pyqrack 1.44.33__py3-none-macosx_15_0_arm64.whl → 1.70.0__py3-none-macosx_15_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyqrack/qrack_ace_backend.py +1076 -340
- pyqrack/qrack_simulator.py +136 -14
- pyqrack/qrack_system/qrack_cl_precompile/qrack_cl_precompile +0 -0
- pyqrack/qrack_system/qrack_lib/libqrack_pinvoke.9.29.0.dylib +0 -0
- pyqrack/qrack_system/qrack_lib/libqrack_pinvoke.dylib +0 -0
- pyqrack/qrack_system/qrack_system.py +26 -3
- {pyqrack-1.44.33.dist-info → pyqrack-1.70.0.dist-info}/METADATA +3 -3
- {pyqrack-1.44.33.dist-info → pyqrack-1.70.0.dist-info}/RECORD +11 -10
- pyqrack/qrack_system/qrack_lib/libqrack_pinvoke.9.19.6.dylib +0 -0
- {pyqrack-1.44.33.dist-info → pyqrack-1.70.0.dist-info}/LICENSE +0 -0
- {pyqrack-1.44.33.dist-info → pyqrack-1.70.0.dist-info}/WHEEL +0 -0
- {pyqrack-1.44.33.dist-info → pyqrack-1.70.0.dist-info}/top_level.txt +0 -0
pyqrack/qrack_ace_backend.py
CHANGED
|
@@ -3,6 +3,7 @@
|
|
|
3
3
|
# Use of this source code is governed by an MIT-style license that can be
|
|
4
4
|
# found in the LICENSE file or at https://opensource.org/licenses/MIT.
|
|
5
5
|
import math
|
|
6
|
+
import os
|
|
6
7
|
import random
|
|
7
8
|
import sys
|
|
8
9
|
import time
|
|
@@ -19,6 +20,175 @@ try:
|
|
|
19
20
|
except ImportError:
|
|
20
21
|
_IS_QISKIT_AVAILABLE = False
|
|
21
22
|
|
|
23
|
+
_IS_QISKIT_AER_AVAILABLE = True
|
|
24
|
+
try:
|
|
25
|
+
from qiskit_aer.noise import NoiseModel, depolarizing_error
|
|
26
|
+
except ImportError:
|
|
27
|
+
_IS_QISKIT_AER_AVAILABLE = False
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
# Initial stub and concept produced through conversation with Elara
|
|
31
|
+
# (the custom OpenAI GPT)
|
|
32
|
+
class LHVQubit:
|
|
33
|
+
def __init__(self, toClone=None):
|
|
34
|
+
# Initial state in "Bloch vector" terms, defaults to |0⟩
|
|
35
|
+
if toClone:
|
|
36
|
+
self.bloch = toClone.bloch.copy()
|
|
37
|
+
else:
|
|
38
|
+
self.reset()
|
|
39
|
+
|
|
40
|
+
def reset(self):
|
|
41
|
+
self.bloch = [0.0, 0.0, 1.0]
|
|
42
|
+
|
|
43
|
+
def h(self):
|
|
44
|
+
# Hadamard: rotate around Y-axis then X-axis (simplified for LHV)
|
|
45
|
+
x, y, z = self.bloch
|
|
46
|
+
self.bloch = [(x + z) / math.sqrt(2), y, (z - x) / math.sqrt(2)]
|
|
47
|
+
|
|
48
|
+
def x(self):
|
|
49
|
+
x, y, z = self.bloch
|
|
50
|
+
self.bloch = [x, y, -z]
|
|
51
|
+
|
|
52
|
+
def y(self):
|
|
53
|
+
x, y, z = self.bloch
|
|
54
|
+
self.bloch = [-x, y, z]
|
|
55
|
+
|
|
56
|
+
def z(self):
|
|
57
|
+
x, y, z = self.bloch
|
|
58
|
+
self.bloch = [x, -y, z]
|
|
59
|
+
|
|
60
|
+
def rx(self, theta):
|
|
61
|
+
# Rotate Bloch vector around X-axis by angle theta
|
|
62
|
+
x, y, z = self.bloch
|
|
63
|
+
cos_theta = math.cos(theta)
|
|
64
|
+
sin_theta = math.sin(theta)
|
|
65
|
+
new_y = cos_theta * y - sin_theta * z
|
|
66
|
+
new_z = sin_theta * y + cos_theta * z
|
|
67
|
+
self.bloch = [x, new_y, new_z]
|
|
68
|
+
|
|
69
|
+
def ry(self, theta):
|
|
70
|
+
# Rotate Bloch vector around Y-axis by angle theta
|
|
71
|
+
x, y, z = self.bloch
|
|
72
|
+
cos_theta = math.cos(theta)
|
|
73
|
+
sin_theta = math.sin(theta)
|
|
74
|
+
new_x = cos_theta * x + sin_theta * z
|
|
75
|
+
new_z = -sin_theta * x + cos_theta * z
|
|
76
|
+
self.bloch = [new_x, y, new_z]
|
|
77
|
+
|
|
78
|
+
def rz(self, theta):
|
|
79
|
+
# Rotate Bloch vector around Z-axis by angle theta (in radians)
|
|
80
|
+
x, y, z = self.bloch
|
|
81
|
+
cos_theta = math.cos(theta)
|
|
82
|
+
sin_theta = math.sin(theta)
|
|
83
|
+
new_x = cos_theta * x - sin_theta * y
|
|
84
|
+
new_y = sin_theta * x + cos_theta * y
|
|
85
|
+
self.bloch = [new_x, new_y, z]
|
|
86
|
+
|
|
87
|
+
def s(self):
|
|
88
|
+
self.rz(math.pi / 2)
|
|
89
|
+
|
|
90
|
+
def adjs(self):
|
|
91
|
+
self.rz(-math.pi / 2)
|
|
92
|
+
|
|
93
|
+
def t(self):
|
|
94
|
+
self.rz(math.pi / 4)
|
|
95
|
+
|
|
96
|
+
def adjt(self):
|
|
97
|
+
self.rz(-math.pi / 4)
|
|
98
|
+
|
|
99
|
+
def u(self, theta, phi, lam):
|
|
100
|
+
# Apply general single-qubit unitary gate
|
|
101
|
+
self.rz(lam)
|
|
102
|
+
self.ry(theta)
|
|
103
|
+
self.rz(phi)
|
|
104
|
+
|
|
105
|
+
# Provided verbatim by Elara (the custom OpenAI GPT):
|
|
106
|
+
def mtrx(self, matrix):
|
|
107
|
+
"""
|
|
108
|
+
Apply a 2x2 unitary matrix to the LHV Bloch vector using only standard math/cmath.
|
|
109
|
+
Matrix format: [a, b, c, d] for [[a, b], [c, d]]
|
|
110
|
+
"""
|
|
111
|
+
a, b, c, d = matrix
|
|
112
|
+
|
|
113
|
+
# Current Bloch vector
|
|
114
|
+
x, y, z = self.bloch
|
|
115
|
+
|
|
116
|
+
# Convert to density matrix ρ = ½ (I + xσx + yσy + zσz)
|
|
117
|
+
rho = [[(1 + z) / 2, (x - 1j * y) / 2], [(x + 1j * y) / 2, (1 - z) / 2]]
|
|
118
|
+
|
|
119
|
+
# Compute U * ρ
|
|
120
|
+
u_rho = [
|
|
121
|
+
[a * rho[0][0] + b * rho[1][0], a * rho[0][1] + b * rho[1][1]],
|
|
122
|
+
[c * rho[0][0] + d * rho[1][0], c * rho[0][1] + d * rho[1][1]],
|
|
123
|
+
]
|
|
124
|
+
|
|
125
|
+
# Compute (U * ρ) * U†
|
|
126
|
+
rho_prime = [
|
|
127
|
+
[
|
|
128
|
+
u_rho[0][0] * a.conjugate() + u_rho[0][1] * b.conjugate(),
|
|
129
|
+
u_rho[0][0] * c.conjugate() + u_rho[0][1] * d.conjugate(),
|
|
130
|
+
],
|
|
131
|
+
[
|
|
132
|
+
u_rho[1][0] * a.conjugate() + u_rho[1][1] * b.conjugate(),
|
|
133
|
+
u_rho[1][0] * c.conjugate() + u_rho[1][1] * d.conjugate(),
|
|
134
|
+
],
|
|
135
|
+
]
|
|
136
|
+
|
|
137
|
+
# Extract Bloch components: Tr(ρ'σi) = 2 * Re[...]
|
|
138
|
+
new_x = 2 * rho_prime[0][1].real + 2 * rho_prime[1][0].real
|
|
139
|
+
new_y = 2 * (rho_prime[0][1].imag - rho_prime[1][0].imag)
|
|
140
|
+
new_z = 2 * rho_prime[0][0].real - 1 # since Tr(ρ') = 1
|
|
141
|
+
|
|
142
|
+
p = math.sqrt(new_x**2 + new_y**2 + new_z**2)
|
|
143
|
+
|
|
144
|
+
new_x /= p
|
|
145
|
+
new_y /= p
|
|
146
|
+
new_z /= p
|
|
147
|
+
|
|
148
|
+
self.bloch = [new_x, new_y, new_z]
|
|
149
|
+
|
|
150
|
+
def prob(self, basis=Pauli.PauliZ):
|
|
151
|
+
"""Sample a classical outcome from the current 'quantum' state"""
|
|
152
|
+
if basis == Pauli.PauliZ:
|
|
153
|
+
prob_1 = (1 - self.bloch[2]) / 2
|
|
154
|
+
elif basis == Pauli.PauliX:
|
|
155
|
+
prob_1 = (1 - self.bloch[0]) / 2
|
|
156
|
+
elif basis == Pauli.PauliY:
|
|
157
|
+
prob_1 = (1 - self.bloch[1]) / 2
|
|
158
|
+
else:
|
|
159
|
+
raise ValueError(f"Unsupported basis: {basis}")
|
|
160
|
+
return prob_1
|
|
161
|
+
|
|
162
|
+
def m(self):
|
|
163
|
+
result = random.random() < self.prob()
|
|
164
|
+
self.reset()
|
|
165
|
+
if result:
|
|
166
|
+
self.x()
|
|
167
|
+
return result
|
|
168
|
+
|
|
169
|
+
|
|
170
|
+
# Provided by Elara (the custom OpenAI GPT)
|
|
171
|
+
def _cpauli_lhv(prob, targ, axis, anti, theta=math.pi):
|
|
172
|
+
"""
|
|
173
|
+
Apply a 'soft' controlled-Pauli gate: rotate target qubit
|
|
174
|
+
proportionally to control's Z expectation value.
