pypharm 1.3.6__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
PyPharm/models/pbpk.py ADDED
@@ -0,0 +1,404 @@
1
+ from multiprocessing import shared_memory
2
+ import datetime
3
+ import numpy as np
4
+ from scipy.integrate import solve_ivp, RK45, odeint
5
+ from scipy.integrate import simps
6
+ from scipy.optimize import minimize
7
+ from PyPharm.algorithms.country_optimization import CountriesAlgorithm
8
+ from PyPharm.algorithms.country_optimization_v2 import CountriesAlgorithm_v2
9
+ from PyPharm.algorithms.genetic_optimization import GeneticAlgorithm
10
+ from PyPharm.constants import MODEL_CONST, ORGAN_NAMES
11
+ from numba import njit, types
12
+ from numba.typed import Dict
13
+ import matplotlib.pyplot as plt
14
+
15
+ cnst_rat = MODEL_CONST['rat']
16
+ cnst_human = MODEL_CONST['human']
17
+
18
+
19
+ class PBPKmod:
20
+
21
+ _organs = ['lung', 'heart', 'brain', 'muscle', 'adipose', 'skin', 'bone', 'kidney',
22
+ 'liver', 'gut', 'spleen', 'stomach', 'pancreas', 'venous_blood', 'arterial_blood']
23
+ _cl_organs = ['kidney', 'liver']
24
+
25
+ def __init__(self, know_k={}, know_cl={}, numba_option=False):
26
+ self.know_k = know_k
27
+ self.know_cl = know_cl
28
+ self._optim = False
29
+ self.numba_option = numba_option
30
+ if numba_option:
31
+ self.cnst_v_rat = Dict.empty(
32
+ key_type=types.unicode_type,
33
+ value_type=types.float64
34
+ )
35
+ for k, v in cnst_rat.items():
36
+ self.cnst_v_rat[k] = v['V']
37
+ self.cnst_v_human = Dict.empty(
38
+ key_type=types.unicode_type,
39
+ value_type=types.float64
40
+ )
41
+ for k, v in cnst_human.items():
42
+ self.cnst_v_human[k] = v['V']
43
+ self.cnst_q_rat = Dict.empty(
44
+ key_type=types.unicode_type,
45
+ value_type=types.float64
46
+ )
47
+ for k, v in cnst_rat.items():
48
+ if v.get('Q'):
49
+ self.cnst_q_rat[k] = v['Q']
50
+ self.cnst_q_human = Dict.empty(
51
+ key_type=types.unicode_type,
52
+ value_type=types.float64
53
+ )
54
+ for k, v in cnst_human.items():
55
+ if v.get('Q'):
56
+ self.cnst_q_human[k] = v['Q']
57
+
58
+ def load_optimization_data(self, time_exp, dict_c_exp, start_c_in_venous, is_human=False):
59
+ self.time_exp = time_exp
60
+ self.dict_c_exp = dict_c_exp
61
+ self.start_c_in_venous = start_c_in_venous
62
+ self.is_human = is_human
63
+
64
+ def fitness(self, k_cl):
65
+
66
+ self.k_cl = k_cl
67
+
68
+ sol_difurs = self(max(self.time_exp), self.start_c_in_venous, self.is_human)
69
+ # Список для хранения результатов
70
+ present_organs_indices = []
71
+
72
+ # Проверяем, какие ключи из 'organs' есть в 'dict_n'
73
+ for organ in self._organs:
74
+ if organ in self.dict_c_exp:
75
+ index = self._organs.index(organ) # Получаем индекс органа в списке organs
76
+ present_organs_indices.append((organ, index))
77
+
78
+ rez_err = 0
79
+ for organ, index in present_organs_indices:
80
+ mean_y = sum(sol_difurs[:, index]) / len(sol_difurs[:, index])
81
+ a = [(sol_difurs[:, index][self.time_exp[i]] - self.dict_c_exp[organ][i]) ** 2 for i in range(len(self.dict_c_exp[organ]))]
82
+ a = sum(a)
83
+ b = [(mean_y - self.dict_c_exp[organ][i]) ** 2 for i in
84
+ range(len(self.dict_c_exp[organ]))]
85
+ b = sum(b)
86
+ rez_err += a / b
87
+ # rez_err += sum([abs(sol_difurs[:, index][self.time_exp[i]] - self.dict_c_exp[organ][i]) for i in
88
+ # range(len(self.dict_c_exp[organ]))])
