pyphyschemtools 0.3.5__py3-none-any.whl → 0.3.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,44 @@
1
+ ############################################################
2
+ # Machine Learning
3
+ ############################################################
4
+ from .visualID_Eng import fg, bg, hl
5
+ from .core import centerTitle, centertxt
6
+
7
+ def y2c(mc2i,y):
8
+ import tensorflow as tf
9
+ from tensorflow import keras
10
+ #from keras.utils import np_utils
11
+ from keras.utils import to_categorical
12
+ y_array = y.copy()
13
+ y_array = y_array.to_numpy() # transformation au format numpy
14
+ # transformation des valeurs de y1 & y2 en entiers
15
+ for x in range(len(y_array)):
16
+ #print(x, y_array[x], mapc2i[y_array[x]])
17
+ y_array[x] = mc2i[y_array[x]]
18
+ yohe = to_categorical(y_array)
19
+ del y_array
20
+ return yohe
21
+
22
+ def categorizeY_2ohe(Ctot, y1, y2):
23
+ """
24
+ one-hot-encodes a pandas column of categorical data
25
+
26
+ input:
27
+ - Ctot is the reference pandas column, necessary to find all unique categories in this column
28
+ - y1 and y2 are the actual pandas column that will be categorized. y1 and y2 are supposed to be the ytest and ytrain subsets of Ctot
29
+ output:
30
+ - y1ohe and y2ohe are the numpy arrays returned by this routine
31
+
32
+ """
33
+
34
+ uv = Ctot.unique()
35
+ print(f"Catégories uniques : {uv}")
36
+ mapc2i = {}
37
+ for x in range(len(uv)):
38
+ mapc2i[uv[x]] = x
39
+ print(f"Correspondance entre chaque catégorie unique et un entier : {mapc2i}")
40
+ y1ohe = y2c(mapc2i,y1)
41
+ y2ohe = y2c(mapc2i,y2)
42
+ print(f"Structure (shape) des tableaux renvoyés par categorize1C_2ohe. y1 : {y1ohe.shape}, y2 : {y2ohe.shape}")
43
+ del mapc2i, uv
44
+ return y1ohe, y2ohe
@@ -7,6 +7,16 @@ from .core import centerTitle, centertxt
7
7
  import mendeleev
8
8
 
9
9
  class TableauPeriodique:
10
+ """
11
+ Classe permettant de manipuler et d'afficher les données du tableau périodique.
12
+
13
+ Cette classe utilise la bibliothèque 'mendeleev' pour récupérer les données chimiques
14
+ et 'bokeh' pour la visualisation interactive. Elle francise les noms et corrige
15
+ certaines classifications de familles chimiques.
16
+
17
+ Initialise l'objet TableauPeriodique en chargeant les données de la bibliothèque mendeleev.
18
+ """
19
+
10
20
  nomsFr=['Hydrogène','Hélium','Lithium','Béryllium','Bore','Carbone','Azote','Oxygène',
11
21
  'Fluor','Néon','Sodium','Magnésium','Aluminium','Silicium','Phosphore','Soufre',
12
22
  'Chlore','Argon','Potassium','Calcium','Scandium','Titane','Vanadium','Chrome',
@@ -63,10 +73,12 @@ class TableauPeriodique:
63
73
  return s
64
74
 
65
75
  def name_eng2fr():
76
+ """Remplace les noms anglais des éléments par leurs équivalents français."""
66
77
  self.elements["nom"] = TableauPeriodique.nomsFr
67
78
  return
68
79
 
69
80
  def ajouter_donnees():
81
+ """Récupère et fusionne des données supplémentaires comme l'énergie de première ionisation."""
70
82
  import numpy as np
71
83
  from mendeleev.fetch import fetch_table, fetch_ionization_energies
72
84
  import pandas as pd
@@ -99,6 +111,12 @@ class TableauPeriodique:
99
111
  return
100
112
 
