
|
+
v = 0.2055549387644668e-3
|
|
4439
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4440
|
+
a = 0.6090265823139755e+0
|
|
4441
|
+
b = 0.6078402297870770e-1
|
|
4442
|
+
v = 0.2071871850267654e-3
|
|
4443
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4444
|
+
a = 0.6406735344387661e+0
|
|
4445
|
+
b = 0.9135459984176636e-1
|
|
4446
|
+
v = 0.2082856600431965e-3
|
|
4447
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4448
|
+
a = 0.6706397927793709e+0
|
|
4449
|
+
b = 0.1218024155966590e+0
|
|
4450
|
+
v = 0.2088705858819358e-3
|
|
4451
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4452
|
+
a = 0.6435019674426665e+0
|
|
4453
|
+
b = 0.3052608357660639e-1
|
|
4454
|
+
v = 0.2083995867536322e-3
|
|
4455
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4456
|
+
a = 0.6747218676375681e+0
|
|
4457
|
+
b = 0.6112185773983089e-1
|
|
4458
|
+
v = 0.2090509712889637e-3
|
|
4459
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4460
|
+
return np.vstack(grids)
|
|
4461
|
+
|
|
4462
|
+
|
|
4463
|
+
def MakeAngularGrid_5810():
|
|
4464
|
+
grids = []
|
|
4465
|
+
a = 0
|
|
4466
|
+
b = 0
|
|
4467
|
+
v = 0.9735347946175486e-5
|
|
4468
|
+
grids.append(SphGenOh(0, a, b, v))
|
|
4469
|
+
v = 0.1907581241803167e-3
|
|
4470
|
+
grids.append(SphGenOh(1, a, b, v))
|
|
4471
|
+
v = 0.1901059546737578e-3
|
|
4472
|
+
grids.append(SphGenOh(2, a, b, v))
|
|
4473
|
+
a = 0.1182361662400277e-1
|
|
4474
|
+
v = 0.3926424538919212e-4
|
|
4475
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4476
|
+
a = 0.3062145009138958e-1
|
|
4477
|
+
v = 0.6667905467294382e-4
|
|
4478
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4479
|
+
a = 0.5329794036834243e-1
|
|
4480
|
+
v = 0.8868891315019135e-4
|
|
4481
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4482
|
+
a = 0.7848165532862220e-1
|
|
4483
|
+
v = 0.1066306000958872e-3
|
|
4484
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4485
|
+
a = 0.1054038157636201e+0
|
|
4486
|
+
v = 0.1214506743336128e-3
|
|
4487
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4488
|
+
a = 0.1335577797766211e+0
|
|
4489
|
+
v = 0.1338054681640871e-3
|
|
4490
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4491
|
+
a = 0.1625769955502252e+0
|
|
4492
|
+
v = 0.1441677023628504e-3
|
|
4493
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4494
|
+
a = 0.1921787193412792e+0
|
|
4495
|
+
v = 0.1528880200826557e-3
|
|
4496
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4497
|
+
a = 0.2221340534690548e+0
|
|
4498
|
+
v = 0.1602330623773609e-3
|
|
4499
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4500
|
+
a = 0.2522504912791132e+0
|
|
4501
|
+
v = 0.1664102653445244e-3
|
|
4502
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4503
|
+
a = 0.2823610860679697e+0
|
|
4504
|
+
v = 0.1715845854011323e-3
|
|
4505
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4506
|
+
a = 0.3123173966267560e+0
|
|
4507
|
+
v = 0.1758901000133069e-3
|
|
4508
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4509
|
+
a = 0.3419847036953789e+0
|
|
4510
|
+
v = 0.1794382485256736e-3
|
|
4511
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4512
|
+
a = 0.3712386456999758e+0
|
|
4513
|
+
v = 0.1823238106757407e-3
|