89
+
90
+ return rez_err
91
+
92
+ def __call__(self, max_time, start_c_in_venous, is_human=False, step=1):
93
+ self.y0 = [0 for _ in range(15)] # всего в модели 15 органов
94
+ self.y0[-2] = start_c_in_venous
95
+ t = np.linspace(0, max_time, max_time + 1 if self._optim else int(1 / step * max_time) + 1)
96
+
97
+ if not hasattr(self, 'k_cl'):
98
+ self.k_cl = []
99
+
100
+ full_k = []
101
+ i = 0
102
+ for name in self._organs:
103
+ know_k = self.know_k.get(name)
104
+ if know_k is not None:
105
+ full_k.append(know_k)
106
+ else:
107
+ full_k.append(self.k_cl[i])
108
+ i += 1
109
+ full_cl = []
110
+
111
+ for name in self._cl_organs:
112
+ know_k = self.know_cl.get(name)
113
+ if know_k is not None:
114
+ full_cl.append(know_k)
115
+ else:
116
+ full_cl.append(self.k_cl[i])
117
+ i += 1
118
+ if not self.numba_option:
119
+ sol_difurs = odeint(
120
+ self.fullPBPKmodel,
121
+ self.y0,
122
+ t,
123
+ args=([*full_k, *full_cl], is_human)
124
+ )
125
+ else:
126
+ k_cl = np.array([*full_k, *full_cl])
127
+ if is_human:
128
+ cnst_v = self.cnst_v_human
129
+ cnst_q = self.cnst_q_human
130
+ else:
131
+ cnst_v = self.cnst_v_rat
132
+ cnst_q = self.cnst_q_rat
133
+ function = lambda c, t: self.numba_fullPBPK_for_optimization(
134
+ y=c,
135
+ t=t,
136
+ K_CL=k_cl.astype(np.float64),
137
+ cnst_q=cnst_q,
138
+ cnst_v=cnst_v
139
+ )
140
+ sol_difurs = odeint(
141
+ function,
142
+ self.y0,
143
+ t
144
+ )
145
+ if self._optim:
146
+ return sol_difurs
147
+
148
+ self.last_result = {
149
+ 't': t
150
+ }
151
+ for organ in self._organs:
152
+ index = self._organs.index(organ)
153
+ self.last_result[organ] = np.array([sol_difurs[i][index] for i in range(t.size)])
154
+ return self.last_result
155
+
156
+ def plot_last_result(self, organ_names=[], left=None, right=None, user_names={}, theoretic_data={}, y_lims={}):
157
+ if hasattr(self, 'last_result'):
158
+ for name in organ_names:
159
+ if theoretic_data.get(name):
160
+ plt.plot(theoretic_data[name]['x'], theoretic_data[name]['y'], '*r')
161
+ plt.plot(
162
+ self.last_result['t'],
163
+ self.last_result.get(name),
164
+ )
165
+ plt.title(user_names.get(name, name))
166
+ plt.xlim(left=left, right=right)
167
+ if y_lims.get(name):
168
+ plt.ylim(y_lims.get(name))
169
+ plt.grid()
170
+ plt.show()
171
+
172
+ def optimize(self, method=None, user_method=None, method_is_func=True,
173
+ optimization_func_name='__call__', **kwargs):
174
+ """
175
+ Функция оптимизации модели
176
+
177
+ Args:
178
+ method: Метод оптимизации, любой доступный minimize + 'country_optimization' и 'country_optimization_v2'
179
+ max_step: Максимальный шаг при решении СДУ
180
+ **kwargs: Дополнительные именованные аргументы
181
+
182
+ Returns:
183
+ None
184
+ """
185
+ self._optim = True
186
+ f = lambda x: self.fitness(x)
187
+ if user_method is not None:
188
+ if method_is_func:
189
+ x = user_method(f, **kwargs)
190
+ else:
191
+ optimization_obj = user_method(f, **kwargs)
192
+ x = getattr(optimization_obj, optimization_func_name)()
193
+ else:
194
+ if method == 'country_optimization':
195
+ CA = CountriesAlgorithm(
196
+ f=f,
197
+ memory_list=getattr(self, 'memory', None),
198
+ **kwargs
199
+ )
200
+ CA.start()
201
+ x = CA.countries[0].population[0].x
202
+ elif method == 'country_optimization_v2':
203
