pypharm 1.4.2__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
PyPharm/constants.py CHANGED
@@ -1,40 +1,60 @@
1
1
  MODEL_CONST = {
2
2
  'human':{
3
- 'adipose': {'V':143, 'Q':3.7},
4
- 'bone': {'V':124, 'Q': 3.6} ,
5
- 'brain': {'V':20.7, 'Q': 10} ,
6
- 'gut': {'V':23.6, 'Q': 13} ,
7
- 'heart': {'V':3.8, 'Q': 2.14},
8
- 'kidney': {'V':4.4, 'Q': 15.7} ,
9
- 'liver': {'V':24.1, 'Q': 21} ,
10
- 'lung': {'V':16.7, 'Q': 71} ,
11
- 'muscle': {'V':429, 'Q': 10.7} ,
12
- 'pancreas': {'V':1.2, 'Q': 1.9} ,
13
- 'skin': {'V':111, 'Q': 4.3} ,
14
- 'spleen': {'V':2.7, 'Q': 1.1},
15
- 'stomach': {'V':2.2, 'Q':0.56},
16
- 'teaster': {'V':0.51, 'Q':0.04},
3
+ 'adipose': {'V':143, 'Q': 60 * 3.7},
4
+ 'bone': {'V':124, 'Q': 60 * 3.6} ,
5
+ 'brain': {'V':20.7, 'Q': 60 * 10} ,
6
+ 'gut': {'V':23.6, 'Q': 60 * 13} ,
7
+ 'heart': {'V':3.8, 'Q': 60 * 2.14},
8
+ 'kidney': {'V':4.4, 'Q': 60 * 15.7} ,
9
+ 'liver': {'V':24.1, 'Q': 60 * 21} ,
10
+ 'lung': {'V':16.7, 'Q': 60 * 71} ,
11
+ 'muscle': {'V':429, 'Q': 60 * 10.7} ,
12
+ 'pancreas': {'V':1.2, 'Q': 60 * 1.9} ,
13
+ 'skin': {'V':111, 'Q': 60 * 4.3} ,
14
+ 'spleen': {'V':2.7, 'Q': 60 * 1.1},
15
+ 'stomach': {'V':2.2, 'Q': 60 * 0.56},
16
+ 'teaster': {'V':0.51, 'Q': 60 * 0.04},
17
17
  'arterial_blood': {'V':25.7} ,
18
18
  'venous_blood': {'V':51.4}
19
19
  },
20
20
  'rat':{
21
- 'adipose': {'V':40, 'Q':1.6},
22
- 'bone': {'V':53.2, 'Q': 10.12},
23
- 'brain': {'V':6.8, 'Q': 5.32} ,
24
- 'gut': {'V':40, 'Q': 52} ,
25
- 'heart': {'V':3.2, 'Q': 15.68},
26
- 'kidney': {'V':9.2, 'Q': 36.92},
27
- 'liver': {'V':41.2, 'Q': 80} ,
28
- 'lung': {'V':4, 'Q': 203.2} ,
29
- 'muscle': {'V':487.6, 'Q': 30} ,
30
- 'pancreas': {'V':5.2, 'Q': 4} ,
31
- 'skin': {'V':160, 'Q': 20} ,
32
- 'spleen': {'V':2.4, 'Q': 5} ,
33
- 'stomach': {'V':4.4, 'Q':8.2} ,
34
- 'teaster': {'V':10, 'Q':1.8} ,
35
- 'arterial_blood': {'V':22.4, 'Q':10.8} ,
21
+ 'adipose': {'V':40, 'Q': 60 * 1.6},
22
+ 'bone': {'V':53.2, 'Q': 60 * 10.12},
23
+ 'brain': {'V':6.8, 'Q': 60 * 5.32} ,
24
+ 'gut': {'V':40, 'Q': 60 * 52} ,
25
+ 'heart': {'V':3.2, 'Q': 60 * 15.68},
26
+ 'kidney': {'V':9.2, 'Q': 60 * 36.92},
27
+ 'liver': {'V':41.2, 'Q': 60 * 80} ,
28
+ 'lung': {'V':4, 'Q': 60 * 203.2} ,
29
+ 'muscle': {'V':487.6, 'Q': 60 * 30} ,
30
+ 'pancreas': {'V':5.2, 'Q': 60 * 4} ,
31
+ 'skin': {'V':160, 'Q': 60 * 20} ,
32
+ 'spleen': {'V':2.4, 'Q': 60 * 5} ,
33
+ 'stomach': {'V':4.4, 'Q': 60 * 8.2} ,
34
+ 'teaster': {'V':10, 'Q': 60 * 1.8} ,
35
+ 'arterial_blood': {'V':22.4} ,
36
+ # 'arterial_blood': {'V':22.4, 'Q': 60 * 10.8} ,
36
37
  'venous_blood': {'V':45.2}
37
- }
38
+ },
39
+ 'mouse': {
40
+ 'adipose': {'V': 1000 * 1e-3 / 0.02, 'Q': 60 * 4e-5 * 1000 / 0.02},
41
+ 'bone': {'V': 1000 * 1.58e-3 / 0.02, 'Q': 60 * 2.53e-4 * 1000 / 0.02},
42
+ 'brain': {'V': 1000 * 1.7e-4 / 0.02, 'Q': 60 * 1.3e-4 * 1000 / 0.02},
43
+ 'gut': {'V': 1000 * 6.27e-4 / 0.02, 'Q': 60 * 5e-4 * 1000 / 0.02},
44
+ 'heart': {'V': 1000 * 9.5e-5 / 0.02, 'Q': 60 * 2.8e-4 * 1000 / 0.02},
45
+ 'kidney': {'V': 1000 * 3.4e-4 / 0.02, 'Q': 60 * 1.3e-3 * 1000 / 0.02},
46
+ 'liver': {'V': 1000 * 1e-3/ 0.02, 'Q' : 60 * 3.5e-4 * 1000 / 0.02},
47
+ 'lung': {'V': 1000 * 1e-4 / 0.02, 'Q': 60 * 5.47e-3 * 1000 / 0.02},
48
+ 'muscle': {'V': 1000 * 0.01e-1 / 0.02, 'Q': 60 * 9.1e-4 * 1000 / 0.02},
49
+ 'pancreas': {'V': 1000 * 1.3e-4 / 0.02, 'Q': 60 * 5.2e-5 * 1000 / 0.02},
50
+ 'skin': {'V': 1000 * 2.9e-3 / 0.02, 'Q': 60 * 4.1e-4 * 1000 / 0.02},
51
+ 'spleen': {'V': 1000 * 1e-4 / 0.02, 'Q': 60 * 9e-5 * 1000 / 0.02},
52
+ 'stomach': {'V': 1000 * 1.1e-4 / 0.02, 'Q': 60 * 1.1e-4 * 1000 / 0.02},
53
+ 'teaster': {'V': 1, 'Q': 1},
54
+ 'arterial_blood': {'V': 1000 * 2.28e-4 / 0.02},
55
+ # 'arterial_blood': {'V':22.4, 'Q': 60 * 10.8} ,
56
+ 'venous_blood': {'V': 1000 * 5.25e-4 / 0.02}
57
+ }
38
58
  }
39
59
 