|
4514
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4515
|
+
a = 0.3999627649876828e+0
|
|
4516
|
+
v = 0.1846293252959976e-3
|
|
4517
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4518
|
+
a = 0.4280466458648093e+0
|
|
4519
|
+
v = 0.1864284079323098e-3
|
|
4520
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4521
|
+
a = 0.4553844360185711e+0
|
|
4522
|
+
v = 0.1877882694626914e-3
|
|
4523
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4524
|
+
a = 0.4818736094437834e+0
|
|
4525
|
+
v = 0.1887716321852025e-3
|
|
4526
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4527
|
+
a = 0.5074138709260629e+0
|
|
4528
|
+
v = 0.1894381638175673e-3
|
|
4529
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4530
|
+
a = 0.5319061304570707e+0
|
|
4531
|
+
v = 0.1898454899533629e-3
|
|
4532
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4533
|
+
a = 0.5552514978677286e+0
|
|
4534
|
+
v = 0.1900497929577815e-3
|
|
4535
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4536
|
+
a = 0.5981009025246183e+0
|
|
4537
|
+
v = 0.1900671501924092e-3
|
|
4538
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4539
|
+
a = 0.6173990192228116e+0
|
|
4540
|
+
v = 0.1899837555533510e-3
|
|
4541
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4542
|
+
a = 0.6351365239411131e+0
|
|
4543
|
+
v = 0.1899014113156229e-3
|
|
4544
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4545
|
+
a = 0.6512010228227200e+0
|
|
4546
|
+
v = 0.1898581257705106e-3
|
|
4547
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4548
|
+
a = 0.6654758363948120e+0
|
|
4549
|
+
v = 0.1898804756095753e-3
|
|
4550
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4551
|
+
a = 0.6778410414853370e+0
|
|
4552
|
+
v = 0.1899793610426402e-3
|
|
4553
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4554
|
+
a = 0.6881760887484110e+0
|
|
4555
|
+
v = 0.1901464554844117e-3
|
|
4556
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4557
|
+
a = 0.6963645267094598e+0
|
|
4558
|
+
v = 0.1903533246259542e-3
|
|
4559
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4560
|
+
a = 0.7023010617153579e+0
|
|
4561
|
+
v = 0.1905556158463228e-3
|
|
4562
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4563
|
+
a = 0.7059004636628753e+0
|
|
4564
|
+
v = 0.1907037155663528e-3
|
|
4565
|
+
grids.append(SphGenOh(3, a, b, v))
|
|
4566
|
+
a = 0.3552470312472575e-1
|
|
4567
|
+
v = 0.5992997844249967e-4
|
|
4568
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
4569
|
+
a = 0.9151176620841283e-1
|
|
4570
|
+
v = 0.9749059382456978e-4
|
|
4571
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
4572
|
+
a = 0.1566197930068980e+0
|
|
4573
|
+
v = 0.1241680804599158e-3
|
|
4574
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
4575
|
+
a = 0.2265467599271907e+0
|
|
4576
|
+
v = 0.1437626154299360e-3
|
|
4577
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
4578
|
+
a = 0.2988242318581361e+0
|
|
4579
|
+
v = 0.1584200054793902e-3
|
|
4580
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
4581
|
+
a = 0.3717482419703886e+0
|
|
4582
|
+
v = 0.1694436550982744e-3
|
|
4583
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
4584
|
+
a = 0.4440094491758889e+0
|
|
4585
|
+