101
113
  def prop(self,elt_id):
114
+ """
115
+ Affiche les propriétés détaillées d'un élément chimique.
116
+
117
+ Args:
118
+ elt_id (str ou int): Symbole de l'élément (ex: 'O') ou numéro atomique (ex: 8).
119
+ """
102
120
  from mendeleev import element
103
121
 
104
122
  elt = element(elt_id)
@@ -137,6 +155,11 @@ class TableauPeriodique:
137
155
  print()
138
156
 
139
157
  def afficher(self):
158
+ """
159
+ Génère et affiche le tableau périodique interactif dans un notebook Jupyter.
160
+
161
+ Le tableau permet de visualiser les propriétés au survol de la souris.
162
+ """
140
163
  from bokeh.plotting import show, output_notebook
141
164
  from mendeleev.vis import periodic_table_bokeh
142
165
 
@@ -13,16 +13,14 @@ class aiThermo:
13
13
  """
14
14
  A class to handle thermodynamic surface stability analysis and visualization
15
15
  within the tools4pyPhysChem framework.
16
+ Initialize the aiThermo object.
17
+
18
+ Args:
19
+ folder_path (str or Path): Path to the working directory.
20
+ color_scales (list, optional): List of plotly-compatible color scales.
16
21
  """
17
22
 
18
23
  def __init__(self, folder_path=None, color_scales=None):
19
- """
20
- Initialize the aiThermo object.
21
-
22
- Args:
23
- folder_path (str or Path): Path to the working directory.
24
- color_scales (list, optional): List of plotly-compatible color scales.
25
- """
26
24
  self.folder_path = Path(folder_path) if folder_path else None
27
25
  self.color_scales = color_scales or [
28
26
  [[0, "#dadada"], [1, "#dadada"]], [[0, "#99daaf"], [1, "#99daaf"]],
@@ -16,17 +16,15 @@ class easy_rdkit():
16
16
  """
17
17
  A helper class to analyze and visualize molecules using RDKit.
18
18
  Provides tools for Lewis structure analysis and advanced 2D drawing.
19
+ Initialize the molecule object from a SMILES string.
20
+
21
+ Args:
22
+ smiles (str): The SMILES representation of the molecule.
23
+ canonical (bool): If True, converts the SMILES to its canonical form
24
+ to ensure consistent atom numbering and uniqueness.
19
25
  """
20
26
 
21
27
  def __init__(self,smiles, canonical=True):
22
- """
23
- Initialize the molecule object from a SMILES string.
24
-
25
- Args:
26
- smiles (str): The SMILES representation of the molecule.
27
- canonical (bool): If True, converts the SMILES to its canonical form
28
- to ensure consistent atom numbering and uniqueness.
29
- """
30
28
  from rdkit import Chem
31
29
 
32
30
  mol = Chem.MolFromSmiles(smiles)
@@ -62,12 +62,14 @@ class KORD:
62
62
  Static method to extract data from an Excel file.
63
63
  Selects the pair of columns (t, G) corresponding to the experiment number.
64
64
  Also loads parameters (A0, alpha, beta)
65
+
65
66
  Format:
66
- - Row 1: Headers for t and G
67
- - Row 2: [A]0 value (in the G column)
68
- - Row 3: alpha value (in the G column)
69
- - Row 4: beta value (in the G column)
70
- - Row 5+: [t, G] data points
67
+ - Row 1: Headers for t and G
68
+ - Row 2: [A]0 value (in the G column)
69
+ - Row 3: alpha value (in the G column)
70
+ - Row 4: beta value (in the G column)
71
+ - Row 5+: [t, G] data points
72
+
71
73
  """
72
74
  # 1. Check if file exists
73
75
  if not os.path.exists(file_path):
@@ -10,27 +10,29 @@ import scipy.constants as sc
10
10
 