40
60
  class ORGAN_NAMES:
@@ -53,4 +73,9 @@ class ORGAN_NAMES:
53
73
  STOMACH = 'stomach'
54
74
  PANCREAS = 'pancreas'
55
75
  VENOUS = 'venous_blood'
56
- ARTERIAL = 'arterial_blood'
76
+ ARTERIAL = 'arterial_blood'
77
+
78
+ class ANIMALS:
79
+ HUMAN = 'human'
80
+ RAT = 'rat'
81
+ MOUSE = 'mouse'
@@ -4,9 +4,9 @@ import numpy as np
4
4
  from scipy.integrate import solve_ivp, RK45
5
5
  from scipy.integrate import simps
6
6
  from scipy.optimize import minimize
7
- from ..algorithms.country_optimization import CountriesAlgorithm
8
- from ..algorithms.country_optimization_v2 import CountriesAlgorithm_v2
9
- from ..algorithms.genetic_optimization import GeneticAlgorithm
7
+ from PyPharm.algorithms.country_optimization import CountriesAlgorithm
8
+ from PyPharm.algorithms.country_optimization_v2 import CountriesAlgorithm_v2
9
+ from PyPharm.algorithms.genetic_optimization import GeneticAlgorithm
10
10
  from numba import njit
11
11
  import matplotlib.pyplot as plt
12
12
 
@@ -127,7 +127,8 @@ class BaseCompartmentModel:
127
127
  t_span=ts,
128
128
  y0=c0,
129
129
  max_step=max_step,
130
- t_eval=t_eval
130
+ t_eval=t_eval,
131
+ method='LSODA'
131
132
  )
132
133
  return self.last_result
133
134
 
PyPharm/models/pbpk.py CHANGED
@@ -1,19 +1,16 @@
1
- from multiprocessing import shared_memory
2
- import datetime
1
+ import inspect
2
+ from numbalsoda import lsoda_sig, lsoda
3
3
  import numpy as np
4
- from scipy.integrate import solve_ivp, RK45, odeint
5
- from scipy.integrate import simps
4
+ from scipy.integrate import solve_ivp, LSODA
6
5
  from scipy.optimize import minimize
7
6
  from PyPharm.algorithms.country_optimization import CountriesAlgorithm
8
7
  from PyPharm.algorithms.country_optimization_v2 import CountriesAlgorithm_v2
9
8
  from PyPharm.algorithms.genetic_optimization import GeneticAlgorithm
10
- from PyPharm.constants import MODEL_CONST, ORGAN_NAMES
11
- from numba import njit, types
9
+ from PyPharm.constants import MODEL_CONST, ORGAN_NAMES, ANIMALS
10
+ from numba import njit, types, cfunc
12
11
  from numba.typed import Dict
13
12
  import matplotlib.pyplot as plt
14
13
 