v = 0.1776617014018108e-3
|
|
4586
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
4587
|
+
a = 0.5145337096756642e+0
|
|
4588
|
+
v = 0.1836132434440077e-3
|
|
4589
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
4590
|
+
a = 0.5824053672860230e+0
|
|
4591
|
+
v = 0.1876494727075983e-3
|
|
4592
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
4593
|
+
a = 0.6468283961043370e+0
|
|
4594
|
+
v = 0.1899906535336482e-3
|
|
4595
|
+
grids.append(SphGenOh(4, a, b, v))
|
|
4596
|
+
a = 0.6095964259104373e-1
|
|
4597
|
+
b = 0.1787828275342931e-1
|
|
4598
|
+
v = 0.8143252820767350e-4
|
|
4599
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4600
|
+
a = 0.8811962270959388e-1
|
|
4601
|
+
b = 0.3953888740792096e-1
|
|
4602
|
+
v = 0.9998859890887728e-4
|
|
4603
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4604
|
+
a = 0.1165936722428831e+0
|
|
4605
|
+
b = 0.6378121797722990e-1
|
|
4606
|
+
v = 0.1156199403068359e-3
|
|
4607
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4608
|
+
a = 0.1460232857031785e+0
|
|
4609
|
+
b = 0.8985890813745037e-1
|
|
4610
|
+
v = 0.1287632092635513e-3
|
|
4611
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4612
|
+
a = 0.1761197110181755e+0
|
|
4613
|
+
b = 0.1172606510576162e+0
|
|
4614
|
+
v = 0.1398378643365139e-3
|
|
4615
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4616
|
+
a = 0.2066471190463718e+0
|
|
4617
|
+
b = 0.1456102876970995e+0
|
|
4618
|
+
v = 0.1491876468417391e-3
|
|
4619
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4620
|
+
a = 0.2374076026328152e+0
|
|
4621
|
+
b = 0.1746153823011775e+0
|
|
4622
|
+
v = 0.1570855679175456e-3
|
|
4623
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4624
|
+
a = 0.2682305474337051e+0
|
|
4625
|
+
b = 0.2040383070295584e+0
|
|
4626
|
+
v = 0.1637483948103775e-3
|
|
4627
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4628
|
+
a = 0.2989653312142369e+0
|
|
4629
|
+
b = 0.2336788634003698e+0
|
|
4630
|
+
v = 0.1693500566632843e-3
|
|
4631
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4632
|
+
a = 0.3294762752772209e+0
|
|
4633
|
+
b = 0.2633632752654219e+0
|
|
4634
|
+
v = 0.1740322769393633e-3
|
|
4635
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4636
|
+
a = 0.3596390887276086e+0
|
|
4637
|
+
b = 0.2929369098051601e+0
|
|
4638
|
+
v = 0.1779126637278296e-3
|
|
4639
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4640
|
+
a = 0.3893383046398812e+0
|
|
4641
|
+
b = 0.3222592785275512e+0
|
|
4642
|
+
v = 0.1810908108835412e-3
|
|
4643
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4644
|
+
a = 0.4184653789358347e+0
|
|
4645
|
+
b = 0.3512004791195743e+0
|
|
4646
|
+
v = 0.1836529132600190e-3
|
|
4647
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4648
|
+
a = 0.4469172319076166e+0
|
|
4649
|
+
b = 0.3796385677684537e+0
|
|
4650
|
+
v = 0.1856752841777379e-3
|
|
4651
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4652
|
+
a = 0.4745950813276976e+0
|
|
4653
|
+
b = 0.4074575378263879e+0
|
|
4654
|
+
v = 0.1872270566606832e-3
|
|
4655
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4656
|
+
a = 0.5014034601410262e+0
|
|
4657
|
+
b = 0.4345456906027828e+0
|
|
4658
|
+
v = 0.1883722645591307e-3
|
|
4659