|
|
175
|
+
|
|
176
|
+
theta: full rotation angle if control in |1⟩
|
|
177
|
+
"""
|
|
178
|
+
# Control influence is (1 - ctrl.bloch[2]) / 2 = P(|1⟩)
|
|
179
|
+
# BUT we avoid collapse by using the expectation value:
|
|
180
|
+
control_influence = (1 - prob) if anti else prob
|
|
181
|
+
|
|
182
|
+
effective_theta = control_influence * theta
|
|
183
|
+
|
|
184
|
+
# Apply partial rotation to target qubit:
|
|
185
|
+
if axis == Pauli.PauliX:
|
|
186
|
+
targ.rx(effective_theta)
|
|
187
|
+
elif axis == Pauli.PauliY:
|
|
188
|
+
targ.ry(effective_theta)
|
|
189
|
+
elif axis == Pauli.PauliZ:
|
|
190
|
+
targ.rz(effective_theta)
|
|
191
|
+
|
|
22
192
|
|
|
23
193
|
class QrackAceBackend:
|
|
24
194
|
"""A back end for elided quantum error correction
|
|
@@ -28,45 +198,174 @@ class QrackAceBackend:
|
|
|
28
198
|
|
|
29
199
|
The backend was originally designed assuming an (orbifolded) 2D qubit grid like 2019 Sycamore.
|
|
30
200
|
However, it quickly became apparent that users can basically design their own connectivity topologies,
|
|
31
|
-
without breaking the concept. (Not all will work equally well.)
|
|
32
|
-
|
|
201
|
+
without breaking the concept. (Not all will work equally well.)
|
|
202
|
+
|
|
203
|
+
Consider distributing the different "patches" to different GPUs with self.sim[sim_id].set_device(gpu_id)!
|
|
204
|
+
(If you have 3+ patches, maybe your discrete GPU can do multiple patches in the time it takes an Intel HD
|
|
205
|
+
to do one patch worth of work!)
|
|
33
206
|
|
|
34
207
|
Attributes:
|
|
35
|
-
sim(QrackSimulator):
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
col_length(int): Qubits per column.
|
|
208
|
+
sim(QrackSimulator): Array of simulators corresponding to "patches" between boundary rows.
|
|
209
|
+
long_range_columns(int): How many ideal rows between QEC boundary rows?
|
|
210
|
+
is_transpose(bool): Rows are long if False, columns are long if True
|
|
39
211
|
"""
|
|
40
212
|
|
|
41
213
|
def __init__(
|
|
42
214
|
self,
|
|
43
215
|
qubit_count=1,
|
|
44
|
-
|
|
216
|
+
long_range_columns=4,
|
|
217
|
+
long_range_rows=4,
|
|
218
|
+
is_transpose=False,
|
|
45
219
|
isTensorNetwork=False,
|
|
220
|
+
isSchmidtDecomposeMulti=False,
|
|
221
|
+
isSchmidtDecompose=True,
|
|
222
|
+
isStabilizerHybrid=False,
|
|
223
|
+
isBinaryDecisionTree=False,
|
|
224
|
+
isPaged=True,
|
|
225
|
+
isCpuGpuHybrid=True,
|
|
226
|
+
isOpenCL=True,
|
|
227
|
+
isHostPointer=(
|
|
228
|
+
True if os.environ.get("PYQRACK_HOST_POINTER_DEFAULT_ON") else False
|
|
229
|
+
),
|
|
230
|
+
noise=0,
|
|
46
231
|
toClone=None,
|
|
47
232
|
):
|
|
48
|
-
|
|
49
|
-
toClone.
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
233
|
+
if toClone:
|
|
234
|
+
qubit_count = toClone.num_qubits()
|
|
235
|
+
long_range_columns = toClone.long_range_columns
|
|
236
|
+
long_range_rows = toClone.long_range_rows
|
|
237
|
+
is_transpose = toClone.is_transpose
|
|
238
|
+
if qubit_count < 0:
|
|
239
|
+
qubit_count = 0
|
|
240
|
+
if long_range_columns < 0:
|
|
241
|
+
long_range_columns = 0
|
|
242
|
+
|
|
243
|
+
self._factor_width(qubit_count, is_transpose)
|
|
244
|
+
self.long_range_columns = long_range_columns
|
|
245
|
+
self.long_range_rows = long_range_rows
|
|
246
|
+
self.is_transpose = is_transpose
|
|
247
|
+
|
|
248
|
+
fppow = 5
|
|
249
|
+
if "QRACK_FPPOW" in os.environ:
|
|
250
|
+
fppow = int(os.environ.get("QRACK_FPPOW"))
|
|
251
|
+
if fppow < 5:
|
|
252
|
+
self._epsilon = 2**-9
|
|
253
|
+
elif fppow > 5:
|
|
254
|
+
self._epsilon = 2**-51
|
|
255
|
+
else:
|
|
256
|
+
self._epsilon = 2**-22
|
|
257
|
+
|
|
258
|
+
self._coupling_map = None
|
|
259
|
+
|
|
260
|
+
# If there's only one or zero "False" columns or rows,
|
|
261
|
+
# the entire simulator is connected, anyway.
|
|
262
|
+
len_col_seq = long_range_columns + 1
|
|
263
|
+
col_patch_count = (self._row_length + len_col_seq - 1) // len_col_seq
|
|
264
|
+
if (self._row_length < 3) or ((long_range_columns + 1) >= self._row_length):
|
|
265
|
+
self._is_col_long_range = [True] * self._row_length
|
|
266
|
+
else:
|
|
267
|
+
col_seq = [True] * long_range_columns + [False]
|
|
268
|
+
self._is_col_long_range = (col_seq * col_patch_count)[: self._row_length]
|
|
269
|
+
if long_range_columns < self._row_length:
|
|
270
|
+
self._is_col_long_range[-1] = False
|
|
271
|
+
len_row_seq = long_range_rows + 1
|
|
272
|
+
row_patch_count = (self._col_length + len_row_seq - 1) // len_row_seq
|
|
273
|
+
if (self._col_length < 3) or ((long_range_rows + 1) >= self._col_length):
|
|
274
|
+
self._is_row_long_range = [True] * self._col_length
|
|
275
|
+
else:
|
|
276
|
+
row_seq = [True] * long_range_rows + [False]
|
|
277
|
+
self._is_row_long_range = (row_seq * row_patch_count)[: self._col_length]
|
|
278
|
+
if long_range_rows < self._col_length:
|
|
279
|
+
self._is_row_long_range[-1] = False
|
|
280
|
+
sim_count = col_patch_count * row_patch_count
|
|
281
|
+
|
|
282
|
+
self._qubits = []
|
|
283
|
+
sim_counts = [0] * sim_count
|
|
284
|
+
sim_id = 0
|
|
285
|
+
tot_qubits = 0
|
|
286
|
+
for r in self._is_row_long_range:
|
|
287
|
+
for c in self._is_col_long_range:
|
|
288
|
+
qubit = [(sim_id, sim_counts[sim_id])]
|
|
289
|
+
sim_counts[sim_id] += 1
|
|
290
|
+
|
|
291
|
+
if (not c) or (not r):
|
|
292
|
+
t_sim_id = (sim_id + 1) % sim_count
|
|
293
|
+
qubit.append((t_sim_id, sim_counts[t_sim_id]))
|
|
294
|
+
sim_counts[t_sim_id] += 1
|
|
295
|
+
|
|
296
|
+
qubit.append(
|
|
297
|
+
LHVQubit(
|
|
298
|
+
toClone=(
|
|
299
|
+
toClone._qubits[tot_qubits][2] if toClone else None
|
|
300
|
+
)
|
|
301
|
+
)
|
|
302
|
+
)
|
|
57
303
|
|
|
58
|
-
|
|
304
|
+
if (not c) and (not r):
|
|
305
|
+
t_sim_id = (sim_id + col_patch_count) % sim_count
|
|
306
|
+
qubit.append((t_sim_id, sim_counts[t_sim_id]))
|
|
307
|
+
sim_counts[t_sim_id] += 1
|
|
308
|
+
|
|
309
|
+
t_sim_id = (t_sim_id + 1) % sim_count
|
|
310
|
+
qubit.append((t_sim_id, sim_counts[t_sim_id]))
|
|
311
|
+
sim_counts[t_sim_id] += 1
|
|
312
|
+
|
|
313
|
+
if not c:
|
|
314
|
+
sim_id = (sim_id + 1) % sim_count
|
|
315
|
+
|
|
316
|
+
self._qubits.append(qubit)
|
|
317
|
+
tot_qubits += 1
|
|
318
|
+
|
|
319
|
+
self.sim = []
|
|
320
|
+
for i in range(sim_count):
|
|
321
|
+
self.sim.append(
|
|
322
|
+
toClone.sim[i].clone()
|
|
323
|
+
if toClone
|
|
324
|
+
else QrackSimulator(
|
|
325
|
+
sim_counts[i],
|
|
326
|
+
isTensorNetwork=isTensorNetwork,
|
|
327
|
+
isSchmidtDecomposeMulti=isSchmidtDecomposeMulti,
|
|
328
|
+
isSchmidtDecompose=isSchmidtDecompose,
|
|
329
|
+
isStabilizerHybrid=isStabilizerHybrid,
|
|
330
|
+
isBinaryDecisionTree=isBinaryDecisionTree,
|
|
331
|
+
isPaged=isPaged,
|
|
332
|
+
isCpuGpuHybrid=isCpuGpuHybrid,
|
|
333
|
+
isOpenCL=isOpenCL,
|
|
334
|
+
isHostPointer=isHostPointer,
|
|
335
|
+
noise=noise,
|
|
336
|
+
)
|
|
337
|
+
)