15
- cnst_rat = MODEL_CONST['rat']
16
- cnst_human = MODEL_CONST['human']
17
14
 
18
15
 
19
16
  class PBPKmod:
@@ -22,50 +19,48 @@ class PBPKmod:
22
19
  'liver', 'gut', 'spleen', 'stomach', 'pancreas', 'venous_blood', 'arterial_blood']
23
20
  _cl_organs = ['kidney', 'liver']
24
21
 
25
- def __init__(self, know_k={}, know_cl={}, numba_option=False):
26
- self.know_k = know_k
27
- self.know_cl = know_cl
22
+ def __init__(self, know_k=None, know_cl=None, numba_option=False, lsoda_option=False):
23
+
24
+ self.know_k = know_k if know_k is not None else {}
25
+ self.know_cl = know_cl if know_cl is not None else {}
28
26
  self._optim = False
29
27
  self.numba_option = numba_option
30
- if numba_option:
31
- self.cnst_v_rat = Dict.empty(
32
- key_type=types.unicode_type,
33
- value_type=types.float64
34
- )
35
- for k, v in cnst_rat.items():
36
- self.cnst_v_rat[k] = v['V']
37
- self.cnst_v_human = Dict.empty(
38
- key_type=types.unicode_type,
39
- value_type=types.float64
40
- )
41
- for k, v in cnst_human.items():
42
- self.cnst_v_human[k] = v['V']
43
- self.cnst_q_rat = Dict.empty(
44
- key_type=types.unicode_type,
45
- value_type=types.float64
46
- )
47
- for k, v in cnst_rat.items():
48
- if v.get('Q'):
49
- self.cnst_q_rat[k] = v['Q']
50
- self.cnst_q_human = Dict.empty(
51
- key_type=types.unicode_type,
52
- value_type=types.float64
53
- )
54
- for k, v in cnst_human.items():
55
- if v.get('Q'):
56
- self.cnst_q_human[k] = v['Q']
28
+ self.lsoda_option = lsoda_option
29
+ if numba_option or lsoda_option:
30
+ self.cnst_v_dict = {}
31
+ for key in MODEL_CONST:
32
+ cnst_v = Dict.empty(
33
+ key_type=types.unicode_type,
34
+ value_type=types.float64
35
+ )
36
+ for k, v in MODEL_CONST[key].items():
37
+ cnst_v[k] = v['V']
38
+ self.cnst_v_dict[key] = cnst_v
39
+ self.cnst_q_dict = {}
40
+ for key in MODEL_CONST:
41
+ cnst_q = Dict.empty(
42
+ key_type=types.unicode_type,
43
+ value_type=types.float64
44
+ )
45
+ for k, v in MODEL_CONST[key].items():
46
+ if v.get('Q'):
47
+ cnst_q[k] = v['Q']
48
+ self.cnst_q_dict[key] = cnst_q
57
49
 
58
- def load_optimization_data(self, time_exp, dict_c_exp, start_c_in_venous, is_human=False):
50
+ def load_optimization_data(self, time_exp, dict_c_exp, start_c_in_venous, animal=ANIMALS.MOUSE):
59
51
  self.time_exp = time_exp
60
52
  self.dict_c_exp = dict_c_exp
61
53
  self.start_c_in_venous = start_c_in_venous
62
- self.is_human = is_human
54
+ self.animal = animal
55
+
56
+ def _get_sol_difurs(self):
57
+ return self(max(self.time_exp), self.start_c_in_venous, self.animal)
63
58
 
64
59
  def fitness(self, k_cl):
65
60
 
66
61
  self.k_cl = k_cl
67
62
 
68
- sol_difurs = self(max(self.time_exp), self.start_c_in_venous, self.is_human)
63
+ sol_difurs = self._get_sol_difurs()
69
64
  # Список для хранения результатов
70
65
  present_organs_indices = []
71
66
 
@@ -77,8 +72,8 @@ class PBPKmod:
77
72
 
78
73
  rez_err = 0
79
74
  for organ, index in present_organs_indices:
80
- mean_y = sum(sol_difurs[:, index]) / len(sol_difurs[:, index])
81
- a = [(sol_difurs[:, index][self.time_exp[i]] - self.dict_c_exp[organ][i]) ** 2 for i in range(len(self.dict_c_exp[organ]))]
75
+ mean_y = sum(sol_difurs[index]) / len(sol_difurs[index])
76
+ a = [(sol_difurs[index][self.time_exp[i]] - self.dict_c_exp[organ][i]) ** 2 for i in range(len(self.dict_c_exp[organ]))]
82
77
  a = sum(a)
83
78
  b = [(mean_y - self.dict_c_exp[organ][i]) ** 2 for i in
84
79
  range(len(self.dict_c_exp[organ]))]
@@ -88,12 +83,46 @@ class PBPKmod:
88
83
  # range(len(self.dict_c_exp[organ]))])
89
84
 