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4660
|
+
a = 0.5272493404551239e+0
|
|
4661
|
+
b = 0.4607942515205134e+0
|
|
4662
|
+
v = 0.1891714324525297e-3
|
|
4663
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4664
|
+
a = 0.5520413051846366e+0
|
|
4665
|
+
b = 0.4860961284181720e+0
|
|
4666
|
+
v = 0.1896827480450146e-3
|
|
4667
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4668
|
+
a = 0.5756887237503077e+0
|
|
4669
|
+
b = 0.5103447395342790e+0
|
|
4670
|
+
v = 0.1899628417059528e-3
|
|
4671
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4672
|
+
a = 0.1225039430588352e+0
|
|
4673
|
+
b = 0.2136455922655793e-1
|
|
4674
|
+
v = 0.1123301829001669e-3
|
|
4675
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4676
|
+
a = 0.1539113217321372e+0
|
|
4677
|
+
b = 0.4520926166137188e-1
|
|
4678
|
+
v = 0.1253698826711277e-3
|
|
4679
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4680
|
+
a = 0.1856213098637712e+0
|
|
4681
|
+
b = 0.7086468177864818e-1
|
|
4682
|
+
v = 0.1366266117678531e-3
|
|
4683
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4684
|
+
a = 0.2174998728035131e+0
|
|
4685
|
+
b = 0.9785239488772918e-1
|
|
4686
|
+
v = 0.1462736856106918e-3
|
|
4687
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4688
|
+
a = 0.2494128336938330e+0
|
|
4689
|
+
b = 0.1258106396267210e+0
|
|
4690
|
+
v = 0.1545076466685412e-3
|
|
4691
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4692
|
+
a = 0.2812321562143480e+0
|
|
4693
|
+
b = 0.1544529125047001e+0
|
|
4694
|
+
v = 0.1615096280814007e-3
|
|
4695
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4696
|
+
a = 0.3128372276456111e+0
|
|
4697
|
+
b = 0.1835433512202753e+0
|
|
4698
|
+
v = 0.1674366639741759e-3
|
|
4699
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4700
|
+
a = 0.3441145160177973e+0
|
|
4701
|
+
b = 0.2128813258619585e+0
|
|
4702
|
+
v = 0.1724225002437900e-3
|
|
4703
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4704
|
+
a = 0.3749567714853510e+0
|
|
4705
|
+
b = 0.2422913734880829e+0
|
|
4706
|
+
v = 0.1765810822987288e-3
|
|
4707
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4708
|
+
a = 0.4052621732015610e+0
|
|
4709
|
+
b = 0.2716163748391453e+0
|
|
4710
|
+
v = 0.1800104126010751e-3
|
|
4711
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4712
|
+
a = 0.4349335453522385e+0
|
|
4713
|
+
b = 0.3007127671240280e+0
|
|
4714
|
+
v = 0.1827960437331284e-3
|
|
4715
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4716
|
+
a = 0.4638776641524965e+0
|
|
4717
|
+
b = 0.3294470677216479e+0
|
|
4718
|
+
v = 0.1850140300716308e-3
|
|
4719
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4720
|
+
a = 0.4920046410462687e+0
|
|
4721
|
+
b = 0.3576932543699155e+0
|
|
4722
|
+
v = 0.1867333507394938e-3
|
|
4723
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4724
|
+
a = 0.5192273554861704e+0
|
|
4725
|
+
b = 0.3853307059757764e+0
|
|
4726
|
+
v = 0.1880178688638289e-3
|
|
4727
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4728
|
+
a = 0.5454609081136522e+0
|
|
4729
|
+
b = 0.4122425044452694e+0
|
|
4730
|
+
v = 0.1889278925654758e-3
|
|
4731
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4732
|
+
a = 0.5706220661424140e+0
|
|
4733