|
|
338
|
+
|
|
339
|
+
# You can still "monkey-patch" this, after the constructor.
|
|
340
|
+
if "QRACK_QUNIT_SEPARABILITY_THRESHOLD" not in os.environ:
|
|
341
|
+
# (1 - 1 / sqrt(2)) / 4 (but empirically tuned)
|
|
342
|
+
self.sim[i].set_sdrp(0.073223304703363119)
|
|
343
|
+
|
|
344
|
+
def clone(self):
|
|
345
|
+
return QrackAceBackend(toClone=self)
|
|
346
|
+
|
|
347
|
+
def num_qubits(self):
|
|
348
|
+
return self._row_length * self._col_length
|
|
349
|
+
|
|
350
|
+
def get_row_length(self):
|
|
351
|
+
return self._row_length
|
|
352
|
+
|
|
353
|
+
def get_column_length(self):
|
|
354
|
+
return self._col_length
|
|
355
|
+
|
|
356
|
+
def _factor_width(self, width, is_transpose=False):
|
|
59
357
|
col_len = math.floor(math.sqrt(width))
|
|
60
358
|
while ((width // col_len) * col_len) != width:
|
|
61
359
|
col_len -= 1
|
|
62
360
|
row_len = width // col_len
|
|
63
361
|
|
|
64
|
-
self.
|
|
65
|
-
|
|
362
|
+
self._col_length, self._row_length = (
|
|
363
|
+
(row_len, col_len) if is_transpose else (col_len, row_len)
|
|
364
|
+
)
|
|
66
365
|
|
|
67
366
|
def _ct_pair_prob(self, q1, q2):
|
|
68
|
-
p1 = self.sim.prob(q1)
|
|
69
|
-
p2 = self.sim.prob(q2)
|
|
367
|
+
p1 = self.sim[q1[0]].prob(q1[1]) if isinstance(q1, tuple) else q1.prob()
|
|
368
|
+
p2 = self.sim[q2[0]].prob(q2[1]) if isinstance(q2, tuple) else q2.prob()
|
|
70
369
|
|
|
71
370
|
if p1 < p2:
|
|
72
371
|
return p2, q1
|
|
@@ -76,315 +375,566 @@ class QrackAceBackend:
|
|
|
76
375
|
def _cz_shadow(self, q1, q2):
|
|
77
376
|
prob_max, t = self._ct_pair_prob(q1, q2)
|
|
78
377
|
if prob_max > 0.5:
|
|
79
|
-
|
|
378
|
+
if isinstance(t, tuple):
|
|
379
|
+
self.sim[t[0]].z(t[1])
|
|
380
|
+
else:
|
|
381
|
+
t.z()
|
|
382
|
+
|
|
383
|
+
def _qec_x(self, c):
|
|
384
|
+
if isinstance(c, tuple):
|
|
385
|
+
self.sim[c[0]].x(c[1])
|
|
386
|
+
else:
|
|
387
|
+
c.x()
|
|
80
388
|
|
|
81
|
-
def
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
389
|
+
def _qec_h(self, t):
|
|
390
|
+
if isinstance(t, tuple):
|
|
391
|
+
self.sim[t[0]].h(t[1])
|
|
392
|
+
else:
|
|
393
|
+
t.h()
|
|
394
|
+
|
|
395
|
+
def _qec_s(self, t):
|
|
396
|
+
if isinstance(t, tuple):
|
|
397
|
+
self.sim[t[0]].s(t[1])
|
|
398
|
+
else:
|
|
399
|
+
t.s()
|
|
400
|
+
|
|
401
|
+
def _qec_adjs(self, t):
|
|
402
|
+
if isinstance(t, tuple):
|
|
403
|
+
self.sim[t[0]].adjs(t[1])
|
|
404
|
+
else:
|
|
405
|
+
t.adjs()
|
|
406
|
+
|
|
407
|
+
def _anti_cz_shadow(self, c, t):
|
|
408
|
+
self._qec_x(c)
|
|
409
|
+
self._cz_shadow(c, t)
|
|
410
|
+
self._qec_x(c)
|
|
85
411
|
|
|
86
412
|
def _cx_shadow(self, c, t):
|
|
87
|
-
self.
|
|
413
|
+
self._qec_h(t)
|
|
88
414
|
self._cz_shadow(c, t)
|
|
89
|
-
self.
|
|
415
|
+
self._qec_h(t)
|
|
90
416
|
|
|
91
417
|
def _anti_cx_shadow(self, c, t):
|
|
92
|
-
self.
|
|
418
|
+
self._qec_x(c)
|
|
93
419
|
self._cx_shadow(c, t)
|
|
94
|
-
self.
|
|
420
|
+
self._qec_x(c)
|
|
95
421
|
|
|
96
422
|
def _cy_shadow(self, c, t):
|
|
97
|
-
self.
|
|
423
|
+
self._qec_adjs(t)
|
|
98
424
|
self._cx_shadow(c, t)
|
|
99
|
-
self.
|
|
425
|
+
self._qec_s(t)
|
|
100
426
|
|
|
101
427
|
def _anti_cy_shadow(self, c, t):
|
|
102
|
-
self.
|
|
428
|
+
self._qec_x(c)
|
|
103
429
|
self._cy_shadow(c, t)
|
|
104
|
-
self.
|
|
430
|
+
self._qec_x(c)
|
|
431
|
+
|
|
432
|
+
def _unpack(self, lq):
|
|
433
|
+
return self._qubits[lq]
|
|
434
|
+
|
|
435
|
+
def _get_qb_lhv_indices(self, hq):
|
|
436
|
+
qb = []
|
|
437
|
+
if len(hq) < 2:
|
|
438
|
+
qb = [0]
|
|
439
|
+
lhv = -1
|
|
440
|
+
elif len(hq) < 4:
|
|
441
|
+
qb = [0, 1]
|
|
442
|
+
lhv = 2
|
|
443
|
+
else:
|
|
444
|
+
qb = [0, 1, 3, 4]
|
|
445
|
+
lhv = 2
|
|
105
446
|
|
|
106
|
-
|
|
107
|
-
return (
|
|
108
|
-
[3 * lq + 2, 3 * lq + 1, 3 * lq]
|
|
109
|
-
if reverse
|
|
110
|
-
else [3 * lq, 3 * lq + 1, 3 * lq + 2]
|
|
111
|
-
)
|
|
447
|
+
return qb, lhv
|
|
112
448
|
|
|
113
|
-
def
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
even_row = not (row & 1)
|
|
117
|
-
if ((not self.alternating_codes) and reverse) or (even_row == reverse):
|
|
118
|
-
if self._is_init[lq]:
|
|
119
|
-
# Encode shadow-first
|
|
120
|
-
self._cx_shadow(hq[0], hq[1])
|
|
121
|
-
self.sim.mcx([hq[1]], hq[2])
|
|
122
|
-
else:
|
|
123
|
-
self.sim.mcx([hq[2]], hq[1])
|
|
124
|
-
else:
|
|
125
|
-
if self._is_init[lq]:
|
|
126
|
-
# Encode shadow-first
|
|
127
|
-
self._cx_shadow(hq[0], hq[2])
|
|
128
|
-
self.sim.mcx([hq[0]], hq[1])
|
|
129
|
-
self._is_init[lq] = True
|
|
130
|
-
|
|
131
|
-
def _decode(self, hq, reverse=False):
|
|
132
|
-
lq = hq[0] // 3
|
|
133
|
-
if not self._is_init[lq]:
|
|
134
|
-
return
|
|
135
|
-
row = lq // self.row_length
|
|
136
|
-
even_row = not (row & 1)
|
|
137
|
-
if ((not self.alternating_codes) and reverse) or (even_row == reverse):
|
|
138
|
-
# Decode entangled-first
|
|
139
|
-
self.sim.mcx([hq[1]], hq[2])
|
|
140
|
-
self._cx_shadow(hq[0], hq[1])
|
|
141
|
-
else:
|
|
142
|
-
# Decode entangled-first
|
|
143
|
-
self.sim.mcx([hq[0]], hq[1])
|
|
144
|
-
self._cx_shadow(hq[0], hq[2])
|
|
449
|
+
def _get_lhv_bloch_angles(self, sim):
|
|
450
|
+
# Z axis
|
|
451
|
+
z = sim.bloch[2]
|
|
145
452
|
|
|
146
|
-
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
#
|
|
150
|
-
|
|
151
|
-
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
|
|
159
|
-
|
|
160
|
-
|
|
161
|
-
|
|
453
|
+
# X axis
|
|
454
|
+
x = sim.bloch[0]
|
|
455
|
+
|
|
456
|
+
# Y axis
|
|
457
|
+
y = sim.bloch[1]
|
|
458
|
+
|
|
459
|
+
inclination = math.atan2(math.sqrt(x**2 + y**2), z)
|
|
460
|
+
azimuth = math.atan2(y, x)
|
|
461
|
+
|
|
462
|
+
return azimuth, inclination
|
|
463
|
+
|
|
464
|
+
def _get_bloch_angles(self, hq):
|
|
465
|
+
sim = self.sim[hq[0]].clone()
|
|
466
|
+
q = hq[1]
|
|
467
|
+
sim.separate([q])
|
|
468
|
+
|
|
469
|
+
# Z axis
|
|
470
|
+
z = 1 - 2 * sim.prob(q)
|
|
471
|
+
|
|
472
|
+
# X axis
|
|
473
|
+
sim.h(q)
|
|
474
|
+
x = 1 - 2 * sim.prob(q)
|
|
475
|
+
sim.h(q)
|
|
476
|
+
|
|
477
|
+
# Y axis
|
|
478
|
+