90
85
  return rez_err
91
-
92
- def __call__(self, max_time, start_c_in_venous, is_human=False, step=1):
86
+ def _get_result(self, fun, t, max_time, K_CL, animal=ANIMALS.MOUSE):
87
+ if not self.lsoda_option:
88
+ return solve_ivp(
89
+ fun=fun,
90
+ t_span=[0, max_time],
91
+ y0=self.y0,
92
+ t_eval=t,
93
+ method=LSODA,
94
+ )
95
+ else:
96
+ return lsoda(
97
+ funcptr=fun,
98
+ u0=np.array(self.y0, dtype=np.float64),
99
+ t_eval=np.array(t, dtype=np.float64),
100
+ data=np.array(K_CL, dtype=np.float64),
101
+ )
102
+
103
+ def _prepare_result(self, t, res):
104
+ if not self.lsoda_option:
105
+ self._res = res.y
106
+ else:
107
+ res = res.T
108
+ self._res = res
109
+ self.last_result = {
110
+ 't': t * 60
111
+ }
112
+ if not self.lsoda_option:
113
+ for organ in self._organs:
114
+ index = self._organs.index(organ)
115
+ self.last_result[organ] = res.y[index]
116
+ else:
117
+ for organ in self._organs:
118
+ index = self._organs.index(organ)
119
+ self.last_result[organ] = res[index]
120
+
121
+ def __call__(self, max_time, start_c_in_venous, animal=ANIMALS.MOUSE, step=1.0):
93
122
  self.y0 = [0 for _ in range(15)] # всего в модели 15 органов
94
123
  self.y0[-2] = start_c_in_venous
95
- t = np.linspace(0, max_time, max_time + 1 if self._optim else int(1 / step * max_time) + 1)
96
-
124
+ t = np.linspace(0, max_time, max_time + 1 if self._optim else int(1 / step * max_time) + 1) / 60
125
+
97
126
  if not hasattr(self, 'k_cl'):
98
127
  self.k_cl = []
99
128
 
@@ -115,43 +144,44 @@ class PBPKmod:
115
144
  else:
116
145
  full_cl.append(self.k_cl[i])
117
146
  i += 1
118
- if not self.numba_option:
119
- sol_difurs = odeint(
120
- self.fullPBPKmodel,
121
- self.y0,
122
- t,
123
- args=([*full_k, *full_cl], is_human)
147
+ if not self.numba_option and not self.lsoda_option:
148
+ res = self._get_result(
149
+ fun=lambda time, y: self.fullPBPKmodel(y, time, [*full_k, *full_cl], animal),
150
+ t=t,
151
+ max_time=max_time,
152
+ K_CL=[*full_k, *full_cl],
153
+ animal=animal
154
+ )
155
+ elif self.lsoda_option:
156
+ cnst_v = self.cnst_v_dict[animal]
157
+ cnst_q = self.cnst_q_dict[animal]
158
+ res, success = self._get_result(
159
+ fun=self.lsoda_fullPBPK_for_optimization.address,
160
+ t=t,
161
+ max_time=max_time,
162
+ K_CL=[*full_k, *full_cl, *[cnst_q[key] for key in cnst_q.keys()], *[cnst_v[key] for key in cnst_v.keys()]],
163
+ animal=animal
124
164
  )
125
165
  else:
126
166
  k_cl = np.array([*full_k, *full_cl])
127
- if is_human:
128
- cnst_v = self.cnst_v_human
129
- cnst_q = self.cnst_q_human
130
- else:
131
- cnst_v = self.cnst_v_rat
132
- cnst_q = self.cnst_q_rat
133
- function = lambda c, t: self.numba_fullPBPK_for_optimization(
167
+ cnst_v = self.cnst_v_dict[animal]
168
+ cnst_q = self.cnst_q_dict[animal]
169
+ function = lambda time, c: self.numba_fullPBPK_for_optimization(
134
170
  y=c,
135
- t=t,
171
+ t=time,
136
172
  K_CL=k_cl.astype(np.float64),
137
173
  cnst_q=cnst_q,
138
174
  cnst_v=cnst_v
139
175
  )
140
- sol_difurs = odeint(
141
- function,
142
- self.y0,
143
- t
176
+ res = self._get_result(
177
+ fun=function,
178
+ t=t,
179
+ max_time=max_time,
180
+ K_CL=[*full_k, *full_cl],
181
+ animal=animal
144
182
  )
145
- if self._optim:
146
- return sol_difurs
147
-
148
- self.last_result = {
149
- 't': t
150
- }
151
- for organ in self._organs:
152
- index = self._organs.index(organ)
153
- self.last_result[organ] = np.array([sol_difurs[i][index] for i in range(t.size)])
154
- return self.last_result
183
+ self._prepare_result(t, res)
184
+ return self._res
155
185
 
156
186
  def plot_last_result(self, organ_names=[], left=None, right=None, user_names={}, theoretic_data={}, y_lims={}):
157
187
  if hasattr(self, 'last_result'):
@@ -222,18 +252,19 @@ class PBPKmod:
222
252
  self._optim = False
223
253
  return x
224
254
 