+ CA = CountriesAlgorithm_v2(
204
+ f=f,
205
+ **kwargs
206
+ )
207
+ CA.start()
208
+ x = CA.countries[0].population[0].x
209
+ elif method == 'GA':
210
+ CA = GeneticAlgorithm(
211
+ f=f,
212
+ **kwargs
213
+ )
214
+ x = CA.start()
215
+ else:
216
+ res = minimize(
217
+ fun=f,
218
+ method=method,
219
+ **kwargs
220
+ )
221
+ x = res.x
222
+ self._optim = False
223
+ return x
224
+
225
+ def update_know_params(self, k_cl):
226
+ i = 0
227
+ for name in self._organs:
228
+ know_k = self.know_k.get(name)
229
+ if know_k is None:
230
+ self.know_k[name] = k_cl[i]
231
+ i += 1
232
+ for name in self._cl_organs:
233
+ know_cl = self.know_cl.get(name)
234
+ if know_cl is None:
235
+ self.know_cl[name] = k_cl[i]
236
+ i += 1
237
+
238
+ def get_unknown_params(self):
239
+ result = []
240
+ for name in self._organs:
241
+ know_k = self.know_k.get(name)
242
+ if know_k is None:
243
+ result.append(f"k_{name}")
244
+ for name in self._cl_organs:
245
+ know_cl = self.know_cl.get(name)
246
+ if know_cl is None:
247
+ result.append(f"cl_{name}")
248
+ return result
249
+
250
+ def fullPBPKmodel(self, y, t, K_CL, is_human=False): # V, Q, K, CL):
251
+ # 15 органов
252
+ if is_human:
253
+ cnst = cnst_human
254
+ else:
255
+ cnst = cnst_rat
256
+ C_lung, C_heart, C_brain, C_muscle, C_fat, C_skin, C_bone, \
257
+ C_kidney, C_liver, C_gut, C_spleen, C_stomach, C_pancreas, C_V, C_A = y
258
+
259
+ K_lung, K_heart, K_brain, K_muscle, K_fat, K_skin, K_bone, \
260
+ K_kidney, K_liver, K_gut, K_spleen, K_stomach, K_pancreas, K_liver_cl, K_kidney_cl = K_CL[:15]
261
+ CL_kidney, CL_liver = K_CL[15:]
262
+
263
+ dC_lung_dt = cnst['lung']['Q'] * (C_V - C_lung / K_lung) / cnst['lung']['V']
264
+ dC_heart_dt = cnst['heart']['Q'] * (C_A - C_heart / K_heart) / cnst['heart']['V']
265
+ dC_brain_dt = cnst['brain']['Q'] * (C_A - C_brain / K_brain) / cnst['brain']['V']
266
+ dC_muscle_dt = cnst['muscle']['Q'] * (C_A - C_muscle / K_muscle) / cnst['muscle']['V']
267
+ dC_fat_dt = cnst['adipose']['Q'] * (C_A - C_fat / K_fat) / cnst['adipose']['V']
268
+ dC_skin_dt = cnst['skin']['Q'] * (C_A - C_skin / K_skin) / cnst['skin']['V']
269
+ dC_bone_dt = cnst['bone']['Q'] * (C_A - C_bone / K_bone) / cnst['bone']['V']
270
+ # Kidney V(Kidney)*dC(Kidney)/dt = Q(Kidney)*C(A)-Q(Kidney)*CV(Kidney)-CL(Kidney,int)*CV(Kidney,int)?
271
+ dC_kidney_dt = (cnst['kidney']['Q'] * (C_A - C_kidney / K_kidney) - CL_kidney * C_kidney / K_kidney_cl) / \
272
+ cnst['kidney']['V'] # ???
273
+
274
+ # Liver V(Liver)*dC(Liver)/dt = (Q(Liver)-Q(Spleen)-Q(Gut)-Q(Pancreas)-Q(Stomach))*C(A) + Q(Spleen)*CV(Spleen) +
275
+ # + Q(Gut)*CV(Gut) + Q(Pancreas)*CV(Pancreas) + Q(Stomach)*CV(Stomach) -
276
+ # - Q(Liver)*CV(Liver) - CL(Liver,int)*CV(Liver,int)? # тут скорее всего нужно вычитать потоки из друг друга дополнительно по крови что бы сохранить массовый баланс
277
+ Q_liver_in_from_art = cnst['liver']['Q'] - cnst['gut']['Q'] - cnst['spleen']['Q'] - \
278
+ cnst['pancreas']['Q'] - cnst['stomach']['Q']
279
+ dC_liver_dt = (
280
+ Q_liver_in_from_art * C_A + cnst['gut']['Q'] * C_gut / K_gut
281
+ + cnst['spleen']['Q'] * C_spleen / K_spleen
282
+ + cnst['stomach']['Q'] * C_stomach / K_stomach
283
+ + cnst['pancreas']['Q'] * C_pancreas / K_pancreas
284
+ - cnst['liver']['Q'] * C_liver / K_liver
285
+ - CL_liver * C_liver / K_liver_cl # ???