11
11
  class SpectrumSimulator:
12
12
 
13
+ """
14
+ Initializes the spectrum simulator
15
+
16
+ Args:
17
+ - sigma_ev (float): Gaussian half-width at half-maximum in electron-volts (eV).
18
+ Default is 0.3 eV (GaussView default is 0.4 eV).
19
+ - plotWH (tuple(int,int)): Width and Height of the matplotlib figures in inches. Default is (12,8).
20
+ - colorS: color of the simulated spectrum (default ='#3e89be')
21
+ - colorVT: color of the vertical transition line (default = '#469cd6')
22
+
23
+ Returns:
24
+ None: This method initializes the instance attributes.
25
+ Calculates:
26
+ sigmanm = half-width of the Gaussian band, in nm
27
+
28
+ """
29
+
13
30
  def __init__(self, sigma_ev=0.3, plotWH=(12,8), \
14
31
  fontSize_axisText=14, fontSize_axisLabels=14, fontSize_legends=12,
15
32
  fontsize_peaks=12,
16
33
  colorS='#3e89be',colorVT='#469cd6'
17
34
  ):
18
- """
19
- Initializes the spectrum simulator
20
35
 
21
- Args:
22
- - sigma_ev (float): Gaussian half-width at half-maximum in electron-volts (eV).
23
- Default is 0.3 eV (GaussView default is 0.4 eV).
24
- - plotWH (tuple(int,int)): Width and Height of the matplotlib figures in inches. Default is (12,8).
25
- - colorS: color of the simulated spectrum (default ='#3e89be')
26
- - colorVT: color of the vertical transition line (default = '#469cd6')
27
-
28
- Returns:
29
- None: This method initializes the instance attributes.
30
- Calculates:
31
- sigmanm = half-width of the Gaussian band, in nm
32
-
33
- """
34
36
  self.sigma_ev = sigma_ev
35
37
  # Conversion constante eV -> nm sigma
36
38
  self.ev2nm_const = (sc.h * sc.c) * 1e9 / sc.e
@@ -7,6 +7,16 @@ from .core import centerTitle, centertxt
7
7
  import mendeleev
8
8
 
9
9
  class TableauPeriodique:
10
+ """
11
+ Classe permettant de manipuler et d'afficher les données du tableau périodique.
12
+
13
+ Cette classe utilise la bibliothèque 'mendeleev' pour récupérer les données chimiques
14
+ et 'bokeh' pour la visualisation interactive. Elle francise les noms et corrige
15
+ certaines classifications de familles chimiques.
16
+
17
+ Initialise l'objet TableauPeriodique en chargeant les données de la bibliothèque mendeleev.
18
+ """
19
+
10
20
  nomsFr=['Hydrogène','Hélium','Lithium','Béryllium','Bore','Carbone','Azote','Oxygène',
11
21
  'Fluor','Néon','Sodium','Magnésium','Aluminium','Silicium','Phosphore','Soufre',
12
22
  'Chlore','Argon','Potassium','Calcium','Scandium','Titane','Vanadium','Chrome',
@@ -63,10 +73,12 @@ class TableauPeriodique:
63
73
  return s
64
74
 
65
75
  def name_eng2fr():
76
+ """Remplace les noms anglais des éléments par leurs équivalents français."""
66
77
  self.elements["nom"] = TableauPeriodique.nomsFr
67
78
  return
68
79
 
69
80
  def ajouter_donnees():
81
+ """Récupère et fusionne des données supplémentaires comme l'énergie de première ionisation."""
70
82
  import numpy as np
71
83
  from mendeleev.fetch import fetch_table, fetch_ionization_energies
72
84
  import pandas as pd
@@ -99,6 +111,12 @@ class TableauPeriodique:
99
111
  return
100
112
 
101
113
  def prop(self,elt_id):
114
+ """
115
+ Affiche les propriétés détaillées d'un élément chimique.
116
+
117
+ Args:
118
+ elt_id (str ou int): Symbole de l'élément (ex: 'O') ou numéro atomique (ex: 8).
119
+ """
102
120
  from mendeleev import element
103
121
 
104
122
  elt = element(elt_id)
@@ -137,6 +155,11 @@ class TableauPeriodique:
137
155
  print()
138
156
 