sim.adjs(q)
|
|
479
|
+
sim.h(q)
|
|
480
|
+
y = 1 - 2 * sim.prob(q)
|
|
481
|
+
sim.h(q)
|
|
482
|
+
sim.s(q)
|
|
483
|
+
|
|
484
|
+
inclination = math.atan2(math.sqrt(x**2 + y**2), z)
|
|
485
|
+
azimuth = math.atan2(y, x)
|
|
486
|
+
|
|
487
|
+
return azimuth, inclination
|
|
488
|
+
|
|
489
|
+
def _rotate_to_bloch(self, hq, delta_azimuth, delta_inclination):
|
|
490
|
+
sim = self.sim[hq[0]]
|
|
491
|
+
q = hq[1]
|
|
492
|
+
|
|
493
|
+
# Apply rotation as "Azimuth, Inclination" (AI)
|
|
494
|
+
cosA = math.cos(delta_azimuth)
|
|
495
|
+
sinA = math.sin(delta_azimuth)
|
|
496
|
+
cosI = math.cos(delta_inclination / 2)
|
|
497
|
+
sinI = math.sin(delta_inclination / 2)
|
|
498
|
+
|
|
499
|
+
m00 = complex(cosI, 0)
|
|
500
|
+
m01 = complex(-cosA, sinA) * sinI
|
|
501
|
+
m10 = complex(cosA, sinA) * sinI
|
|
502
|
+
m11 = complex(cosI, 0)
|
|
503
|
+
|
|
504
|
+
sim.mtrx([m00, m01, m10, m11], q)
|
|
505
|
+
|
|
506
|
+
def _rotate_lhv_to_bloch(self, sim, delta_azimuth, delta_inclination):
|
|
507
|
+
# Apply rotation as "Azimuth, Inclination" (AI)
|
|
508
|
+
cosA = math.cos(delta_azimuth)
|
|
509
|
+
sinA = math.sin(delta_azimuth)
|
|
510
|
+
cosI = math.cos(delta_inclination / 2)
|
|
511
|
+
sinI = math.sin(delta_inclination / 2)
|
|
512
|
+
|
|
513
|
+
m00 = complex(cosI, 0)
|
|
514
|
+
m01 = complex(-cosA, sinA) * sinI
|
|
515
|
+
m10 = complex(cosA, sinA) * sinI
|
|
516
|
+
m11 = complex(cosI, 0)
|
|
517
|
+
|
|
518
|
+
sim.mtrx([m00, m01, m10, m11])
|
|
519
|
+
|
|
520
|
+
def _correct(self, lq, phase=False, skip_rotation=False):
|
|
162
521
|
hq = self._unpack(lq)
|
|
163
|
-
|
|
164
|
-
|
|
165
|
-
|
|
166
|
-
|
|
167
|
-
|
|
168
|
-
|
|
169
|
-
|
|
170
|
-
|
|
171
|
-
|
|
172
|
-
|
|
173
|
-
|
|
174
|
-
|
|
175
|
-
|
|
176
|
-
|
|
177
|
-
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
|
|
181
|
-
|
|
182
|
-
|
|
183
|
-
|
|
184
|
-
|
|
185
|
-
|
|
186
|
-
|
|
187
|
-
|
|
188
|
-
|
|
189
|
-
# Suggestion from Elara (custom OpenAI GPT):
|
|
190
|
-
# Compute the standard deviation and only correct if we're outside a confidence interval.
|
|
191
|
-
# (This helps avoid limit-point over-correction.)
|
|
192
|
-
syndrome_sum = sum(syndrome)
|
|
193
|
-
z_score_numer = syndrome_sum - shots / 2
|
|
194
|
-
z_score = 0
|
|
195
|
-
if z_score_numer > 0:
|
|
196
|
-
syndrome_component_mean = syndrome_sum / shots
|
|
197
|
-
syndrome_total_variance = sum(
|
|
198
|
-
(value - syndrome_component_mean) ** 2 for value in values
|
|
522
|
+
|
|
523
|
+
if len(hq) == 1:
|
|
524
|
+
return
|
|
525
|
+
|
|
526
|
+
qb, lhv = self._get_qb_lhv_indices(hq)
|
|
527
|
+
|
|
528
|
+
if phase:
|
|
529
|
+
for q in qb:
|
|
530
|
+
b = hq[q]
|
|
531
|
+
self.sim[b[0]].h(b[1])
|
|
532
|
+
b = hq[lhv]
|
|
533
|
+
b.h()
|
|
534
|
+
|
|
535
|
+
if len(hq) == 5:
|
|
536
|
+
# RMS
|
|
537
|
+
p = [
|
|
538
|
+
self.sim[hq[0][0]].prob(hq[0][1]),
|
|
539
|
+
self.sim[hq[1][0]].prob(hq[1][1]),
|
|
540
|
+
hq[2].prob(),
|
|
541
|
+
self.sim[hq[3][0]].prob(hq[3][1]),
|
|
542
|
+
self.sim[hq[4][0]].prob(hq[4][1]),
|
|
543
|
+
]
|
|
544
|
+
# Balancing suggestion from Elara (the custom OpenAI GPT)
|
|
545
|
+
prms = math.sqrt(
|
|
546
|
+
(p[0] ** 2 + p[1] ** 2 + 3 * (p[2] ** 2) + p[3] ** 2 + p[4] ** 2) / 7
|
|
199
547
|
)
|
|
200
|
-
|
|
201
|
-
|
|
202
|
-
|
|
203
|
-
|
|
204
|
-
|
|
548
|
+
qrms = math.sqrt(
|
|
549
|
+
(
|
|
550
|
+
(1 - p[0]) ** 2
|
|
551
|
+
+ (1 - p[1]) ** 2
|
|
552
|
+
+ 3 * ((1 - p[2]) ** 2)
|
|
553
|
+
+ (1 - p[3]) ** 2
|
|
554
|
+
+ (1 - p[4]) ** 2
|
|
555
|
+
)
|
|
556
|
+
/ 7
|
|
557
|
+
)
|
|
558
|
+
result = ((prms + (1 - qrms)) / 2) >= 0.5
|
|
559
|
+
syndrome = (
|
|
560
|
+
[1 - p[0], 1 - p[1], 1 - p[2], 1 - p[3], 1 - p[4]]
|
|
561
|
+
if result
|
|
562
|
+
else [p[0], p[1], p[2], p[3], p[4]]
|
|
205
563
|
)
|
|
564
|
+
for q in range(5):
|
|
565
|
+
if syndrome[q] > (0.5 + self._epsilon):
|
|
566
|
+
if q == 2:
|
|
567
|
+
hq[q].x()
|
|
568
|
+
else:
|
|
569
|
+
self.sim[hq[q][0]].x(hq[q][1])
|
|
570
|
+
|
|
571
|
+
if not skip_rotation:
|
|
572
|
+
a, i = [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]
|
|
573
|
+
a[0], i[0] = self._get_bloch_angles(hq[0])
|
|
574
|
+
a[1], i[1] = self._get_bloch_angles(hq[1])
|
|
575
|
+
a[2], i[2] = self._get_lhv_bloch_angles(hq[2])
|
|
576
|
+
a[3], i[3] = self._get_bloch_angles(hq[3])
|
|
577
|
+
a[4], i[4] = self._get_bloch_angles(hq[4])
|
|
578
|
+
|
|
579
|
+
a_target = 0
|
|
580
|
+
i_target = 0
|
|
581
|
+
for x in range(5):
|
|
582
|
+
if x == 2:
|
|
583
|
+
continue
|
|
584
|
+
a_target += a[x]
|
|
585
|
+
i_target += i[x]
|
|
586
|
+
|
|
587
|
+
a_target /= 5
|
|
588
|
+
i_target /= 5
|
|
589
|
+
for x in range(5):
|
|
590
|
+
if x == 2:
|
|
591
|
+
self._rotate_lhv_to_bloch(
|
|
592
|
+
hq[x], a_target - a[x], i_target - i[x]
|
|
593
|
+
)
|
|
594
|
+
else:
|
|
595
|
+
self._rotate_to_bloch(hq[x], a_target - a[x], i_target - i[x])
|
|
206
596
|
|
|
207
|
-
|
|
208
|
-
|
|
209
|
-
|
|
210
|
-
|
|
211
|
-
|
|
212
|
-
|
|
213
|
-
|
|
214
|
-
|
|
215
|
-
|
|
216
|
-
|
|
217
|
-
|
|
218
|
-
|
|
219
|
-
|
|
220
|
-
|
|
221
|
-
|
|
222
|
-
|
|
223
|
-
|
|
224
|
-
|
|
225
|
-
|
|
226
|
-
|
|
227
|
-
|
|
228
|
-
|
|
229
|
-
|
|
230
|
-
|
|
231
|
-
|
|
232
|
-
|
|
233
|
-
|
|
234
|
-
|
|
235
|
-
|
|
236
|
-
|
|
237
|
-
|
|
597
|
+
else:
|
|
598
|
+
# RMS
|
|
599
|
+
p = [
|
|
600
|
+
self.sim[hq[0][0]].prob(hq[0][1]),
|
|
601
|
+
self.sim[hq[1][0]].prob(hq[1][1]),
|
|
602
|
+
hq[2].prob(),
|
|
603
|
+
]
|
|
604
|
+
# Balancing suggestion from Elara (the custom OpenAI GPT)
|
|
605
|
+
prms = math.sqrt((p[0] ** 2 + p[1] ** 2 + p[2] ** 2) / 3)
|
|
606
|
+
qrms = math.sqrt(((1 - p[0]) ** 2 + (1 - p[1]) ** 2 + (1 - p[2]) ** 2) / 3)
|
|
607
|
+
result = ((prms + (1 - qrms)) / 2) >= 0.5
|
|
608
|
+
syndrome = [1 - p[0], 1 - p[1], 1 - p[2]] if result else [p[0], p[1], p[2]]
|
|
609
|
+
for q in range(3):
|
|
610
|
+
if syndrome[q] > (0.5 + self._epsilon):
|
|
611
|
+
if q == 2:
|
|
612
|
+
hq[q].x()
|
|
613
|
+
else:
|
|
614
|
+