286
+ ) / cnst['liver']['V']
287
+
288
+ dC_gut_dt = cnst['gut']['Q'] * (C_A - C_gut / K_gut) / cnst['gut']['V']
289
+ dC_spleen_dt = cnst['spleen']['Q'] * (C_A - C_spleen / K_spleen) / cnst['spleen']['V']
290
+ dC_stomach_dt = cnst['stomach']['Q'] * (C_A - C_stomach / K_stomach) / cnst['stomach']['V']
291
+ dC_pancreas_dt = cnst['pancreas']['Q'] * (C_A - C_pancreas / K_pancreas) / cnst['pancreas']['V']
292
+
293
+ dC_venouse_dt = (
294
+ cnst['heart']['Q'] * C_heart / K_heart
295
+ + cnst['brain']['Q'] * C_brain / K_brain
296
+ + cnst['muscle']['Q'] * C_muscle / K_muscle
297
+ + cnst['skin']['Q'] * C_skin / K_skin
298
+ + cnst['adipose']['Q'] * C_fat / K_fat
299
+ + cnst['bone']['Q'] * C_bone / K_bone
300
+ + cnst['kidney']['Q'] * C_kidney / K_kidney
301
+ + cnst['liver']['Q'] * C_liver / K_liver
302
+ - cnst['lung']['Q'] * C_V
303
+ ) / cnst['venous_blood']['V']
304
+
305
+ dC_arterial_dt = cnst['lung']['Q'] * (C_lung / K_lung - C_A) / cnst['arterial_blood']['V']
306
+
307
+ y_new = [dC_lung_dt, dC_heart_dt, dC_brain_dt, dC_muscle_dt, dC_fat_dt, dC_skin_dt, dC_bone_dt, \
308
+ dC_kidney_dt, dC_liver_dt, dC_gut_dt, dC_spleen_dt, dC_stomach_dt, dC_pancreas_dt, dC_venouse_dt,
309
+ dC_arterial_dt]
310
+ return y_new
311
+
312
+ @staticmethod
313
+ @njit
314
+ def numba_fullPBPK_for_optimization(y, t, K_CL, cnst_q, cnst_v):
315
+ C_lung, C_heart, C_brain, C_muscle, C_fat, C_skin, C_bone, \
316
+ C_kidney, C_liver, C_gut, C_spleen, C_stomach, C_pancreas, C_V, C_A = y
317
+
318
+ K_lung, K_heart, K_brain, K_muscle, K_fat, K_skin, K_bone, \
319
+ K_kidney, K_liver, K_gut, K_spleen, K_stomach, K_pancreas, K_liver_cl, K_kidney_cl = K_CL[:15]
320
+ CL_kidney, CL_liver = K_CL[15:]
321
+
322
+ dC_lung_dt = cnst_q['lung'] * (C_V - C_lung / K_lung) / cnst_v['lung']
323
+ dC_heart_dt = cnst_q['heart'] * (C_A - C_heart / K_heart) / cnst_v['heart']
324
+ dC_brain_dt = cnst_q['brain'] * (C_A - C_brain / K_brain) / cnst_v['brain']
325
+ dC_muscle_dt = cnst_q['muscle'] * (C_A - C_muscle / K_muscle) / cnst_v['muscle']
326
+ dC_fat_dt = cnst_q['adipose'] * (C_A - C_fat / K_fat) / cnst_v['adipose']
327
+ dC_skin_dt = cnst_q['skin'] * (C_A - C_skin / K_skin) / cnst_v['skin']
328
+ dC_bone_dt = cnst_q['bone'] * (C_A - C_bone / K_bone) / cnst_v['bone']
329
+ # Kidney V(Kidney)*dC(Kidney)/dt = Q(Kidney)*C(A)-Q(Kidney)*CV(Kidney)-CL(Kidney,int)*CV(Kidney,int)?
330
+ dC_kidney_dt = (cnst_q['kidney'] * (C_A - C_kidney / K_kidney) - CL_kidney * C_kidney / K_kidney_cl) / \
331
+ cnst_v['kidney'] # ???
332
+
333
+ # Liver V(Liver)*dC(Liver)/dt = (Q(Liver)-Q(Spleen)-Q(Gut)-Q(Pancreas)-Q(Stomach))*C(A) + Q(Spleen)*CV(Spleen) +
334
+ # + Q(Gut)*CV(Gut) + Q(Pancreas)*CV(Pancreas) + Q(Stomach)*CV(Stomach) -
335
+ # - Q(Liver)*CV(Liver) - CL(Liver,int)*CV(Liver,int)? # тут скорее всего нужно вычитать потоки из друг друга дополнительно по крови что бы сохранить массовый баланс
336
+ Q_liver_in_from_art = cnst_q['liver'] - cnst_q['gut'] - cnst_q['spleen'] - \
337
+ cnst_q['pancreas'] - cnst_q['stomach']
338
+ dC_liver_dt = (
339
+ Q_liver_in_from_art * C_A + cnst_q['gut'] * C_gut / K_gut
340
+ + cnst_q['spleen'] * C_spleen / K_spleen
341
+ + cnst_q['stomach'] * C_stomach / K_stomach
342
+ + cnst_q['pancreas'] * C_pancreas / K_pancreas
343
+ - cnst_q['liver'] * C_liver / K_liver
344
+ - CL_liver * C_liver / K_liver_cl # ???