139
157
  def afficher(self):
158
+ """
159
+ Génère et affiche le tableau périodique interactif dans un notebook Jupyter.
160
+
161
+ Le tableau permet de visualiser les propriétés au survol de la souris.
162
+ """
140
163
  from bokeh.plotting import show, output_notebook
141
164
  from mendeleev.vis import periodic_table_bokeh
142
165
 
@@ -1,5 +1,5 @@
1
1
  # tools4pyPhysChem/__init__.py
2
- __version__ = "0.3.5"
2
+ __version__ = "0.3.7"
3
3
  __last_update__ = "2026-02-03"
4
4
 
5
5
  import importlib
@@ -13,16 +13,14 @@ class aiThermo:
13
13
  """
14
14
  A class to handle thermodynamic surface stability analysis and visualization
15
15
  within the tools4pyPhysChem framework.
16
+ Initialize the aiThermo object.
17
+
18
+ Args:
19
+ folder_path (str or Path): Path to the working directory.
20
+ color_scales (list, optional): List of plotly-compatible color scales.
16
21
  """
17
22
 
18
23
  def __init__(self, folder_path=None, color_scales=None):
19
- """
20
- Initialize the aiThermo object.
21
-
22
- Args:
23
- folder_path (str or Path): Path to the working directory.
24
- color_scales (list, optional): List of plotly-compatible color scales.
25
- """
26
24
  self.folder_path = Path(folder_path) if folder_path else None
27
25
  self.color_scales = color_scales or [
28
26
  [[0, "#dadada"], [1, "#dadada"]], [[0, "#99daaf"], [1, "#99daaf"]],
@@ -16,17 +16,15 @@ class easy_rdkit():
16
16
  """
17
17
  A helper class to analyze and visualize molecules using RDKit.
18
18
  Provides tools for Lewis structure analysis and advanced 2D drawing.
19
+ Initialize the molecule object from a SMILES string.
20
+
21
+ Args:
22
+ smiles (str): The SMILES representation of the molecule.
23
+ canonical (bool): If True, converts the SMILES to its canonical form
24
+ to ensure consistent atom numbering and uniqueness.
19
25
  """
20
26
 
21
27
  def __init__(self,smiles, canonical=True):
22
- """
23
- Initialize the molecule object from a SMILES string.
24
-
25
- Args:
26
- smiles (str): The SMILES representation of the molecule.
27
- canonical (bool): If True, converts the SMILES to its canonical form
28
- to ensure consistent atom numbering and uniqueness.
29
- """
30
28
  from rdkit import Chem
31
29
 
32
30
  mol = Chem.MolFromSmiles(smiles)
@@ -62,12 +62,14 @@ class KORD:
62
62
  Static method to extract data from an Excel file.
63
63
  Selects the pair of columns (t, G) corresponding to the experiment number.
64
64
  Also loads parameters (A0, alpha, beta)
65
+
65
66
  Format:
66
- - Row 1: Headers for t and G
67
- - Row 2: [A]0 value (in the G column)
68
- - Row 3: alpha value (in the G column)
69
- - Row 4: beta value (in the G column)
70
- - Row 5+: [t, G] data points
67
+ - Row 1: Headers for t and G
68
+ - Row 2: [A]0 value (in the G column)
69
+ - Row 3: alpha value (in the G column)
70
+ - Row 4: beta value (in the G column)
71
+ - Row 5+: [t, G] data points
72
+
71
73
  """
72
74
  # 1. Check if file exists
73
75
  if not os.path.exists(file_path):
@@ -10,27 +10,29 @@ import scipy.constants as sc
10
10
 