|
+
b = 0.4383139587781027e+0
|
|
4734
|
+
v = 0.1895213832507346e-3
|
|
4735
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4736
|
+
a = 0.5946286755181518e+0
|
|
4737
|
+
b = 0.4634312536300553e+0
|
|
4738
|
+
v = 0.1898548277397420e-3
|
|
4739
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4740
|
+
a = 0.1905370790924295e+0
|
|
4741
|
+
b = 0.2371311537781979e-1
|
|
4742
|
+
v = 0.1349105935937341e-3
|
|
4743
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4744
|
+
a = 0.2242518717748009e+0
|
|
4745
|
+
b = 0.4917878059254806e-1
|
|
4746
|
+
v = 0.1444060068369326e-3
|
|
4747
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4748
|
+
a = 0.2577190808025936e+0
|
|
4749
|
+
b = 0.7595498960495142e-1
|
|
4750
|
+
v = 0.1526797390930008e-3
|
|
4751
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4752
|
+
a = 0.2908724534927187e+0
|
|
4753
|
+
b = 0.1036991083191100e+0
|
|
4754
|
+
v = 0.1598208771406474e-3
|
|
4755
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4756
|
+
a = 0.3236354020056219e+0
|
|
4757
|
+
b = 0.1321348584450234e+0
|
|
4758
|
+
v = 0.1659354368615331e-3
|
|
4759
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4760
|
+
a = 0.3559267359304543e+0
|
|
4761
|
+
b = 0.1610316571314789e+0
|
|
4762
|
+
v = 0.1711279910946440e-3
|
|
4763
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4764
|
+
a = 0.3876637123676956e+0
|
|
4765
|
+
b = 0.1901912080395707e+0
|
|
4766
|
+
v = 0.1754952725601440e-3
|
|
4767
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4768
|
+
a = 0.4187636705218842e+0
|
|
4769
|
+
b = 0.2194384950137950e+0
|
|
4770
|
+
v = 0.1791247850802529e-3
|
|
4771
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4772
|
+
a = 0.4491449019883107e+0
|
|
4773
|
+
b = 0.2486155334763858e+0
|
|
4774
|
+
v = 0.1820954300877716e-3
|
|
4775
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4776
|
+
a = 0.4787270932425445e+0
|
|
4777
|
+
b = 0.2775768931812335e+0
|
|
4778
|
+
v = 0.1844788524548449e-3
|
|
4779
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4780
|
+
a = 0.5074315153055574e+0
|
|
4781
|
+
b = 0.3061863786591120e+0
|
|
4782
|
+
v = 0.1863409481706220e-3
|
|
4783
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4784
|
+
a = 0.5351810507738336e+0
|
|
4785
|
+
b = 0.3343144718152556e+0
|
|
4786
|
+
v = 0.1877433008795068e-3
|
|
4787
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4788
|
+
a = 0.5619001025975381e+0
|
|
4789
|
+
b = 0.3618362729028427e+0
|
|
4790
|
+
v = 0.1887444543705232e-3
|
|
4791
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4792
|
+
a = 0.5875144035268046e+0
|
|
4793
|
+
b = 0.3886297583620408e+0
|
|
4794
|
+
v = 0.1894009829375006e-3
|
|
4795
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4796
|
+
a = 0.6119507308734495e+0
|
|
4797
|
+
b = 0.4145742277792031e+0
|
|
4798
|
+
v = 0.1897683345035198e-3
|
|
4799
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4800
|
+
a = 0.2619733870119463e+0
|
|
4801
|
+
b = 0.2540047186389353e-1
|
|
4802
|
+
v = 0.1517327037467653e-3
|
|
4803
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4804
|
+
a = 0.2968149743237949e+0
|
|
4805
|
+
b = 0.5208107018543989e-1
|
|
4806
|
+
v = 0.1587740557483543e-3
|
|
4807