225
- def update_know_params(self, k_cl):
226
- i = 0
227
- for name in self._organs:
228
- know_k = self.know_k.get(name)
229
- if know_k is None:
230
- self.know_k[name] = k_cl[i]
231
- i += 1
232
- for name in self._cl_organs:
233
- know_cl = self.know_cl.get(name)
234
- if know_cl is None:
235
- self.know_cl[name] = k_cl[i]
236
- i += 1
255
+ def update_know_params(self, k_cl=None):
256
+ if k_cl:
257
+ i = 0
258
+ for name in self._organs:
259
+ know_k = self.know_k.get(name)
260
+ if know_k is None:
261
+ self.know_k[name] = k_cl[i]
262
+ i += 1
263
+ for name in self._cl_organs:
264
+ know_cl = self.know_cl.get(name)
265
+ if know_cl is None:
266
+ self.know_cl[name] = k_cl[i]
267
+ i += 1
237
268
 
238
269
  def get_unknown_params(self):
239
270
  result = []
@@ -247,12 +278,9 @@ class PBPKmod:
247
278
  result.append(f"cl_{name}")
248
279
  return result
249
280
 
250
- def fullPBPKmodel(self, y, t, K_CL, is_human=False): # V, Q, K, CL):
281
+ def fullPBPKmodel(self, y, t, K_CL, animal=ANIMALS.MOUSE): # V, Q, K, CL):
251
282
  # 15 органов
252
- if is_human:
253
- cnst = cnst_human
254
- else:
255
- cnst = cnst_rat
283
+ cnst = MODEL_CONST[animal]
256
284
  C_lung, C_heart, C_brain, C_muscle, C_fat, C_skin, C_bone, \
257
285
  C_kidney, C_liver, C_gut, C_spleen, C_stomach, C_pancreas, C_V, C_A = y
258
286
 