345
+ ) / cnst_v['liver']
346
+
347
+ dC_gut_dt = cnst_q['gut'] * (C_A - C_gut / K_gut) / cnst_v['gut']
348
+ dC_spleen_dt = cnst_q['spleen'] * (C_A - C_spleen / K_spleen) / cnst_v['spleen']
349
+ dC_stomach_dt = cnst_q['stomach'] * (C_A - C_stomach / K_stomach) / cnst_v['stomach']
350
+ dC_pancreas_dt = cnst_q['pancreas'] * (C_A - C_pancreas / K_pancreas) / cnst_v['pancreas']
351
+
352
+ dC_venouse_dt = (
353
+ cnst_q['heart'] * C_heart / K_heart
354
+ + cnst_q['brain'] * C_brain / K_brain
355
+ + cnst_q['muscle'] * C_muscle / K_muscle
356
+ + cnst_q['skin'] * C_skin / K_skin
357
+ + cnst_q['adipose'] * C_fat / K_fat
358
+ + cnst_q['bone'] * C_bone / K_bone
359
+ + cnst_q['kidney'] * C_kidney / K_kidney
360
+ + cnst_q['liver'] * C_liver / K_liver
361
+ - cnst_q['lung'] * C_V
362
+ ) / cnst_v['venous_blood']
363
+
364
+ dC_arterial_dt = cnst_q['lung'] * (C_lung / K_lung - C_A) / cnst_v['arterial_blood']
365
+
366
+ y_new = np.array([dC_lung_dt, dC_heart_dt, dC_brain_dt, dC_muscle_dt, dC_fat_dt, dC_skin_dt, dC_bone_dt, \
367
+ dC_kidney_dt, dC_liver_dt, dC_gut_dt, dC_spleen_dt, dC_stomach_dt, dC_pancreas_dt, dC_venouse_dt,
368
+ dC_arterial_dt]).astype(np.float64)
369
+ return y_new
370
+
371
+
372
+ model = PBPKmod(numba_option=True)
373
+ print(model.get_unknown_params())
374
+ model.load_optimization_data(
375
+ time_exp=[12, 60, 3 * 60, 5* 60, 15 * 60, 24 * 60],
376
+ dict_c_exp = {ORGAN_NAMES.LIVER: [103.2 * 1e-6, 134.54 * 1e-6, 87.89 * 1e-6, 81.87 * 1e-6, 45.83 * 1e-6, 28.48 * 1e-6],
377
+ ORGAN_NAMES.LUNG: [26.96 * 1e-6, 22.67 * 1e-6, 15.51 * 1e-6, 12.07 * 1e-6, 4.53 * 1e-6, 0 * 1e-6],
378
+ ORGAN_NAMES.SPLEEN: [11.84 * 1e-6, 12.22 * 1e-6, 8.52 * 1e-6, 7.01 * 1e-6, 3.65 * 1e-6, 2.16 * 1e-6]
379
+ },
380
+ start_c_in_venous=150 * 1e-3 / MODEL_CONST['rat']['venous_blood']['V']
381
+ )
382
+
383
+ result = model.optimize(
384
+ method='country_optimization',
385
+ Xmin=17 * [0.0001],
386
+ Xmax=17 * [5],
387
+ M=20,
388
+ N=25,
389
+ n=[1, 10],
390
+ p=[0.00001, 2],
391
+ m=[1, 8],
392
+ k=8,
393
+ l=3,
394
+ ep=[0.2, 0.4],
395
+ tmax=3,
396
+ printing=True,
397
+ )
398
+ model.update_know_params(result)
399
+
400
+ result = model(max_time=24 * 60, start_c_in_venous=150 * 1e-3 / MODEL_CONST['rat']['venous_blood']['V'], step=0.1)
401
+
402
+ model_furs = PBPKmod(numba_option=True)
403
+
404
+ print()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pypharm
3
- Version: 1.3.6
3
+ Version: 1.4.1
4
4
  Summary: Module for solving pharmacokinetic problems
5
5
  Home-page: https://github.com/Krash13/PyPharm
6
6
  Author: Krash13
@@ -240,7 +240,7 @@ res = model(90, d=5700, compartment_number=0)
240
240
  Если оба параметра не заданы, то модель выраздается
241
241
  в простую BaseCompartmentModel.
242
242
 
243
- **5) Модель MagicCompartmentModel**
243
+ **5) Модель ReleaseCompartmentModel**
244
244
 
245
245
  Данная модель учитывает поправку на высвобождение
246
246
  ЛВ в модель вводятся дополнительные параметры:
@@ -277,8 +277,72 @@ plt.show()
277
277
  в таком случае, искомое нужно просто задать как None. Тогда вектор неизвестных это
278
278
  x = [configuration_matrix (неизвестные), outputs(неизвестные), volumes(неизвестные), release_parameters(неизвестные), v_release]
279
279
 
280
+ **6) Использование PBPK модели**
280
281
 
281
- **6) Использование shared_memory**
282
+ Вы можете использовать PBPK модель как для рассчёта по известным
283
+ данным так и для поиска параметров, исходя из ваших экспериментальных данных.