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4808
|
+
a = 0.3310451504860488e+0
|
|
4809
|
+
b = 0.7971828470885599e-1
|
|
4810
|
+
v = 0.1649093382274097e-3
|
|
4811
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4812
|
+
a = 0.3646215567376676e+0
|
|
4813
|
+
b = 0.1080465999177927e+0
|
|
4814
|
+
v = 0.1701915216193265e-3
|
|
4815
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4816
|
+
a = 0.3974916785279360e+0
|
|
4817
|
+
b = 0.1368413849366629e+0
|
|
4818
|
+
v = 0.1746847753144065e-3
|
|
4819
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4820
|
+
a = 0.4295967403772029e+0
|
|
4821
|
+
b = 0.1659073184763559e+0
|
|
4822
|
+
v = 0.1784555512007570e-3
|
|
4823
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4824
|
+
a = 0.4608742854473447e+0
|
|
4825
|
+
b = 0.1950703730454614e+0
|
|
4826
|
+
v = 0.1815687562112174e-3
|
|
4827
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4828
|
+
a = 0.4912598858949903e+0
|
|
4829
|
+
b = 0.2241721144376724e+0
|
|
4830
|
+
v = 0.1840864370663302e-3
|
|
4831
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4832
|
+
a = 0.5206882758945558e+0
|
|
4833
|
+
b = 0.2530655255406489e+0
|
|
4834
|
+
v = 0.1860676785390006e-3
|
|
4835
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4836
|
+
a = 0.5490940914019819e+0
|
|
4837
|
+
b = 0.2816118409731066e+0
|
|
4838
|
+
v = 0.1875690583743703e-3
|
|
4839
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4840
|
+
a = 0.5764123302025542e+0
|
|
4841
|
+
b = 0.3096780504593238e+0
|
|
4842
|
+
v = 0.1886453236347225e-3
|
|
4843
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4844
|
+
a = 0.6025786004213506e+0
|
|
4845
|
+
b = 0.3371348366394987e+0
|
|
4846
|
+
v = 0.1893501123329645e-3
|
|
4847
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4848
|
+
a = 0.6275291964794956e+0
|
|
4849
|
+
b = 0.3638547827694396e+0
|
|
4850
|
+
v = 0.1897366184519868e-3
|
|
4851
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4852
|
+
a = 0.3348189479861771e+0
|
|
4853
|
+
b = 0.2664841935537443e-1
|
|
4854
|
+
v = 0.1643908815152736e-3
|
|
4855
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4856
|
+
a = 0.3699515545855295e+0
|
|
4857
|
+
b = 0.5424000066843495e-1
|
|
4858
|
+
v = 0.1696300350907768e-3
|
|
4859
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4860
|
+
a = 0.4042003071474669e+0
|
|
4861
|
+
b = 0.8251992715430854e-1
|
|
4862
|
+
v = 0.1741553103844483e-3
|
|
4863
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4864
|
+
a = 0.4375320100182624e+0
|
|
4865
|
+
b = 0.1112695182483710e+0
|
|
4866
|
+
v = 0.1780015282386092e-3
|
|
4867
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4868
|
+
a = 0.4699054490335947e+0
|
|
4869
|
+
b = 0.1402964116467816e+0
|
|
4870
|
+
v = 0.1812116787077125e-3
|
|
4871
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4872
|
+
a = 0.5012739879431952e+0
|
|
4873
|
+
b = 0.1694275117584291e+0
|
|
4874
|
+
v = 0.1838323158085421e-3
|
|
4875
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4876
|
+
a = 0.5315874883754966e+0
|
|
4877
|
+
b = 0.1985038235312689e+0
|
|
4878
|
+
v = 0.1859113119837737e-3
|
|
4879
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4880
|
+
a = 0.5607937109622117e+0
|
|
4881