self.sim[hq[q][0]].x(hq[q][1])
|
|
615
|
+
|
|
616
|
+
if not skip_rotation:
|
|
617
|
+
a, i = [0, 0, 0], [0, 0, 0]
|
|
618
|
+
a[0], i[0] = self._get_bloch_angles(hq[0])
|
|
619
|
+
a[1], i[1] = self._get_bloch_angles(hq[1])
|
|
620
|
+
a[2], i[2] = self._get_lhv_bloch_angles(hq[2])
|
|
621
|
+
|
|
622
|
+
a_target = 0
|
|
623
|
+
i_target = 0
|
|
624
|
+
for x in range(3):
|
|
625
|
+
if x == 2:
|
|
626
|
+
continue
|
|
627
|
+
a_target += a[x]
|
|
628
|
+
i_target += i[x]
|
|
629
|
+
|
|
630
|
+
a_target /= 3
|
|
631
|
+
i_target /= 3
|
|
632
|
+
for x in range(3):
|
|
633
|
+
if x == 2:
|
|
634
|
+
self._rotate_lhv_to_bloch(
|
|
635
|
+
hq[x], a_target - a[x], i_target - i[x]
|
|
636
|
+
)
|
|
637
|
+
else:
|
|
638
|
+
self._rotate_to_bloch(hq[x], a_target - a[x], i_target - i[x])
|
|
639
|
+
|
|
640
|
+
if phase:
|
|
641
|
+
for q in qb:
|
|
642
|
+
b = hq[q]
|
|
643
|
+
self.sim[b[0]].h(b[1])
|
|
644
|
+
b = hq[lhv]
|
|
645
|
+
b.h()
|
|
646
|
+
|
|
647
|
+
def apply_magnetic_bias(self, q, b):
|
|
648
|
+
if b == 0:
|
|
238
649
|
return
|
|
239
|
-
|
|
240
|
-
|
|
241
|
-
|
|
242
|
-
|
|
243
|
-
|
|
244
|
-
|
|
245
|
-
|
|
246
|
-
|
|
247
|
-
|
|
248
|
-
|
|
249
|
-
|
|
250
|
-
|
|
251
|
-
|
|
252
|
-
|
|
253
|
-
|
|
254
|
-
|
|
255
|
-
|
|
650
|
+
b = math.exp(b)
|
|
651
|
+
for x in q:
|
|
652
|
+
hq = self._unpack(x)
|
|
653
|
+
for c in range(len(hq)):
|
|
654
|
+
h = hq[c]
|
|
655
|
+
if c == 2:
|
|
656
|
+
a, i = self._get_lhv_bloch_angles(h)
|
|
657
|
+
self._rotate_lhv_to_bloch(
|
|
658
|
+
h,
|
|
659
|
+
math.atan(math.tan(a) * b) - a,
|
|
660
|
+
math.atan(math.tan(i) * b) - i,
|
|
661
|
+
)
|
|
662
|
+
else:
|
|
663
|
+
a, i = self._get_bloch_angles(h)
|
|
664
|
+
self._rotate_to_bloch(
|
|
665
|
+
h,
|
|
666
|
+
math.atan(math.tan(a) * b) - a,
|
|
667
|
+
math.atan(math.tan(i) * b) - i,
|
|
668
|
+
)
|
|
669
|
+
|
|
670
|
+
def u(self, lq, th, ph, lm):
|
|
256
671
|
hq = self._unpack(lq)
|
|
257
|
-
if
|
|
258
|
-
|
|
259
|
-
self.
|
|
260
|
-
|
|
261
|
-
|
|
262
|
-
|
|
263
|
-
|
|
264
|
-
|
|
265
|
-
|
|
266
|
-
|
|
672
|
+
if len(hq) < 2:
|
|
673
|
+
b = hq[0]
|
|
674
|
+
self.sim[b[0]].u(b[1], th, ph, lm)
|
|
675
|
+
return
|
|
676
|
+
|
|
677
|
+
qb, lhv = self._get_qb_lhv_indices(hq)
|
|
678
|
+
|
|
679
|
+
for q in qb:
|
|
680
|
+
b = hq[q]
|
|
681
|
+
self.sim[b[0]].u(b[1], th, ph, lm)
|
|
682
|
+
|
|
683
|
+
b = hq[lhv]
|
|
684
|
+
b.u(th, ph, lm)
|
|
685
|
+
|
|
686
|
+
self._correct(lq, False, True)
|
|
687
|
+
self._correct(lq, True, False)
|
|
267
688
|
|
|
268
689
|
def r(self, p, th, lq):
|
|
269
|
-
while th > math.pi:
|
|
270
|
-
th -= 2 * math.pi
|
|
271
|
-
while th <= -math.pi:
|
|
272
|
-
th += 2 * math.pi
|
|
273
|
-
if p == Pauli.PauliY:
|
|
274
|
-
self._correct_if_like_h(th, lq)
|
|
275
690
|
hq = self._unpack(lq)
|
|
276
|
-
if (
|
|
277
|
-
|
|
278
|
-
|
|
279
|
-
|
|
280
|
-
|
|
281
|
-
|
|
282
|
-
|
|
283
|
-
|
|
284
|
-
|
|
691
|
+
if len(hq) < 2:
|
|
692
|
+
b = hq[0]
|
|
693
|
+
self.sim[b[0]].r(p, th, b[1])
|
|
694
|
+
return
|
|
695
|
+
|
|
696
|
+
qb, lhv = self._get_qb_lhv_indices(hq)
|
|
697
|
+
|
|
698
|
+
for q in qb:
|
|
699
|
+
b = hq[q]
|
|
700
|
+
self.sim[b[0]].r(p, th, b[1])
|
|
701
|
+
|
|
702
|
+
b = hq[lhv]
|
|
703
|
+
if p == Pauli.PauliX:
|
|
704
|
+
b.rx(th)
|
|
705
|
+
elif p == Pauli.PauliY:
|
|
706
|
+
b.ry(th)
|
|
707
|
+
elif p == Pauli.PauliZ:
|
|
708
|
+
b.rz(th)
|
|
709
|
+
|
|
710
|
+
if p != Pauli.PauliZ:
|
|
711
|
+
self._correct(lq, False, p != Pauli.PauliX)
|
|
712
|
+
if p != Pauli.PauliX:
|
|
713
|
+
self._correct(lq, True)
|
|
285
714
|
|
|
286
715
|
def h(self, lq):
|
|
287
716
|
hq = self._unpack(lq)
|
|
288
|
-
|
|
289
|
-
|
|
290
|
-
|
|
291
|
-
|
|
292
|
-
|
|
717
|
+
if len(hq) < 2:
|
|
718
|
+
b = hq[0]
|
|
719
|
+
self.sim[b[0]].h(b[1])
|
|
720
|
+
return
|
|
721
|
+
|
|
722
|
+
self._correct(lq)
|
|
723
|
+
|
|
724
|
+
qb, lhv = self._get_qb_lhv_indices(hq)
|
|
725
|
+
|
|
726
|
+
for q in qb:
|
|
727
|
+
b = hq[q]
|
|
728
|
+
self.sim[b[0]].h(b[1])
|
|
729
|
+
|
|
730
|
+
b = hq[lhv]
|
|
731
|
+
b.h()
|
|
732
|
+
|
|
733
|
+
self._correct(lq)
|
|
293
734
|
|
|
294
735
|
def s(self, lq):
|
|
295
736
|
hq = self._unpack(lq)
|
|
296
|
-
|
|
297
|
-
|
|
737
|
+
if len(hq) < 2:
|
|
738
|
+
b = hq[0]
|
|
739
|
+
self.sim[b[0]].s(b[1])
|
|
740
|
+
return
|
|
741
|
+
|
|
742
|
+
qb, lhv = self._get_qb_lhv_indices(hq)
|
|
743
|
+
|
|
744
|
+
for q in qb:
|
|
745
|
+
b = hq[q]
|
|
746
|
+
self.sim[b[0]].s(b[1])
|
|
747
|
+
|
|
748
|
+
b = hq[lhv]
|
|
749
|
+
b.s()
|
|
298
750
|
|
|
299
751
|
def adjs(self, lq):
|
|
300
752
|
hq = self._unpack(lq)
|
|
301
|
-
|
|
302
|
-
|
|
753
|
+
if len(hq) < 2:
|
|
754
|
+
b = hq[0]
|
|
755
|
+
self.sim[b[0]].adjs(b[1])
|
|
756
|
+
return
|
|
757
|
+
|
|
758
|
+
qb, lhv = self._get_qb_lhv_indices(hq)
|
|
759
|
+
|
|
760
|
+
for q in qb:
|
|
761
|
+
b = hq[q]
|
|
762
|
+
self.sim[b[0]].adjs(b[1])
|
|
763
|
+
|
|
764
|
+
b = hq[lhv]
|
|
765
|
+
b.adjs()
|
|
303
766
|
|
|
304
767
|
def x(self, lq):
|
|
305
768
|
hq = self._unpack(lq)
|
|
306
|
-
|
|
307
|
-
|
|
769
|
+
if len(hq) < 2:
|
|
770
|
+
b = hq[0]
|
|
771
|
+
self.sim[b[0]].x(b[1])
|
|
772
|
+
return
|
|
773
|
+
|
|
774
|
+
qb, lhv = self._get_qb_lhv_indices(hq)
|
|
775
|
+
|
|
776
|
+
for q in qb:
|
|
777
|
+
b = hq[q]
|
|
778
|
+
self.sim[b[0]].x(b[1])
|
|
779
|
+
|
|
780
|
+
b = hq[lhv]
|
|
781
|
+
b.x()
|
|
308
782
|
|
|
309
783
|
def y(self, lq):
|
|
310
784
|
hq = self._unpack(lq)
|
|
311
|
-
|
|
312
|
-
|
|
785
|
+
if len(hq) < 2:
|
|
786
|
+
b = hq[0]
|
|
787
|
+
self.sim[b[0]].y(b[1])
|
|
788
|
+
return
|
|
789
|
+
|
|
790
|
+
qb, lhv = self._get_qb_lhv_indices(hq)
|
|
791
|
+
|
|
792
|
+
for q in qb:
|
|
793
|
+
b = hq[q]
|
|
794
|
+
self.sim[b[0]].y(b[1])
|
|
795
|
+
|
|
796
|
+
b = hq[lhv]
|
|
797
|
+
b.y()
|
|
313
798
|
|
|
314
799
|
def z(self, lq):
|
|
315
800
|
hq = self._unpack(lq)
|
|
316
|
-
|
|
317
|
-
|
|
801
|
+
if len(hq) < 2:
|
|
802
|
+
b = hq[0]
|
|
803
|
+
self.sim[b[0]].z(b[1])
|
|
804