284
+
285
+ Чтобы задать исзвестные вам константы, при инициализации объекта следует использовать
286
+ параметры know_k и know_cl, которые содержат словари с известными параметрами, имена органов следует брать
287
+ из класса ORGAN_NAMES.
288
+
289
+ Ниже приведен пример поиска параметров и построение кривых распределения вещества
290
+ в органах с использованием генетического алгоритма.
291
+
292
+ ```python
293
+ from PyPharm import PBPKmod
294
+ from PyPharm.constants import ORGAN_NAMES, MODEL_CONST
295
+
296
+ model = PBPKmod()
297
+ print(model.get_unknown_params())
298
+ model.load_optimization_data(
299
+ time_exp=[12, 60, 3 * 60, 5* 60, 15 * 60, 24 * 60],
300
+ dict_c_exp = {ORGAN_NAMES.LIVER: [103.2 * 1e-6, 134.54 * 1e-6, 87.89 * 1e-6, 81.87 * 1e-6, 45.83 * 1e-6, 28.48 * 1e-6],
301
+ ORGAN_NAMES.LUNG: [26.96 * 1e-6, 22.67 * 1e-6, 15.51 * 1e-6, 12.07 * 1e-6, 4.53 * 1e-6, 0 * 1e-6],
302
+ ORGAN_NAMES.SPLEEN: [11.84 * 1e-6, 12.22 * 1e-6, 8.52 * 1e-6, 7.01 * 1e-6, 3.65 * 1e-6, 2.16 * 1e-6]
303
+ },
304
+ start_c_in_venous=150 * 1e-3 / MODEL_CONST['rat']['venous_blood']['V']
305
+ )
306
+ result = model.optimize(
307
+ method='GA',
308
+ x_min=17 * [0.0001],
309
+ x_max=17 * [5],
310
+ genes=17 * [16],
311
+ n=300,
312
+ child_percent=0.3,
313
+ mutation_chance=0.5,
314
+ max_mutation=5,
315
+ t_max=300,
316
+ printing=True,
317
+ )
318
+ model.update_know_params(result)
319
+
320
+ result = model(max_time=24 * 60, start_c_in_venous=150 * 1e-3 / MODEL_CONST['rat']['venous_blood']['V'], step=0.1)
321
+ model.plot_last_result(
322
+ organ_names=[ORGAN_NAMES.LUNG, ORGAN_NAMES.LIVER, ORGAN_NAMES.SPLEEN],
323
+ user_names={
324
+ ORGAN_NAMES.LUNG: 'Лёгкие',
325
+ ORGAN_NAMES.LIVER: 'Печень',
326
+ ORGAN_NAMES.SPLEEN: 'Селезёнка',
327
+ },
328
+ theoretic_data={
329
+ ORGAN_NAMES.LIVER: {
330
+ 'x': [12, 60, 3 * 60, 5* 60, 15 * 60, 24 * 60],
331
+ 'y': [103.2 * 1e-6, 134.54 * 1e-6, 87.89 * 1e-6, 81.87 * 1e-6, 45.83 * 1e-6, 28.48 * 1e-6],
332
+ },
333
+ ORGAN_NAMES.LUNG: {
334
+ 'x': [12, 60, 3 * 60, 5* 60, 15 * 60, 24 * 60],
335
+ 'y': [26.96 * 1e-6, 22.67 * 1e-6, 15.51 * 1e-6, 12.07 * 1e-6, 4.53 * 1e-6, 0 * 1e-6],
336
+ },
337
+ ORGAN_NAMES.SPLEEN: {
338
+ 'x': [12, 60, 3 * 60, 5* 60, 15 * 60, 24 * 60],
339
+ 'y': [11.84 * 1e-6, 12.22 * 1e-6, 8.52 * 1e-6, 7.01 * 1e-6, 3.65 * 1e-6, 2.16 * 1e-6]
340
+ }
341
+ }
342
+ )
343
+ ```
344
+
345
+ **7) Использование shared_memory**
282
346
 
283
347
  Начиная с версии 1.3.0, вы можете использовать **shared_memory** для получения текущих данных
284
348
  оптимизации. Имя нужного вам участка памяти хранится в поле **memory_name**.
@@ -517,7 +581,7 @@ of variables.
517
581
  If both parameters are not set, then the model is deleted
518
582
  into a simple BaseCompartmentModel.
519
583
 
520
- **5) The MagicCompartmentModel model**
584
+ **5) The ReleaseCompartmentModel model**
521
585
 
522
586
  This model takes into account the release adjustment
523
587
  medicinal substance additional parameters are introduced into the model:
@@ -554,7 +618,72 @@ The release_parameters and v_release parameters can be optimized
554
618
  in this case, you just need to set the desired value as None. Then the vector of unknowns is
555
619
  x = [configuration_matrix (unknown), outputs(unknown), volumes(unknown), release_parameters(unknown), v_release]
556
620
 
557
- **6) Using shared_memory**
621
+ **6) Using the PBPK model**
622
+
623
+ You can use the PBPK model both for calculations based on known
624
+ data and for searching for parameters based on your experimental data.