@@ -366,4 +394,279 @@ class PBPKmod:
366
394
  y_new = np.array([dC_lung_dt, dC_heart_dt, dC_brain_dt, dC_muscle_dt, dC_fat_dt, dC_skin_dt, dC_bone_dt, \
367
395
  dC_kidney_dt, dC_liver_dt, dC_gut_dt, dC_spleen_dt, dC_stomach_dt, dC_pancreas_dt, dC_venouse_dt,
368
396
  dC_arterial_dt]).astype(np.float64)
369
- return y_new
397
+ return y_new
398
+
399
+ @staticmethod
400
+ @cfunc(lsoda_sig)
401
+ def lsoda_fullPBPK_for_optimization(t, y, y_new, data):
402
+
403
+ C_lung = y[0]
404
+ C_heart = y[1]
405
+ C_brain = y[2]
406
+ C_muscle = y[3]
407
+ C_fat = y[4]
408
+ C_skin = y[5]
409
+ C_bone = y[6]
410
+ C_kidney = y[7]
411
+ C_liver = y[8]
412
+ C_gut = y[9]
413
+ C_spleen = y[10]
414
+ C_stomach = y[11]
415
+ C_pancreas = y[12]
416
+ C_V = y[13]
417
+ C_A = y[14]
418
+
419
+ K_lung = data[0]
420
+ K_heart = data[1]
421
+ K_brain = data[2]
422
+ K_muscle = data[3]
423
+ K_fat = data[4]
424
+ K_skin = data[5]
425
+ K_bone = data[6]
426
+ K_kidney = data[7]
427
+ K_liver = data[8]
428
+ K_gut = data[9]
429
+ K_spleen = data[10]
430
+ K_stomach = data[11]
431
+ K_pancreas = data[12]
432
+ K_liver_cl = data[13]
433
+ K_kidney_cl = data[14]
434
+ CL_kidney = data[15]
435
+ CL_liver = data[16]
436
+
437
+ cnst_q_adipose = data[17]
438
+ cnst_q_bone = data[18]
439
+ cnst_q_brain = data[19]
440
+ cnst_q_gut = data[20]
441
+ cnst_q_heart = data[21]
442
+ cnst_q_kidney = data[22]
443
+ cnst_q_liver = data[23]
444
+ cnst_q_lung = data[24]
445
+ cnst_q_muscle = data[25]
446
+ cnst_q_pancreas = data[26]
447
+ cnst_q_skin = data[27]
448
+ cnst_q_spleen = data[28]
449
+ cnst_q_stomach = data[29]
450
+ cnst_q_teaster = data[30]
451
+
452
+ cnst_v_adipose = data[31]
453
+ cnst_v_bone = data[32]
454
+ cnst_v_brain = data[33]
455
+ cnst_v_gut = data[34]
456
+ cnst_v_heart = data[35]
457
+ cnst_v_kidney = data[36]
458
+ cnst_v_liver = data[37]
459
+ cnst_v_lung = data[38]
460
+ cnst_v_muscle = data[39]
461
+ cnst_v_pancreas = data[40]
462
+ cnst_v_skin = data[41]
463
+ cnst_v_spleen = data[42]
464
+ cnst_v_stomach = data[43]
465
+ cnst_v_teaster = data[44]
466
+ cnst_v_arterial_blood = data[45]
467
+ cnst_v_venous_blood = data[46]
468
+
469
+ dC_lung_dt = cnst_q_lung * (C_V - C_lung / K_lung) / cnst_v_lung
470
+ dC_heart_dt = cnst_q_heart * (C_A - C_heart / K_heart) / cnst_v_heart
471
+ dC_brain_dt = cnst_q_brain * (C_A - C_brain / K_brain) / cnst_v_brain
472
+ dC_muscle_dt = cnst_q_muscle * (C_A - C_muscle / K_muscle) / cnst_v_muscle
473
+ dC_fat_dt = cnst_q_adipose * (C_A - C_fat / K_fat) / cnst_v_adipose
474
+ dC_skin_dt = cnst_q_skin * (C_A - C_skin / K_skin) / cnst_v_skin
475
+ dC_bone_dt = cnst_q_bone * (C_A - C_bone / K_bone) / cnst_v_bone
476
+ # Kidney V(Kidney)*dC(Kidney)/dt = Q(Kidney)*C(A)-Q(Kidney)*CV(Kidney)-CL(Kidney,int)*CV(Kidney,int)?
477
+ dC_kidney_dt = (cnst_q_kidney * (C_A - C_kidney / K_kidney) - CL_kidney * C_kidney / K_kidney_cl) / \
478
+ cnst_v_kidney # ???
479
+
480
+ # Liver V(Liver)*dC(Liver)/dt = (Q(Liver)-Q(Spleen)-Q(Gut)-Q(Pancreas)-Q(Stomach))*C(A) + Q(Spleen)*CV(Spleen) +
481
+ # + Q(Gut)*CV(Gut) + Q(Pancreas)*CV(Pancreas) + Q(Stomach)*CV(Stomach) -
482
+ # - Q(Liver)*CV(Liver) - CL(Liver,int)*CV(Liver,int)? # тут скорее всего нужно вычитать потоки из друг друга дополнительно по крови что бы сохранить массовый баланс
483
+ Q_liver_in_from_art = cnst_q_liver - cnst_q_gut - cnst_q_spleen - \
484
+ cnst_q_pancreas - cnst_q_stomach
485
+ dC_liver_dt = (
486
+ Q_liver_in_from_art * C_A + cnst_q_gut * C_gut / K_gut
487
+ + cnst_q_spleen * C_spleen / K_spleen
488
+ + cnst_q_stomach * C_stomach / K_stomach
489
+ + cnst_q_pancreas * C_pancreas / K_pancreas
490
+ - cnst_q_liver * C_liver / K_liver
491
+ - CL_liver * C_liver / K_liver_cl # ???
492
+ ) / cnst_v_liver
493
+
494
+ dC_gut_dt = cnst_q_gut * (C_A - C_gut / K_gut) / cnst_v_gut
495
+ dC_spleen_dt = cnst_q_spleen * (C_A - C_spleen / K_spleen) / cnst_v_spleen
496
+ dC_stomach_dt = cnst_q_stomach * (C_A - C_stomach / K_stomach) / cnst_v_stomach
497
+ dC_pancreas_dt = cnst_q_pancreas * (C_A - C_pancreas / K_pancreas) / cnst_v_pancreas
498
+
499
+ dC_venouse_dt = (
500
+ cnst_q_heart * C_heart / K_heart
501
+ + cnst_q_brain * C_brain / K_brain
502
+ + cnst_q_muscle * C_muscle / K_muscle
503
+ + cnst_q_skin * C_skin / K_skin
504
+ + cnst_q_adipose * C_fat / K_fat
505
+ + cnst_q_bone * C_bone / K_bone
506
+ + cnst_q_kidney * C_kidney / K_kidney
507
+ + cnst_q_liver * C_liver / K_liver
508
+ - cnst_q_lung * C_V
509
+ ) / cnst_v_venous_blood
510
+
511
+ dC_arterial_dt = cnst_q_lung * (C_lung / K_lung - C_A) / cnst_v_arterial_blood
512
+ y_new[0] = dC_lung_dt
513
+ y_new[1] = dC_heart_dt
514
+ y_new[2] = dC_brain_dt
515
+ y_new[3] = dC_muscle_dt
516
+ y_new[4] = dC_fat_dt
517
+ y_new[5] = dC_skin_dt
518
+ y_new[6] = dC_bone_dt
519
+ y_new[7] = dC_kidney_dt
520
+ y_new[8] = dC_liver_dt
521
+ y_new[9] = dC_gut_dt
522
+ y_new[10] = dC_spleen_dt
523
+ y_new[11] = dC_stomach_dt
524
+ y_new[12] = dC_pancreas_dt
525
+ y_new[13] = dC_venouse_dt
526
+ y_new[14] = dC_arterial_dt
527
+
528
+ # y_new = [dC_lung_dt, dC_heart_dt, dC_brain_dt, dC_muscle_dt, dC_fat_dt, dC_skin_dt, dC_bone_dt, \
529
+ # dC_kidney_dt, dC_liver_dt, dC_gut_dt, dC_spleen_dt, dC_stomach_dt, dC_pancreas_dt, dC_venouse_dt,
530
+ # dC_arterial_dt]
531
+
532
+
533
+ class ReleasePBPKmod(PBPKmod):
534
+
535
+ @staticmethod
536
+ def ode_release(solver, t, y0, release_function, d, v, is_lsoda=False):
537
+ result = []
538
+ new_y0 = y0
539