11
11
  class SpectrumSimulator:
12
12
 
13
+ """
14
+ Initializes the spectrum simulator
15
+
16
+ Args:
17
+ - sigma_ev (float): Gaussian half-width at half-maximum in electron-volts (eV).
18
+ Default is 0.3 eV (GaussView default is 0.4 eV).
19
+ - plotWH (tuple(int,int)): Width and Height of the matplotlib figures in inches. Default is (12,8).
20
+ - colorS: color of the simulated spectrum (default ='#3e89be')
21
+ - colorVT: color of the vertical transition line (default = '#469cd6')
22
+
23
+ Returns:
24
+ None: This method initializes the instance attributes.
25
+ Calculates:
26
+ sigmanm = half-width of the Gaussian band, in nm
27
+
28
+ """
29
+
13
30
  def __init__(self, sigma_ev=0.3, plotWH=(12,8), \
14
31
  fontSize_axisText=14, fontSize_axisLabels=14, fontSize_legends=12,
15
32
  fontsize_peaks=12,
16
33
  colorS='#3e89be',colorVT='#469cd6'
17
34
  ):
18
- """
19
- Initializes the spectrum simulator
20
35
 
21
- Args:
22
- - sigma_ev (float): Gaussian half-width at half-maximum in electron-volts (eV).
23
- Default is 0.3 eV (GaussView default is 0.4 eV).
24
- - plotWH (tuple(int,int)): Width and Height of the matplotlib figures in inches. Default is (12,8).
25
- - colorS: color of the simulated spectrum (default ='#3e89be')
26
- - colorVT: color of the vertical transition line (default = '#469cd6')
27
-
28
- Returns:
29
- None: This method initializes the instance attributes.
30
- Calculates:
31
- sigmanm = half-width of the Gaussian band, in nm
32
-
33
- """
34
36
  self.sigma_ev = sigma_ev
35
37
  # Conversion constante eV -> nm sigma
36
38
  self.ev2nm_const = (sc.h * sc.c) * 1e9 / sc.e
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: pyphyschemtools
3
- Version: 0.3.5
3
+ Version: 0.3.7
4
4
  Summary: A comprehensive Python toolbox for physical chemistry and cheminformatics
5
5
  Author-email: "Romuald POTEAU, LPCNO" <romuald.poteau@utoulouse.fr>
6
6
  Project-URL: Repository, https://github.com/rpoteau/pyphyschemtools
@@ -10,10 +10,12 @@ Project-URL: Issues, https://github.com/rpoteau/pyphyschemtools/issues
10
10
  Requires-Python: >=3.8
11
11
  Description-Content-Type: text/markdown
12
12
  License-File: LICENSE
13
+ Requires-Dist: bokeh
13
14
  Requires-Dist: CageCavityCalc
14
15
  Requires-Dist: ipywidgets
15
16
  Requires-Dist: jupyter
16
17
  Requires-Dist: matplotlib
18
+ Requires-Dist: mendeleev
17
19
  Requires-Dist: numpy
18
20
  Requires-Dist: openpyxl
19
21
  Requires-Dist: pandas
@@ -1,25 +1,26 @@
1
1
  pyphyschemtools/.readthedocs.yaml,sha256=ZTw2bOyF9p3JpeF8Ux0fwhYWO6KHCsroNEOvnXxbYGM,469