625
+
626
+ To set constants known to you, when initializing an object, you should use the
627
+ parameters know_k and know_cl, which contain dictionaries with known parameters, the names of organs should be taken
628
+ from the ORGAN_NAMES class.
629
+
630
+ Below is an example of searching for parameters and constructing distribution curves of a substance
631
+ in organs using a genetic algorithm.
632
+
633
+ ```python
634
+ from PyPharm import PBPKmod
635
+ from PyPharm.constants import ORGAN_NAMES, MODEL_CONST
636
+
637
+ model = PBPKmod()
638
+ print(model.get_unknown_params())
639
+ model.load_optimization_data(
640
+ time_exp=[12, 60, 3 * 60, 5* 60, 15 * 60, 24 * 60],
641
+ dict_c_exp = {ORGAN_NAMES.LIVER: [103.2 * 1e-6, 134.54 * 1e-6, 87.89 * 1e-6, 81.87 * 1e-6, 45.83 * 1e-6, 28.48 * 1e-6],
642
+ ORGAN_NAMES.LUNG: [26.96 * 1e-6, 22.67 * 1e-6, 15.51 * 1e-6, 12.07 * 1e-6, 4.53 * 1e-6, 0 * 1e-6],
643
+ ORGAN_NAMES.SPLEEN: [11.84 * 1e-6, 12.22 * 1e-6, 8.52 * 1e-6, 7.01 * 1e-6, 3.65 * 1e-6, 2.16 * 1e-6]
644
+ },
645
+ start_c_in_venous=150 * 1e-3 / MODEL_CONST['rat']['venous_blood']['V']
646
+ )
647
+ result = model.optimize(
648
+ method='GA',
649
+ x_min=17 * [0.0001],
650
+ x_max=17 * [5],
651
+ genes=17 * [16],
652
+ n=300,
653
+ child_percent=0.3,
654
+ mutation_chance=0.5,
655
+ max_mutation=5,
656
+ t_max=300,
657
+ printing=True,
658
+ )
659
+ model.update_know_params(result)
660
+
661
+ result = model(max_time=24 * 60, start_c_in_venous=150 * 1e-3 / MODEL_CONST['rat']['venous_blood']['V'], step=0.1)
662
+ model.plot_last_result(
663
+ organ_names=[ORGAN_NAMES.LUNG, ORGAN_NAMES.LIVER, ORGAN_NAMES.SPLEEN],
664
+ user_names={
665
+ ORGAN_NAMES.LUNG: 'Лёгкие',
666
+ ORGAN_NAMES.LIVER: 'Печень',
667
+ ORGAN_NAMES.SPLEEN: 'Селезёнка',
668
+ },
669
+ theoretic_data={
670
+ ORGAN_NAMES.LIVER: {
671
+ 'x': [12, 60, 3 * 60, 5* 60, 15 * 60, 24 * 60],
672
+ 'y': [103.2 * 1e-6, 134.54 * 1e-6, 87.89 * 1e-6, 81.87 * 1e-6, 45.83 * 1e-6, 28.48 * 1e-6],
673
+ },
674
+ ORGAN_NAMES.LUNG: {
675
+ 'x': [12, 60, 3 * 60, 5* 60, 15 * 60, 24 * 60],
676
+ 'y': [26.96 * 1e-6, 22.67 * 1e-6, 15.51 * 1e-6, 12.07 * 1e-6, 4.53 * 1e-6, 0 * 1e-6],
677
+ },
678
+ ORGAN_NAMES.SPLEEN: {
679
+ 'x': [12, 60, 3 * 60, 5* 60, 15 * 60, 24 * 60],
680
+ 'y': [11.84 * 1e-6, 12.22 * 1e-6, 8.52 * 1e-6, 7.01 * 1e-6, 3.65 * 1e-6, 2.16 * 1e-6]
681
+ }
682
+ }
683
+ )
684
+ ```
685
+
686
+ **7) Using shared_memory**
558
687
 
559
688
  Since version 1.3.0, you can use **shared_memory** to get current data
560
689
  optimization. The name of the memory location you need is stored in the **memory_name** field.
@@ -568,3 +697,4 @@ print(c)
568
697
 
569
698
  The data is stored in list format [current_iteration, x0, ... , xn, f], works only for the country_optimization algorithm.