|
+
return
|
|
805
|
+
|
|
806
|
+
qb, lhv = self._get_qb_lhv_indices(hq)
|
|
807
|
+
|
|
808
|
+
for q in qb:
|
|
809
|
+
b = hq[q]
|
|
810
|
+
self.sim[b[0]].z(b[1])
|
|
811
|
+
|
|
812
|
+
b = hq[lhv]
|
|
813
|
+
b.z()
|
|
318
814
|
|
|
319
815
|
def t(self, lq):
|
|
320
816
|
hq = self._unpack(lq)
|
|
321
|
-
|
|
322
|
-
|
|
817
|
+
if len(hq) < 2:
|
|
818
|
+
b = hq[0]
|
|
819
|
+
self.sim[b[0]].t(b[1])
|
|
820
|
+
return
|
|
821
|
+
|
|
822
|
+
qb, lhv = self._get_qb_lhv_indices(hq)
|
|
823
|
+
|
|
824
|
+
for q in qb:
|
|
825
|
+
b = hq[q]
|
|
826
|
+
self.sim[b[0]].t(b[1])
|
|
827
|
+
|
|
828
|
+
b = hq[lhv]
|
|
829
|
+
b.t()
|
|
323
830
|
|
|
324
831
|
def adjt(self, lq):
|
|
325
832
|
hq = self._unpack(lq)
|
|
326
|
-
|
|
327
|
-
|
|
833
|
+
if len(hq) < 2:
|
|
834
|
+
b = hq[0]
|
|
835
|
+
self.sim[b[0]].adjt(b[1])
|
|
836
|
+
return
|
|
328
837
|
|
|
329
|
-
|
|
330
|
-
|
|
838
|
+
qb, lhv = self._get_qb_lhv_indices(hq)
|
|
839
|
+
|
|
840
|
+
for q in qb:
|
|
841
|
+
b = hq[q]
|
|
842
|
+
self.sim[b[0]].adjt(b[1])
|
|
843
|
+
|
|
844
|
+
b = hq[lhv]
|
|
845
|
+
b.adjt()
|
|
846
|
+
|
|
847
|
+
def _get_gate(self, pauli, anti, sim_id):
|
|
331
848
|
gate = None
|
|
332
849
|
shadow = None
|
|
333
850
|
if pauli == Pauli.PauliX:
|
|
334
|
-
gate = self.sim.macx if anti else self.sim.mcx
|
|
851
|
+
gate = self.sim[sim_id].macx if anti else self.sim[sim_id].mcx
|
|
335
852
|
shadow = self._anti_cx_shadow if anti else self._cx_shadow
|
|
336
853
|
elif pauli == Pauli.PauliY:
|
|
337
|
-
gate = self.sim.macy if anti else self.sim.mcy
|
|
854
|
+
gate = self.sim[sim_id].macy if anti else self.sim[sim_id].mcy
|
|
338
855
|
shadow = self._anti_cy_shadow if anti else self._cy_shadow
|
|
339
856
|
elif pauli == Pauli.PauliZ:
|
|
340
|
-
gate = self.sim.macz if anti else self.sim.mcz
|
|
857
|
+
gate = self.sim[sim_id].macz if anti else self.sim[sim_id].mcz
|
|
341
858
|
shadow = self._anti_cz_shadow if anti else self._cz_shadow
|
|
342
859
|
else:
|
|
343
|
-
|
|
860
|
+
raise RuntimeError(
|
|
861
|
+
"QrackAceBackend._get_gate() should never return identity!"
|
|
862
|
+
)
|
|
344
863
|
|
|
345
|
-
|
|
346
|
-
|
|
347
|
-
|
|
348
|
-
|
|
349
|
-
|
|
350
|
-
|
|
864
|
+
return gate, shadow
|
|
865
|
+
|
|
866
|
+
def _get_connected(self, i, is_row):
|
|
867
|
+
long_range = self._is_row_long_range if is_row else self._is_col_long_range
|
|
868
|
+
length = self._col_length if is_row else self._row_length
|
|
869
|
+
|
|
870
|
+
connected = [i]
|
|
871
|
+
c = (i - 1) % length
|
|
872
|
+
while long_range[c] and (len(connected) < length):
|
|
873
|
+
connected.append(c)
|
|
874
|
+
c = (c - 1) % length
|
|
875
|
+
if len(connected) < length:
|
|
876
|
+
connected.append(c)
|
|
877
|
+
boundary = len(connected)
|
|
878
|
+
c = (i + 1) % length
|
|
879
|
+
while long_range[c] and (len(connected) < length):
|
|
880
|
+
connected.append(c)
|
|
881
|
+
c = (c + 1) % length
|
|
882
|
+
if len(connected) < length:
|
|
883
|
+
connected.append(c)
|
|
884
|
+
|
|
885
|
+
return connected, boundary
|
|
886
|
+
|
|
887
|
+
def _apply_coupling(self, pauli, anti, qb1, lhv1, hq1, qb2, lhv2, hq2, lq1_lr):
|
|
888
|
+
for q1 in qb1:
|
|
889
|
+
if q1 == lhv1:
|
|
890
|
+
continue
|
|
891
|
+
b1 = hq1[q1]
|
|
892
|
+
gate_fn, shadow_fn = self._get_gate(pauli, anti, b1[0])
|
|
893
|
+
for q2 in qb2:
|
|
894
|
+
if q2 == lhv2:
|
|
895
|
+
continue
|
|
896
|
+
b2 = hq2[q2]
|
|
897
|
+
if b1[0] == b2[0]:
|
|
898
|
+
gate_fn([b1[1]], b2[1])
|
|
899
|
+
elif (
|
|
900
|
+
lq1_lr
|
|
901
|
+
or (b1[1] == b2[1])
|
|
902
|
+
or ((len(qb1) == 2) and (b1[1] == (b2[1] & 1)))
|
|
903
|
+
):
|
|
904
|
+
shadow_fn(b1, b2)
|
|
351
905
|
|
|
352
|
-
|
|
906
|
+
def _cpauli(self, lq1, lq2, anti, pauli):
|
|
907
|
+
lq1_row = lq1 // self._row_length
|
|
908
|
+
lq1_col = lq1 % self._row_length
|
|
909
|
+
lq2_row = lq2 // self._row_length
|
|
910
|
+
lq2_col = lq2 % self._row_length
|
|
353
911
|
|
|
354
|
-
|
|
355
|
-
|
|
356
|
-
|
|
357
|
-
|
|
358
|
-
|
|
359
|
-
|
|
360
|
-
|
|
361
|
-
|
|
362
|
-
|
|
363
|
-
|
|
364
|
-
|
|
365
|
-
|
|
366
|
-
|
|
367
|
-
|
|
368
|
-
|
|
369
|
-
|
|
370
|
-
|
|
371
|
-
|
|
372
|
-
|
|
373
|
-
|
|
374
|
-
|
|
375
|
-
|
|
376
|
-
|
|
377
|
-
self.
|
|
378
|
-
|
|
379
|
-
|
|
380
|
-
hq1 = self._unpack(lq1)
|
|
381
|
-
hq2 = self._unpack(lq2)
|
|
382
|
-
gate([hq1[0]], hq2[0])
|
|
383
|
-
if self.alternating_codes and ((lq2_col & 1) != (lq1_col & 1)):
|
|
384
|
-
shadow(hq1[1], hq2[1])
|
|
385
|
-
else:
|
|
386
|
-
gate([hq1[1]], hq2[1])
|
|
387
|
-
gate([hq1[2]], hq2[2])
|
|
912
|
+
hq1 = self._unpack(lq1)
|
|
913
|
+
hq2 = self._unpack(lq2)
|
|
914
|
+
|
|
915
|
+
lq1_lr = len(hq1) == 1
|
|
916
|
+
lq2_lr = len(hq2) == 1
|
|
917
|
+
|
|
918
|
+
self._correct(lq1)
|
|
919
|
+
|
|
920
|
+
qb1, lhv1 = self._get_qb_lhv_indices(hq1)
|
|
921
|
+
qb2, lhv2 = self._get_qb_lhv_indices(hq2)
|
|
922
|
+
# Apply cross coupling on hardware qubits first
|
|
923
|
+
self._apply_coupling(pauli, anti, qb1, lhv1, hq1, qb2, lhv2, hq2, lq1_lr)
|
|
924
|
+
# Apply coupling to the local-hidden-variable target
|
|
925
|
+
if lhv2 >= 0:
|
|
926
|
+
_cpauli_lhv(
|
|
927
|
+
hq1[lhv1].prob() if lhv1 >= 0 else self.sim[hq1[0][0]].prob(hq1[0][1]),
|
|
928
|
+
hq2[lhv2],
|
|
929
|
+
pauli,
|
|
930
|
+
anti,
|
|
931
|
+
)
|
|
932
|
+
|
|
933
|
+
self._correct(lq1, True)
|
|
934
|
+
if pauli != Pauli.PauliZ:
|
|
935
|
+
self._correct(lq2, False, pauli != Pauli.PauliX)
|
|
936
|
+
if pauli != Pauli.PauliX:
|
|
937
|
+
self._correct(lq2, True)
|
|
388
938
|
|
|
389
939
|
def cx(self, lq1, lq2):
|
|
390
940
|
self._cpauli(lq1, lq2, False, Pauli.PauliX)
|
|
@@ -404,6 +954,48 @@ class QrackAceBackend:
|
|
|
404
954
|
def acz(self, lq1, lq2):
|
|
405
955
|
self._cpauli(lq1, lq2, True, Pauli.PauliZ)
|
|
406
956
|
|
|
957
|
+
def mcx(self, lq1, lq2):
|
|
958
|
+
if len(lq1) > 1:
|
|
959
|
+
raise RuntimeError(
|
|
960
|
+
"QrackAceBackend.mcx() is provided for syntax convenience and only supports 1 control qubit!"