2
2
  pyphyschemtools/Chem3D.py,sha256=NuhoLvWpeATO88UklXg-3XqPpIiHqvP__b2tLHrypL8,34718
3
3
  pyphyschemtools/ML.py,sha256=kR_5vm5TOOjVef8uXCW57y7685ts6K6OkRMBYKP_cYw,1599
4
- pyphyschemtools/PeriodicTable.py,sha256=LfLSFOzRkirREQlwfeSR3TyvgHyjGiltIZXNmvBkbhQ,13526
5
- pyphyschemtools/__init__.py,sha256=MY8XZpjIgnbWaCerT5EqGLbmmsZbmLMeEiNpmmtd0FI,1442
6
- pyphyschemtools/aithermo.py,sha256=kF8wtuYIJzkUKM2AGubmn9haAJKz-XaBskZ7HjivJeY,14984
7
- pyphyschemtools/cheminformatics.py,sha256=Qps_JSYWOzZQcXwKElI1iWGjWAPDgwmtDKuJwONsKmI,8977
4
+ pyphyschemtools/PeriodicTable.py,sha256=HVImbwidqWCY2MhoiK7OJFNbSTuL0jNXKLU1eztZqCo,14581
5
+ pyphyschemtools/__init__.py,sha256=9MR-WjzLp-mn092afyQHLUb57mK1HMcEKduyVdHpwhY,1442
6
+ pyphyschemtools/aithermo.py,sha256=cRw0RJlULQmTzl0Ky0Y7k-ja-sAa85dVq63S3ucTt2k,14948
7
+ pyphyschemtools/cheminformatics.py,sha256=EVmgZOHatxFt5DwTgZiyZbWkwVb5mKH8odetcLJHZFc,8929
8
8
  pyphyschemtools/core.py,sha256=5fRu83b125w2p_m2H521fLjktyswZHJXNKww1wfBwbU,4847
9
- pyphyschemtools/kinetics.py,sha256=WlBnpwVIeaSTF1fZ4j4PRL6hp_C-8zKFa2bN21bU1VQ,11727
10
- pyphyschemtools/spectra.py,sha256=eCN9X6pK5k4KMcfWUskedWYwtxbrmJH_BvFXU1GZfVo,21702
9
+ pyphyschemtools/kinetics.py,sha256=QAYwX7UTQel40iSZr8TIgBQuViLw7LsGiNPpLyOOsho,11765
10
+ pyphyschemtools/spectra.py,sha256=e_pbs4ojxlQvZuGzaoEyzDALcnA82f8kc4eW0JyINzQ,21652
11
11
  pyphyschemtools/survey.py,sha256=YjZhhb8GFVNXoXSCxgGdZFqmCtNCx7O_uiFVCcGBYYo,24268
12
12
  pyphyschemtools/sympyUtilities.py,sha256=LgLloh9dD9Mkff2WNoSnrJa3hxK0axOnK-4GS9wPtT0,1545
13
13
  pyphyschemtools/tools4AS.py,sha256=BVfxf6bHnCciBMdQBSJ76Ja_aA-I_iOqQHZuVb-DsdY,44783
14
14
  pyphyschemtools/visualID.py,sha256=JlAd5nnZIliHOiKvkToArYhkbty-OntuFGf2CdPbgo8,3061
15
15
  pyphyschemtools/visualID_Eng.py,sha256=W-rYHg4g090JUpTJxtbBZVZ2lXShq8f0ALeiNjFqWD0,5356
16
16
  pyphyschemtools/.ipynb_checkpoints/Chem3D-checkpoint.py,sha256=NuhoLvWpeATO88UklXg-3XqPpIiHqvP__b2tLHrypL8,34718
17
- pyphyschemtools/.ipynb_checkpoints/PeriodicTable-checkpoint.py,sha256=LfLSFOzRkirREQlwfeSR3TyvgHyjGiltIZXNmvBkbhQ,13526
18
- pyphyschemtools/.ipynb_checkpoints/aithermo-checkpoint.py,sha256=kF8wtuYIJzkUKM2AGubmn9haAJKz-XaBskZ7HjivJeY,14984
19
- pyphyschemtools/.ipynb_checkpoints/cheminformatics-checkpoint.py,sha256=Qps_JSYWOzZQcXwKElI1iWGjWAPDgwmtDKuJwONsKmI,8977
17
+ pyphyschemtools/.ipynb_checkpoints/ML-checkpoint.py,sha256=kR_5vm5TOOjVef8uXCW57y7685ts6K6OkRMBYKP_cYw,1599
18
+ pyphyschemtools/.ipynb_checkpoints/PeriodicTable-checkpoint.py,sha256=HVImbwidqWCY2MhoiK7OJFNbSTuL0jNXKLU1eztZqCo,14581