|
+
b = 0.2273765660020893e+0
|
|
4882
|
+
v = 0.1874969220221698e-3
|
|
4883
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4884
|
+
a = 0.5888393223495521e+0
|
|
4885
|
+
b = 0.2559041492849764e+0
|
|
4886
|
+
v = 0.1886375612681076e-3
|
|
4887
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4888
|
+
a = 0.6156705979160163e+0
|
|
4889
|
+
b = 0.2839497251976899e+0
|
|
4890
|
+
v = 0.1893819575809276e-3
|
|
4891
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4892
|
+
a = 0.6412338809078123e+0
|
|
4893
|
+
b = 0.3113791060500690e+0
|
|
4894
|
+
v = 0.1897794748256767e-3
|
|
4895
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4896
|
+
a = 0.4076051259257167e+0
|
|
4897
|
+
b = 0.2757792290858463e-1
|
|
4898
|
+
v = 0.1738963926584846e-3
|
|
4899
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4900
|
+
a = 0.4423788125791520e+0
|
|
4901
|
+
b = 0.5584136834984293e-1
|
|
4902
|
+
v = 0.1777442359873466e-3
|
|
4903
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4904
|
+
a = 0.4760480917328258e+0
|
|
4905
|
+
b = 0.8457772087727143e-1
|
|
4906
|
+
v = 0.1810010815068719e-3
|
|
4907
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4908
|
+
a = 0.5085838725946297e+0
|
|
4909
|
+
b = 0.1135975846359248e+0
|
|
4910
|
+
v = 0.1836920318248129e-3
|
|
4911
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4912
|
+
a = 0.5399513637391218e+0
|
|
4913
|
+
b = 0.1427286904765053e+0
|
|
4914
|
+
v = 0.1858489473214328e-3
|
|
4915
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4916
|
+
a = 0.5701118433636380e+0
|
|
4917
|
+
b = 0.1718112740057635e+0
|
|
4918
|
+
v = 0.1875079342496592e-3
|
|
4919
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4920
|
+
a = 0.5990240530606021e+0
|
|
4921
|
+
b = 0.2006944855985351e+0
|
|
4922
|
+
v = 0.1887080239102310e-3
|
|
4923
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4924
|
+
a = 0.6266452685139695e+0
|
|
4925
|
+
b = 0.2292335090598907e+0
|
|
4926
|
+
v = 0.1894905752176822e-3
|
|
4927
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4928
|
+
a = 0.6529320971415942e+0
|
|
4929
|
+
b = 0.2572871512353714e+0
|
|
4930
|
+
v = 0.1898991061200695e-3
|
|
4931
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4932
|
+
a = 0.4791583834610126e+0
|
|
4933
|
+
b = 0.2826094197735932e-1
|
|
4934
|
+
v = 0.1809065016458791e-3
|
|
4935
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4936
|
+
a = 0.5130373952796940e+0
|
|
4937
|
+
b = 0.5699871359683649e-1
|
|
4938
|
+
v = 0.1836297121596799e-3
|
|
4939
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4940
|
+
a = 0.5456252429628476e+0
|
|
4941
|
+
b = 0.8602712528554394e-1
|
|
4942
|
+
v = 0.1858426916241869e-3
|
|
4943
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4944
|
+
a = 0.5768956329682385e+0
|
|
4945
|
+
b = 0.1151748137221281e+0
|
|
4946
|
+
v = 0.1875654101134641e-3
|
|
4947
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4948
|
+
a = 0.6068186944699046e+0
|
|
4949
|
+
b = 0.1442811654136362e+0
|
|
4950
|
+
v = 0.1888240751833503e-3
|
|
4951
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4952
|
+
a = 0.6353622248024907e+0
|
|
4953
|
+
b = 0.1731930321657680e+0
|
|
4954
|
+
v = 0.1896497383866979e-3
|
|
4955