570
699
 
700
+
@@ -0,0 +1,21 @@
1
+ PyPharm/__init__.py,sha256=W3NIi--fjBbpS9ODzq8lZ4L0trgqvXda7GO2dxpscXg,103
2
+ PyPharm/constants.py,sha256=dW_qHteF4PwHYCLuqbp-8yU6MUpDun38DdDr7-SlfmE,2082
3
+ PyPharm/country_optimization.py,sha256=3fnnAJfdLgD0RP8qyJzHBuPDHcPljcLPQM9oqNip1r8,19664
4
+ PyPharm/country_optimization_v2.py,sha256=3d2mt15DXdr1V3soIJS51xuCv6uzH8pirah1RnI5--8,13156
5
+ PyPharm/country_optimization_v3.py,sha256=-3slM5MwSmiG6rD7p9ycbUQPdt4hd5bcEwpSxjb3A7U,17034
6
+ PyPharm/genetic_optimization.py,sha256=EC_pEWwL-ufCQd71zBhCeAB6-Sh1fijv7F3L0bWCz3I,5036
7
+ PyPharm/gold_digger_optimization.py,sha256=mln67sAYxkwzFqZ9Ylild1F25VuaruXRPaUMOGT5gIM,4449
8
+ PyPharm/models.py,sha256=VQlSLGzV3k7mNKiLAIKV29mc6ka6IakmUtEt10cBcq8,33066
9
+ PyPharm/algorithms/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
+ PyPharm/algorithms/country_optimization.py,sha256=kfRksJoAOI33yavo73mcLL5RvVe68A-TfSJ7b_N-4-0,19662
11
+ PyPharm/algorithms/country_optimization_v2.py,sha256=3d2mt15DXdr1V3soIJS51xuCv6uzH8pirah1RnI5--8,13156
12
+ PyPharm/algorithms/country_optimization_v3.py,sha256=btPF1_aNfk9TNWf9oi-POGTU_2vfOJSp4EsyisGvDzc,17127
13
+ PyPharm/algorithms/genetic_optimization.py,sha256=EC_pEWwL-ufCQd71zBhCeAB6-Sh1fijv7F3L0bWCz3I,5036
14
+ PyPharm/algorithms/gold_digger_optimization.py,sha256=mln67sAYxkwzFqZ9Ylild1F25VuaruXRPaUMOGT5gIM,4449
15
+ PyPharm/models/__init__.py,sha256=NMJcXMq0gCXgGLyB62j3qIzz3tbxqe6AOLPsJnfcjM0,129
16
+ PyPharm/models/compartment_models.py,sha256=aEa4RQ9SedbIwVm95K7QnPMin0-nLADrzcBuIeDBVhc,33102
17
+ PyPharm/models/pbpk.py,sha256=IJINwQkzFRygA1wd1sKYuGx4_ecJRRWmC3J2DKoAqlw,18708
18
+ pypharm-1.4.1.dist-info/METADATA,sha256=WVE1U3R4oT29V2ZhurpIebySSieAEyaPUKgf0dr4414,22939
19
+ pypharm-1.4.1.dist-info/WHEEL,sha256=OqRkF0eY5GHssMorFjlbTIq072vpHpF60fIQA6lS9xA,92
20
+ pypharm-1.4.1.dist-info/top_level.txt,sha256=yybfSkKw8q1G3aEcnlfVL7_L9ufGFSAYZnpc7q6oYJk,8
21
+ pypharm-1.4.1.dist-info/RECORD,,
@@ -1,11 +0,0 @@
1
- PyPharm/__init__.py,sha256=hxhMRlWpLMARQV-ZNYkmvhQ9gCYI18an75vlySWjA6s,90
2
- PyPharm/country_optimization.py,sha256=3fnnAJfdLgD0RP8qyJzHBuPDHcPljcLPQM9oqNip1r8,19664
3
- PyPharm/country_optimization_v2.py,sha256=3d2mt15DXdr1V3soIJS51xuCv6uzH8pirah1RnI5--8,13156
4
- PyPharm/country_optimization_v3.py,sha256=-3slM5MwSmiG6rD7p9ycbUQPdt4hd5bcEwpSxjb3A7U,17034
5
- PyPharm/genetic_optimization.py,sha256=EC_pEWwL-ufCQd71zBhCeAB6-Sh1fijv7F3L0bWCz3I,5036
6
- PyPharm/gold_digger_optimization.py,sha256=mln67sAYxkwzFqZ9Ylild1F25VuaruXRPaUMOGT5gIM,4449
7
- PyPharm/models.py,sha256=VQlSLGzV3k7mNKiLAIKV29mc6ka6IakmUtEt10cBcq8,33066
8
- pypharm-1.3.6.dist-info/METADATA,sha256=wSroVP5fAWGzIeIks6Q9KrehcgRQA4NGsudovNA7AsQ,17608
9
- pypharm-1.3.6.dist-info/WHEEL,sha256=OqRkF0eY5GHssMorFjlbTIq072vpHpF60fIQA6lS9xA,92
10
- pypharm-1.3.6.dist-info/top_level.txt,sha256=yybfSkKw8q1G3aEcnlfVL7_L9ufGFSAYZnpc7q6oYJk,8
11
- pypharm-1.3.6.dist-info/RECORD,,