|
|
961
|
+
)
|
|
962
|
+
self._cpauli(lq1[0], lq2, False, Pauli.PauliX)
|
|
963
|
+
|
|
964
|
+
def mcy(self, lq1, lq2):
|
|
965
|
+
if len(lq1) > 1:
|
|
966
|
+
raise RuntimeError(
|
|
967
|
+
"QrackAceBackend.mcy() is provided for syntax convenience and only supports 1 control qubit!"
|
|
968
|
+
)
|
|
969
|
+
self._cpauli(lq1[0], lq2, False, Pauli.PauliY)
|
|
970
|
+
|
|
971
|
+
def mcz(self, lq1, lq2):
|
|
972
|
+
if len(lq1) > 1:
|
|
973
|
+
raise RuntimeError(
|
|
974
|
+
"QrackAceBackend.mcz() is provided for syntax convenience and only supports 1 control qubit!"
|
|
975
|
+
)
|
|
976
|
+
self._cpauli(lq1[0], lq2, False, Pauli.PauliZ)
|
|
977
|
+
|
|
978
|
+
def macx(self, lq1, lq2):
|
|
979
|
+
if len(lq1) > 1:
|
|
980
|
+
raise RuntimeError(
|
|
981
|
+
"QrackAceBackend.macx() is provided for syntax convenience and only supports 1 control qubit!"
|
|
982
|
+
)
|
|
983
|
+
self._cpauli(lq1[0], lq2, True, Pauli.PauliX)
|
|
984
|
+
|
|
985
|
+
def macy(self, lq1, lq2):
|
|
986
|
+
if len(lq1) > 1:
|
|
987
|
+
raise RuntimeError(
|
|
988
|
+
"QrackAceBackend.macy() is provided for syntax convenience and only supports 1 control qubit!"
|
|
989
|
+
)
|
|
990
|
+
self._cpauli(lq1[0], lq2, True, Pauli.PauliY)
|
|
991
|
+
|
|
992
|
+
def macz(self, lq1, lq2):
|
|
993
|
+
if len(lq1) > 1:
|
|
994
|
+
raise RuntimeError(
|
|
995
|
+
"QrackAceBackend.macz() is provided for syntax convenience and only supports 1 control qubit!"
|
|
996
|
+
)
|
|
997
|
+
self._cpauli(lq1[0], lq2, True, Pauli.PauliZ)
|
|
998
|
+
|
|
407
999
|
def swap(self, lq1, lq2):
|
|
408
1000
|
self.cx(lq1, lq2)
|
|
409
1001
|
self.cx(lq2, lq1)
|
|
@@ -421,85 +1013,130 @@ class QrackAceBackend:
|
|
|
421
1013
|
self.cz(lq1, lq2)
|
|
422
1014
|
self.swap(lq1, lq2)
|
|
423
1015
|
|
|
424
|
-
def
|
|
1016
|
+
def prob(self, lq):
|
|
425
1017
|
hq = self._unpack(lq)
|
|
426
|
-
|
|
427
|
-
|
|
428
|
-
|
|
429
|
-
|
|
1018
|
+
if len(hq) < 2:
|
|
1019
|
+
b = hq[0]
|
|
1020
|
+
return self.sim[b[0]].prob(b[1])
|
|
1021
|
+
|
|
1022
|
+
self._correct(lq)
|
|
1023
|
+
if len(hq) == 5:
|
|
1024
|
+
# RMS
|
|
1025
|
+
p = [
|
|
1026
|
+
self.sim[hq[0][0]].prob(hq[0][1]),
|
|
1027
|
+
self.sim[hq[1][0]].prob(hq[1][1]),
|
|
1028
|
+
hq[2].prob(),
|
|
1029
|
+
self.sim[hq[3][0]].prob(hq[3][1]),
|
|
1030
|
+
self.sim[hq[4][0]].prob(hq[4][1]),
|
|
1031
|
+
]
|
|
1032
|
+
# Balancing suggestion from Elara (the custom OpenAI GPT)
|
|
1033
|
+
prms = math.sqrt(
|
|
1034
|
+
(p[0] ** 2 + p[1] ** 2 + 3 * (p[2] ** 2) + p[3] ** 2 + p[4] ** 2) / 7
|
|
1035
|
+
)
|
|
1036
|
+
qrms = math.sqrt(
|
|
1037
|
+
(
|
|
1038
|
+
(1 - p[0]) ** 2
|
|
1039
|
+
+ (1 - p[1]) ** 2
|
|
1040
|
+
+ 3 * ((1 - p[2]) ** 2)
|
|
1041
|
+
+ (1 - p[3]) ** 2
|
|
1042
|
+
+ (1 - p[4]) ** 2
|
|
1043
|
+
)
|
|
1044
|
+
/ 7
|
|
1045
|
+
)
|
|
430
1046
|
else:
|
|
431
|
-
|
|
432
|
-
|
|
433
|
-
|
|
434
|
-
|
|
435
|
-
|
|
436
|
-
|
|
437
|
-
|
|
438
|
-
|
|
439
|
-
|
|
440
|
-
|
|
441
|
-
|
|
442
|
-
|
|
443
|
-
|
|
444
|
-
|
|
445
|
-
|
|
446
|
-
|
|
447
|
-
|
|
448
|
-
|
|
449
|
-
|
|
450
|
-
|
|
451
|
-
|
|
452
|
-
|
|
453
|
-
|
|
454
|
-
|
|
1047
|
+
# RMS
|
|
1048
|
+
p = [
|
|
1049
|
+
self.sim[hq[0][0]].prob(hq[0][1]),
|
|
1050
|
+
self.sim[hq[1][0]].prob(hq[1][1]),
|
|
1051
|
+
hq[2].prob(),
|
|
1052
|
+
]
|
|
1053
|
+
# Balancing suggestion from Elara (the custom OpenAI GPT)
|
|
1054
|
+
prms = math.sqrt((p[0] ** 2 + p[1] ** 2 + p[2] ** 2) / 3)
|
|
1055
|
+
qrms = math.sqrt(((1 - p[0]) ** 2 + (1 - p[1]) ** 2 + (1 - p[2]) ** 2) / 3)
|
|
1056
|
+
|
|
1057
|
+
return (prms + (1 - qrms)) / 2
|
|
1058
|
+
|
|
1059
|
+
def m(self, lq):
|
|
1060
|
+
hq = self._unpack(lq)
|
|
1061
|
+
if len(hq) < 2:
|
|
1062
|
+
b = hq[0]
|
|
1063
|
+
return self.sim[b[0]].m(b[1])
|
|
1064
|
+
|
|
1065
|
+
p = self.prob(lq)
|
|
1066
|
+
result = ((p + self._epsilon) >= 1) or (random.random() < p)
|
|
1067
|
+
|
|
1068
|
+
qb, lhv = self._get_qb_lhv_indices(hq)
|
|
1069
|
+
|
|
1070
|
+
for q in qb:
|
|
1071
|
+
b = hq[q]
|
|
1072
|
+
p = self.sim[b[0]].prob(b[1]) if result else (1 - self.sim[b[0]].prob(b[1]))
|
|
1073
|
+
if p < self._epsilon:
|
|
1074
|
+
if self.sim[b[0]].m(b[1]) != result:
|
|
1075
|
+
self.sim[b[0]].x(b[1])
|
|
1076
|
+
else:
|
|
1077
|
+
self.sim[b[0]].force_m(b[1], result)
|
|
1078
|
+
|
|
1079
|
+
b = hq[lhv]
|
|
1080
|
+
b.reset()
|
|
1081
|
+
if result:
|
|
1082
|
+
b.x()
|
|
455
1083
|
|
|
456
1084
|
return result
|
|
457
1085
|
|
|
1086
|
+
def force_m(self, lq, result):
|
|
1087
|
+
hq = self._unpack(lq)
|
|
1088
|
+
if len(hq) < 2:
|
|
1089
|
+
b = hq[0]
|
|
1090
|
+
return self.sim[b[0]].force_m(b[1], result)
|
|
1091
|
+
|
|
1092
|
+
self._correct(lq)
|
|
1093
|
+
|
|
1094
|
+
qb, lhv = self._get_qb_lhv_indices(hq)
|
|
1095
|
+
|
|
1096
|
+
for q in qb:
|
|
1097
|
+
b = hq[q]
|
|
1098
|
+
p = self.sim[b[0]].prob(b[1]) if result else (1 - self.sim[b[0]].prob(b[1]))
|
|
1099
|
+
if p < self._epsilon:
|
|
1100
|
+
if self.sim[b[0]].m(b[1]) != result:
|
|
1101
|
+
self.sim[b[0]].x(b[1])
|
|
1102
|
+
else:
|
|
1103
|
+
self.sim[b[0]].force_m(b[1], result)
|
|
1104
|
+
|
|
1105
|
+
b = hq[1]
|
|
1106
|
+
b.reset()
|
|
1107
|
+
if result:
|
|
1108
|
+
b.x()
|
|
1109
|
+
|
|
1110
|
+
return c
|
|
1111
|
+
|
|
458
1112
|
def m_all(self):