19
+ pyphyschemtools/.ipynb_checkpoints/aithermo-checkpoint.py,sha256=cRw0RJlULQmTzl0Ky0Y7k-ja-sAa85dVq63S3ucTt2k,14948
20
+ pyphyschemtools/.ipynb_checkpoints/cheminformatics-checkpoint.py,sha256=EVmgZOHatxFt5DwTgZiyZbWkwVb5mKH8odetcLJHZFc,8929
20
21
  pyphyschemtools/.ipynb_checkpoints/core-checkpoint.py,sha256=5fRu83b125w2p_m2H521fLjktyswZHJXNKww1wfBwbU,4847
21
- pyphyschemtools/.ipynb_checkpoints/kinetics-checkpoint.py,sha256=WlBnpwVIeaSTF1fZ4j4PRL6hp_C-8zKFa2bN21bU1VQ,11727
22
- pyphyschemtools/.ipynb_checkpoints/spectra-checkpoint.py,sha256=eCN9X6pK5k4KMcfWUskedWYwtxbrmJH_BvFXU1GZfVo,21702
22
+ pyphyschemtools/.ipynb_checkpoints/kinetics-checkpoint.py,sha256=QAYwX7UTQel40iSZr8TIgBQuViLw7LsGiNPpLyOOsho,11765
23
+ pyphyschemtools/.ipynb_checkpoints/spectra-checkpoint.py,sha256=e_pbs4ojxlQvZuGzaoEyzDALcnA82f8kc4eW0JyINzQ,21652
23
24
  pyphyschemtools/.ipynb_checkpoints/survey-checkpoint.py,sha256=Rcw0xb0_nwsxETleB1C2xjKmZfrUw4PXDm48CMSptHU,45816
24
25
  pyphyschemtools/.ipynb_checkpoints/sympyUtilities-checkpoint.py,sha256=LgLloh9dD9Mkff2WNoSnrJa3hxK0axOnK-4GS9wPtT0,1545
25
26
  pyphyschemtools/.ipynb_checkpoints/tools4AS-checkpoint.py,sha256=BVfxf6bHnCciBMdQBSJ76Ja_aA-I_iOqQHZuVb-DsdY,44783
@@ -87,8 +88,8 @@ pyphyschemtools/resources/svg/qrcode-pyPhysChem.png,sha256=rP7X-9eHL7HYj4ffmwBML
87
88
  pyphyschemtools/resources/svg/repository-open-graph-template.png,sha256=UlnW5BMkLGOv6IAnEi7teDYS_5qeSLmpxRMT9r9m-5Q,51470
88
89
  pyphyschemtools/resources/svg/tools4pyPC_banner.png,sha256=z7o_kBK0sIBsXHEJrT2GyLHu-0T0T3S8YkWcpxR2joA,89058
89
90
  pyphyschemtools/resources/svg/tools4pyPC_banner.svg,sha256=BXxXHra9vwahaiet1IJW4q8QLA03crSeCIQYo30VpN8,651579
90
- pyphyschemtools-0.3.5.dist-info/licenses/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
91
- pyphyschemtools-0.3.5.dist-info/METADATA,sha256=sl9Ax0k78lEyI7xnqzoFsi4RR2eQY6K5wwmggpT2wjE,1328
92
- pyphyschemtools-0.3.5.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
93
- pyphyschemtools-0.3.5.dist-info/top_level.txt,sha256=N92w2qk4LQ42OSdzK1R2h_x1CyUFaFBOrOML2RnmFgE,16
94
- pyphyschemtools-0.3.5.dist-info/RECORD,,
91
+ pyphyschemtools-0.3.7.dist-info/licenses/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
92
+ pyphyschemtools-0.3.7.dist-info/METADATA,sha256=VDo8e-mv09ed8_VamTcmTUct7v6NgiCQULg_GILv-3Y,1374
93
+ pyphyschemtools-0.3.7.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
94
+ pyphyschemtools-0.3.7.dist-info/top_level.txt,sha256=N92w2qk4LQ42OSdzK1R2h_x1CyUFaFBOrOML2RnmFgE,16
95
+ pyphyschemtools-0.3.7.dist-info/RECORD,,