+ old_release_correction = 0
540
+ for i in range(1, len(t)):
541
+ if is_lsoda:
542
+ res, _ = solver(new_y0, t[i - 1], t[i])
543
+ y = res.T
544
+ else:
545
+ res = solver(new_y0, t[i - 1], t[i])
546
+ y = res.y
547
+ release_correction = release_function(t[i], d)
548
+ plus_release = release_correction - old_release_correction
549
+ all_corrections = plus_release
550
+ y[-2][1] += all_corrections / v
551
+ old_release_correction = release_correction
552
+ if i == 1:
553
+ result.append([y[i][0] for i in range(y.shape[0])])
554
+ new_y0 = np.array([y[i][1] for i in range(y.shape[0])])
555
+ result.append(new_y0)
556
+ return np.array(result).T
557
+
558
+ def __init__(self, release_parameters: dict=None, release_function: callable=None, know_k=None, know_cl=None, numba_option=False, lsoda_option=False):
559
+ super().__init__(
560
+ know_k=know_k, know_cl=know_cl, numba_option=numba_option, lsoda_option=lsoda_option
561
+ )
562
+ self.release_function = release_function
563
+ if release_parameters is None:
564
+ self.release_parameters = {}
565
+ else:
566
+ self.release_parameters = release_parameters
567
+ self.know_release_parameters = set(self.release_parameters.keys())
568
+
569
+ @staticmethod
570
+ def _default_release_function(t, d, m, b, c):
571
+ """
572
+ Функция для поправки на высвобождение
573
+ """
574
+ return d * c * t ** b / (t ** b + m)
575
+
576
+ def get_release_function(self):
577
+ return lambda t, d: self._get_release_function()(t, d, **self.release_parameters)
578
+
579
+ def _get_release_function(self):
580
+ if self.release_function is not None:
581
+ return self.release_function
582
+ else:
583
+ return self._default_release_function
584
+
585
+ @property
586
+ def _release_parameters_list(self) -> list[str]:
587
+ method = self._get_release_function()
588
+ arguments = inspect.getfullargspec(method).args
589
+ return [arg for arg in arguments if arg not in {'t', 'd'}]
590
+
591
+ def get_unknown_params(self):
592
+ result = super().get_unknown_params()
593
+ arguments = self._release_parameters_list
594
+ for arg in arguments:
595
+ know_arg = self.release_parameters.get(arg)
596
+ if know_arg is None:
597
+ result.append(f"release_{arg}")
598
+ return result
599
+
600
+ def update_know_params(self, k_cl=None, release_parameters=None):
601
+ super().update_know_params(k_cl)
602
+ if release_parameters is not None:
603
+ self.release_parameters = release_parameters
604
+ self.know_release_parameters = set(self.release_parameters.keys())
605
+
606
+ def _get_sol_difurs(self):
607
+ return self(max(self.time_exp), self.d, self.animal)
608
+
609
+ def fitness(self, x):
610
+
611
+ n = len(self._organs) + len(self._cl_organs) - len(self.know_cl) - len(self.know_k)
612
+ self.k_cl = x[:n]
613
+ i = 0
614
+ for arg in self._release_parameters_list:
615
+ if not arg in self.know_release_parameters:
616
+ self.release_parameters[arg] = x[n + i]
617
+ i += 1
618
+ return super().fitness(self.k_cl)
619
+
620
+ def _get_result(self, fun, t, max_time, K_CL, animal):
621
+ if not self.lsoda_option:
622
+ solver = lambda y0, t_left, t_right: solve_ivp(
623
+ fun=fun,
624
+ t_span=[t_left, t_right],
625
+ y0=y0,
626
+ t_eval=np.array([t_left, t_right]),
627
+ method=LSODA
628
+ )
629
+ return self.ode_release(solver, t, self.y0, d=self.d, v=self.v, release_function=self.get_release_function())
630
+ else:
631
+ solver = lambda y0, t_left, t_right: lsoda(
632
+ funcptr=fun,
633
+ u0=np.array(y0, dtype=np.float64),
634
+ t_eval=np.array([t_left, t_right], dtype=np.float64),
635
+ data=np.array(K_CL, dtype=np.float64),
636
+ )
637
+ return self.ode_release(solver, t, self.y0, d=self.d, v=self.v,
638
+ release_function=self.get_release_function(), is_lsoda=True), True
639
+
640
+ def _prepare_result(self, t, res):
641
+ self._res = res
642
+ self.last_result = {
643
+ 't': t * 60
644
+ }
645
+ for organ in self._organs:
646
+ index = self._organs.index(organ)
647
+ self.last_result[organ] = res[index]
648
+
649
+ def __call__(self, max_time, d, animal=ANIMALS.MOUSE, step=1.0):
650
+ self.d = d
651
+ const = MODEL_CONST[animal]
652
+ self.v = const['venous_blood']['V']
653
+ return super().__call__(
654
+ max_time=max_time,
655
+ start_c_in_venous=0,
656
+ animal=animal,
657
+ step=step
658
+ )
659
+
660
+ def optimize(self, method=None, user_method=None, method_is_func=True,
661
+ optimization_func_name='__call__', **kwargs):
662
+
663
+ return super().optimize(
664
+ method=method, user_method=user_method, method_is_func=method_is_func,
665
+ optimization_func_name=optimization_func_name, **kwargs
666
+ )
667
+
668
+ def load_optimization_data(self, time_exp, dict_c_exp, d, animal=ANIMALS.MOUSE):
669
+ self.time_exp = time_exp
670
+ self.dict_c_exp = dict_c_exp
671
+ self.d = d
672
+ self.animal = animal
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pypharm
3
- Version: 1.4.2
3
+ Version: 1.5.0
4
4
  Summary: Module for solving pharmacokinetic problems
5
5
  Home-page: https://github.com/Krash13/PyPharm
6
6
  Author: Krash13
@@ -14,10 +14,11 @@ Classifier: Operating System :: OS Independent
14
14
  Requires-Python: >=3.9
15
15
  Description-Content-Type: text/markdown
16
16
  Requires-Dist: numpy (>=1.22.1)
17
- Requires-Dist: scipy (>=1.8.0)
17
+ Requires-Dist: scipy (<=1.13.0)
18
18
  Requires-Dist: numba (>=0.58.1)
19
19
  Requires-Dist: matplotlib (>=3.5.1)
20
20
  Requires-Dist: graycode (>=1.0.5)
21
+ Requires-Dist: numbalsoda (>=0.3.4)
21
22
 