|
|
1113
|
+
# Randomize the order of measurement to amortize error.
|
|
459
1114
|
result = 0
|
|
460
|
-
|
|
461
|
-
|
|
462
|
-
|
|
463
|
-
|
|
1115
|
+
rows = list(range(self._col_length))
|
|
1116
|
+
random.shuffle(rows)
|
|
1117
|
+
for lq_row in rows:
|
|
1118
|
+
row_offset = lq_row * self._row_length
|
|
1119
|
+
cols = list(range(self._row_length))
|
|
1120
|
+
random.shuffle(cols)
|
|
1121
|
+
for lq_col in cols:
|
|
1122
|
+
lq = row_offset + lq_col
|
|
1123
|
+
if self.m(lq):
|
|
1124
|
+
result |= 1 << lq
|
|
464
1125
|
|
|
465
1126
|
return result
|
|
466
1127
|
|
|
467
|
-
def measure_shots(self, q, s
|
|
468
|
-
|
|
469
|
-
|
|
470
|
-
|
|
471
|
-
|
|
472
|
-
|
|
473
|
-
for i in range(len(q)):
|
|
474
|
-
if clone.m(q[i]):
|
|
475
|
-
sample |= 1 << i
|
|
476
|
-
samples.append(sample)
|
|
477
|
-
|
|
478
|
-
return samples
|
|
479
|
-
|
|
480
|
-
_q = []
|
|
481
|
-
for i in q:
|
|
482
|
-
_q.append(3 * i)
|
|
483
|
-
_q.append(3 * i + 1)
|
|
484
|
-
_q.append(3 * i + 2)
|
|
485
|
-
|
|
486
|
-
samples = self.sim.measure_shots(_q, s)
|
|
487
|
-
|
|
488
|
-
results = []
|
|
489
|
-
for sample in samples:
|
|
490
|
-
logical_sample = 0
|
|
1128
|
+
def measure_shots(self, q, s):
|
|
1129
|
+
samples = []
|
|
1130
|
+
for _ in range(s):
|
|
1131
|
+
clone = self.clone()
|
|
1132
|
+
_sample = clone.m_all()
|
|
1133
|
+
sample = 0
|
|
491
1134
|
for i in range(len(q)):
|
|
492
|
-
|
|
493
|
-
|
|
494
|
-
|
|
495
|
-
|
|
496
|
-
|
|
497
|
-
sample >>= 1
|
|
498
|
-
if bit_count > 1:
|
|
499
|
-
logical_sample |= 1
|
|
500
|
-
results.append(logical_sample)
|
|
501
|
-
|
|
502
|
-
return results
|
|
1135
|
+
if (_sample >> q[i]) & 1:
|
|
1136
|
+
sample |= 1 << i
|
|
1137
|
+
samples.append(sample)
|
|
1138
|
+
|
|
1139
|
+
return samples
|
|
503
1140
|
|
|
504
1141
|
def _apply_op(self, operation):
|
|
505
1142
|
name = operation.name
|
|
@@ -524,27 +1161,27 @@ class QrackAceBackend:
|
|
|
524
1161
|
return
|
|
525
1162
|
|
|
526
1163
|
if (name == "u1") or (name == "p"):
|
|
527
|
-
self._sim.u(0, 0, float(operation.params[0])
|
|
1164
|
+
self._sim.u(operation.qubits[0]._index, 0, 0, float(operation.params[0]))
|
|
528
1165
|
elif name == "u2":
|
|
529
1166
|
self._sim.u(
|
|
1167
|
+
operation.qubits[0]._index,
|
|
530
1168
|
math.pi / 2,
|
|
531
1169
|
float(operation.params[0]),
|
|
532
1170
|
float(operation.params[1]),
|
|
533
|
-
operation.qubits[0]._index,
|
|
534
1171
|
)
|
|
535
1172
|
elif (name == "u3") or (name == "u"):
|
|
536
1173
|
self._sim.u(
|
|
1174
|
+
operation.qubits[0]._index,
|
|
537
1175
|
float(operation.params[0]),
|
|
538
1176
|
float(operation.params[1]),
|
|
539
1177
|
float(operation.params[2]),
|
|
540
|
-
operation.qubits[0]._index,
|
|
541
1178
|
)
|
|
542
1179
|
elif name == "r":
|
|
543
1180
|
self._sim.u(
|
|
1181
|
+
operation.qubits[0]._index,
|
|
544
1182
|
float(operation.params[0]),
|
|
545
1183
|
float(operation.params[1]) - math.pi / 2,
|
|
546
1184
|
(-1 * float(operation.params[1])) + math.pi / 2,
|
|
547
|
-
operation.qubits[0]._index,
|
|
548
1185
|
)
|
|
549
1186
|
elif name == "rx":
|
|
550
1187
|
self._sim.r(
|
|
@@ -806,3 +1443,102 @@ class QrackAceBackend:
|
|
|
806
1443
|
del self._sim
|
|
807
1444
|
|
|
808
1445
|
return _data
|
|
1446
|
+
|
|
1447
|
+
def get_qiskit_basis_gates():
|
|
1448
|
+
return [
|
|
1449
|
+
"id",
|
|
1450
|
+
"u",
|
|
1451
|
+
"u1",
|
|
1452
|
+
"u2",
|
|
1453
|
+
"u3",
|
|
1454
|
+
"r",
|
|
1455
|
+
"rx",
|
|
1456
|
+
"ry",
|
|
1457
|
+
"rz",
|
|
1458
|
+
"h",
|
|
1459
|
+
"x",
|
|
1460
|
+
"y",
|
|
1461
|
+
"z",
|
|
1462
|
+
"s",
|
|
1463
|
+
"sdg",
|
|
1464
|
+
"sx",
|
|
1465
|
+
"sxdg",
|
|
1466
|
+
"p",
|
|
1467
|
+
"t",
|
|
1468
|
+
"tdg",
|
|
1469
|
+
"cx",
|
|
1470
|
+
"cy",
|
|
1471
|
+
"cz",
|
|
1472
|
+
"swap",
|
|
1473
|
+
"iswap",
|
|
1474
|
+
"reset",
|
|
1475
|
+
"measure",
|
|
1476
|
+
]
|
|
1477
|
+
|
|
1478
|
+
# Mostly written by Dan, but with a little help from Elara (custom OpenAI GPT)
|
|
1479
|
+
def get_logical_coupling_map(self):
|
|
1480
|
+
if self._coupling_map:
|
|
1481
|
+
return self._coupling_map
|
|
1482
|
+
|
|
1483
|
+
coupling_map = set()
|
|
1484
|
+
rows, cols = self._row_length, self._col_length
|
|
1485
|
+
|
|
1486
|
+
# Map each column index to its full list of logical qubit indices
|
|
1487
|
+
def logical_index(row, col):
|
|
1488
|
+
return row * cols + col
|
|
1489
|
+
|
|
1490
|
+
for col in range(cols):
|
|
1491
|
+
connected_cols, _ = self._get_connected(col, False)
|
|
1492
|
+
for row in range(rows):
|
|
1493
|
+
connected_rows, _ = self._get_connected(row, False)
|
|
1494
|
+
a = logical_index(row, col)
|
|
1495
|
+
for c in connected_cols:
|
|
1496
|
+
for r in connected_rows:
|
|
1497
|
+
b = logical_index(r, c)
|
|
1498
|
+
if a != b:
|
|
1499
|
+
coupling_map.add((a, b))
|
|
1500
|
+
|
|
1501
|
+
self._coupling_map = sorted(coupling_map)
|
|
1502
|
+
|
|
1503
|
+
return self._coupling_map
|
|
1504
|
+
|
|
1505
|
+
# Designed by Dan, and implemented by Elara:
|
|
1506
|
+
def create_noise_model(self, x=0.25, y=0.25):
|
|
1507
|
+
if not _IS_QISKIT_AER_AVAILABLE:
|
|
1508
|
+
raise RuntimeError(
|
|
1509
|
+
"Before trying to run_qiskit_circuit() with QrackAceBackend, you must install Qiskit Aer!"
|
|
1510
|
+
)
|
|
1511
|
+
noise_model = NoiseModel()
|
|
1512
|
+
|
|
1513
|
+
for a, b in self.get_logical_coupling_map():
|
|
1514
|
+
col_a, col_b = a % self._row_length, b % self._row_length
|
|
1515
|
+
row_a, row_b = a // self._row_length, b // self._row_length
|
|
1516
|
+
is_long_a = self._is_col_long_range[col_a]
|
|
1517
|
+
is_long_b = self._is_col_long_range[col_b]
|
|
1518
|
+
|
|
1519
|
+
if is_long_a and is_long_b:
|
|
1520
|
+
continue # No noise on long-to-long
|
|
1521
|
+
|
|
1522
|
+
if (col_a == col_b) or (row_a == row_b):
|
|
1523
|
+
continue # No noise for same column
|
|
1524
|
+
|
|
1525
|
+
if is_long_a or is_long_b:
|
|
1526
|
+
y_cy = 1 - (1 - y) ** 2
|
|
1527
|
+
y_swap = 1 - (1 - y) ** 3
|
|
1528
|
+
noise_model.add_quantum_error(depolarizing_error(y, 2), "cx", [a, b])
|
|
1529
|
+
noise_model.add_quantum_error(depolarizing_error(y_cy, 2), "cy", [a, b])
|
|
1530
|
+
noise_model.add_quantum_error(depolarizing_error(y_cy, 2), "cz", [a, b])
|
|
1531
|
+
noise_model.add_quantum_error(
|
|
1532
|
+
depolarizing_error(y_swap, 2), "swap", [a, b]
|
|
1533
|
+
)
|
|
1534
|
+
else:
|
|
1535
|
+
y_cy = 1 - (1 - y) ** 2
|
|
1536
|
+
y_swap = 1 - (1 - y) ** 3
|
|
1537
|
+
noise_model.add_quantum_error(depolarizing_error(y_cy, 2), "cx", [a, b])
|
|
1538
|
+
noise_model.add_quantum_error(depolarizing_error(y_cy, 2), "cy", [a, b])
|
|
1539
|
+
noise_model.add_quantum_error(depolarizing_error(y_cy, 2), "cz", [a, b])
|
|
1540
|
+
noise_model.add_quantum_error(
|
|
1541
|
+
depolarizing_error(y_swap, 2), "swap", [a, b]
|
|
1542
|
+
)
|
|
1543
|
+
|
|
1544
|
+
return noise_model
|