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4956
|
+
a = 0.6624927035731797e+0
|
|
4957
|
+
b = 0.2017619958756061e+0
|
|
4958
|
+
v = 0.1900775530219121e-3
|
|
4959
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4960
|
+
a = 0.5484933508028488e+0
|
|
4961
|
+
b = 0.2874219755907391e-1
|
|
4962
|
+
v = 0.1858525041478814e-3
|
|
4963
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4964
|
+
a = 0.5810207682142106e+0
|
|
4965
|
+
b = 0.5778312123713695e-1
|
|
4966
|
+
v = 0.1876248690077947e-3
|
|
4967
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4968
|
+
a = 0.6120955197181352e+0
|
|
4969
|
+
b = 0.8695262371439526e-1
|
|
4970
|
+
v = 0.1889404439064607e-3
|
|
4971
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4972
|
+
a = 0.6416944284294319e+0
|
|
4973
|
+
b = 0.1160893767057166e+0
|
|
4974
|
+
v = 0.1898168539265290e-3
|
|
4975
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4976
|
+
a = 0.6697926391731260e+0
|
|
4977
|
+
b = 0.1450378826743251e+0
|
|
4978
|
+
v = 0.1902779940661772e-3
|
|
4979
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4980
|
+
a = 0.6147594390585488e+0
|
|
4981
|
+
b = 0.2904957622341456e-1
|
|
4982
|
+
v = 0.1890125641731815e-3
|
|
4983
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4984
|
+
a = 0.6455390026356783e+0
|
|
4985
|
+
b = 0.5823809152617197e-1
|
|
4986
|
+
v = 0.1899434637795751e-3
|
|
4987
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4988
|
+
a = 0.6747258588365477e+0
|
|
4989
|
+
b = 0.8740384899884715e-1
|
|
4990
|
+
v = 0.1904520856831751e-3
|
|
4991
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4992
|
+
a = 0.6772135750395347e+0
|
|
4993
|
+
b = 0.2919946135808105e-1
|
|
4994
|
+
v = 0.1905534498734563e-3
|
|
4995
|
+
grids.append(SphGenOh(5, a, b, v))
|
|
4996
|
+
return np.vstack(grids)
|
|
4997
|
+
|
|
4998
|
+
# ~= (L+1)**2/3
|
|
4999
|
+
LEBEDEV_ORDER = {
|
|
5000
|
+
0 : 1 ,
|
|
5001
|
+
3 : 6 ,
|
|
5002
|
+
5 : 14 ,
|
|
5003
|
+
7 : 26 ,
|
|
5004
|
+
9 : 38 ,
|
|
5005
|
+
11 : 50 ,
|
|
5006
|
+
13 : 74 ,
|
|
5007
|
+
15 : 86 ,
|
|
5008
|
+
17 : 110 ,
|
|
5009
|
+
19 : 146 ,
|
|
5010
|
+
21 : 170 ,
|
|
5011
|
+
23 : 194 ,
|
|
5012
|
+
25 : 230 ,
|
|
5013
|
+
27 : 266 ,
|
|
5014
|
+
29 : 302 ,
|
|
5015
|
+
31 : 350 ,
|
|
5016
|
+
35 : 434 ,
|
|
5017
|
+
41 : 590 ,
|
|
5018
|
+
47 : 770 ,
|
|
5019
|
+
53 : 974 ,
|
|
5020
|
+
59 : 1202,
|
|
5021
|
+
65 : 1454,
|
|
5022
|
+
71 : 1730,
|
|
5023
|
+
77 : 2030,
|
|
5024
|
+
83 : 2354,
|
|
5025
|
+
89 : 2702,
|
|
5026
|
+
95 : 3074,
|
|
5027
|
+
101: 3470,
|
|
5028
|
+
107: 3890,
|
|
5029
|
+
113: 4334,
|
|
5030
|
+
119: 4802,
|
|
5031
|
+
125: 5294,
|
|
5032
|
+
131: 5810
|
|
5033
|
+
}
|
|
5034
|
+
LEBEDEV_NGRID = np.array(list(LEBEDEV_ORDER.values()))
|
|
5035
|
+
|
|
5036
|
+
@lru_cache(maxsize=50)
|
|
5037
|
+
def MakeAngularGrid(points):
|
|
5038
|
+
'''Angular grids for specified Lebedev points'''
|
|
5039
|
+
if points in (0, 1):
|
|
5040
|
+
return np.array((0., 0., 0., 1.))
|
|
5041
|
+
|
|
5042
|
+
if points not in LEBEDEV_NGRID:
|
|
5043
|
+
raise ValueError('Unsupported angular grids %d' % points)
|
|
5044
|
+
|
|
5045
|
+
fn = globals()['MakeAngularGrid_' + str(points)]
|
|
5046
|
+
grids = fn()
|
|
5047
|
+
return grids
|