22
23
  PyPharm
23
24
  ----------
@@ -1,5 +1,5 @@
1
1
  PyPharm/__init__.py,sha256=W3NIi--fjBbpS9ODzq8lZ4L0trgqvXda7GO2dxpscXg,103
2
- PyPharm/constants.py,sha256=dW_qHteF4PwHYCLuqbp-8yU6MUpDun38DdDr7-SlfmE,2082
2
+ PyPharm/constants.py,sha256=KovwTSSkiGh9o0Hf-yoqw3H7GxC_YmawunlWMHtSK98,3869
3
3
  PyPharm/country_optimization.py,sha256=3fnnAJfdLgD0RP8qyJzHBuPDHcPljcLPQM9oqNip1r8,19664
4
4
  PyPharm/country_optimization_v2.py,sha256=3d2mt15DXdr1V3soIJS51xuCv6uzH8pirah1RnI5--8,13156
5
5
  PyPharm/country_optimization_v3.py,sha256=-3slM5MwSmiG6rD7p9ycbUQPdt4hd5bcEwpSxjb3A7U,17034
@@ -13,9 +13,9 @@ PyPharm/algorithms/country_optimization_v3.py,sha256=btPF1_aNfk9TNWf9oi-POGTU_2v
13
13
  PyPharm/algorithms/genetic_optimization.py,sha256=EC_pEWwL-ufCQd71zBhCeAB6-Sh1fijv7F3L0bWCz3I,5036
14
14
  PyPharm/algorithms/gold_digger_optimization.py,sha256=mln67sAYxkwzFqZ9Ylild1F25VuaruXRPaUMOGT5gIM,4449
15
15
  PyPharm/models/__init__.py,sha256=NMJcXMq0gCXgGLyB62j3qIzz3tbxqe6AOLPsJnfcjM0,129
16
- PyPharm/models/compartment_models.py,sha256=aEa4RQ9SedbIwVm95K7QnPMin0-nLADrzcBuIeDBVhc,33102
17
- PyPharm/models/pbpk.py,sha256=spMEnJj3JGhO_-5xCSJ79lEJHxggdNMvVms_NgjgKm0,17638
18
- pypharm-1.4.2.dist-info/METADATA,sha256=SOLVFNDqxZs38KK1iossOGj8trTY_ZVgi1j-5iv016k,22939
19
- pypharm-1.4.2.dist-info/WHEEL,sha256=OqRkF0eY5GHssMorFjlbTIq072vpHpF60fIQA6lS9xA,92
20
- pypharm-1.4.2.dist-info/top_level.txt,sha256=yybfSkKw8q1G3aEcnlfVL7_L9ufGFSAYZnpc7q6oYJk,8
21
- pypharm-1.4.2.dist-info/RECORD,,
16
+ PyPharm/models/compartment_models.py,sha256=qptmcVUVHmVL_00w5iPg590dNQnsirtywnk2arfAwTI,33149
17
+ PyPharm/models/pbpk.py,sha256=CYEpXR3fFve2LISbV8ZfOyY7B1QmHHxWkAPx2jPsBgc,30369
18
+ pypharm-1.5.0.dist-info/METADATA,sha256=FGk2kiJPybCvbJ0hmgY__YfHps-lY06ZgEuWWeBtxzU,22976
19
+ pypharm-1.5.0.dist-info/WHEEL,sha256=OqRkF0eY5GHssMorFjlbTIq072vpHpF60fIQA6lS9xA,92
20
+ pypharm-1.5.0.dist-info/top_level.txt,sha256=yybfSkKw8q1G3aEcnlfVL7_L9ufGFSAYZnpc7q6oYJk,8
21
+ pypharm-1.5.0.dist-info/RECORD,,