pyopenrivercam 0.8.11__py3-none-any.whl → 0.9.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {pyopenrivercam-0.8.11.dist-info → pyopenrivercam-0.9.0.dist-info}/METADATA +27 -10
- pyopenrivercam-0.9.0.dist-info/RECORD +33 -0
- pyorc/__init__.py +1 -1
- pyorc/api/cross_section.py +280 -19
- pyorc/api/frames.py +17 -44
- pyorc/api/mask.py +40 -36
- pyorc/api/plot.py +11 -7
- pyorc/cv.py +35 -6
- pyorc/helpers.py +3 -9
- pyorc/sample_data.py +24 -3
- pyorc/service/velocimetry.py +37 -19
- pyorc/velocimetry/__init__.py +1 -2
- pyorc/velocimetry/ffpiv.py +2 -3
- pyopenrivercam-0.8.11.dist-info/RECORD +0 -34
- pyorc/velocimetry/openpiv.py +0 -331
- {pyopenrivercam-0.8.11.dist-info → pyopenrivercam-0.9.0.dist-info}/WHEEL +0 -0
- {pyopenrivercam-0.8.11.dist-info → pyopenrivercam-0.9.0.dist-info}/entry_points.txt +0 -0
- {pyopenrivercam-0.8.11.dist-info → pyopenrivercam-0.9.0.dist-info}/licenses/LICENSE +0 -0
pyorc/velocimetry/openpiv.py
DELETED
|
@@ -1,331 +0,0 @@
|
|
|
1
|
-
"""PIV processing wrappers for OpenPIV."""
|
|
2
|
-
|
|
3
|
-
from typing import List, Optional, Tuple, Union
|
|
4
|
-
|
|
5
|
-
import numpy as np
|
|
6
|
-
import openpiv.pyprocess
|
|
7
|
-
import openpiv.tools
|
|
8
|
-
import xarray as xr
|
|
9
|
-
|
|
10
|
-
__all__ = [
|
|
11
|
-
"get_openpiv",
|
|
12
|
-
"piv",
|
|
13
|
-
]
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
def get_openpiv(frames, y, x, dt, **kwargs):
|
|
17
|
-
"""Compute time-resolved Particle Image Velocimetry (PIV) using Fast Fourier Transform (FFT) within OpenPIV.
|
|
18
|
-
|
|
19
|
-
Calculates velocity using the OpenPIV algorithms by processing sequential frames
|
|
20
|
-
from a dataset and returning the velocity components, signal-to-noise ratio, and
|
|
21
|
-
correlation values. The function shifts frames in time and applies the PIV algorithm
|
|
22
|
-
to compute flow fields over the specified spatial axes.
|
|
23
|
-
|
|
24
|
-
Parameters
|
|
25
|
-
----------
|
|
26
|
-
frames : xarray.Dataset
|
|
27
|
-
The input dataset containing time-dependent frames with coordinates.
|
|
28
|
-
y : array-like
|
|
29
|
-
The spatial coordinates along the y-axis where the outputs should be interpolated.
|
|
30
|
-
x : array-like
|
|
31
|
-
The spatial coordinates along the x-axis where the outputs should be interpolated.
|
|
32
|
-
dt : float
|
|
33
|
-
The time step between consecutive frames (used to go from per-frame to per-second displacement).
|
|
34
|
-
**kwargs : dict
|
|
35
|
-
Additional keyword arguments to be passed to the PIV function.
|
|
36
|
-
|
|
37
|
-
Returns
|
|
38
|
-
-------
|
|
39
|
-
xarray.Dataset
|
|
40
|
-
A dataset containing computed velocity components `v_x` and `v_y`,
|
|
41
|
-
signal-to-noise ratios `s2n`, and correlation values `corr`. The dataset
|
|
42
|
-
includes updated x and y coordinates representing the flow field grid.
|
|
43
|
-
|
|
44
|
-
"""
|
|
45
|
-
# first get rid of coordinates that need to be recalculated
|
|
46
|
-
coords_drop = list(set(frames.coords) - set(frames.dims))
|
|
47
|
-
frames = frames.drop_vars(coords_drop)
|
|
48
|
-
# get frames and shifted frames in time
|
|
49
|
-
frames1 = frames.shift(time=1)[1:].chunk({"time": 1})
|
|
50
|
-
frames2 = frames[1:].chunk({"time": 1})
|
|
51
|
-
# retrieve all data arrays
|
|
52
|
-
v_x, v_y, s2n, corr = xr.apply_ufunc(
|
|
53
|
-
piv,
|
|
54
|
-
frames1,
|
|
55
|
-
frames2,
|
|
56
|
-
dt,
|
|
57
|
-
kwargs=kwargs,
|
|
58
|
-
input_core_dims=[["y", "x"], ["y", "x"], []],
|
|
59
|
-
output_core_dims=[["new_y", "new_x"]] * 4,
|
|
60
|
-
dask_gufunc_kwargs={
|
|
61
|
-
"output_sizes": {"new_y": len(y), "new_x": len(x)},
|
|
62
|
-
},
|
|
63
|
-
output_dtypes=[np.float32] * 4,
|
|
64
|
-
vectorize=True,
|
|
65
|
-
keep_attrs=True,
|
|
66
|
-
dask="parallelized",
|
|
67
|
-
)
|
|
68
|
-
# merge all DataArrays in one Dataset
|
|
69
|
-
ds = xr.merge([v_x.rename("v_x"), v_y.rename("v_y"), s2n.rename("s2n"), corr.rename("corr")]).rename(
|
|
70
|
-
{"new_x": "x", "new_y": "y"}
|
|
71
|
-
)
|
|
72
|
-
# add y and x-axis values
|
|
73
|
-
ds["y"] = y
|
|
74
|
-
ds["x"] = x
|
|
75
|
-
return ds
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
def piv(
|
|
79
|
-
frame_a,
|
|
80
|
-
frame_b,
|
|
81
|
-
dt,
|
|
82
|
-
res_x=0.01,
|
|
83
|
-
res_y=0.01,
|
|
84
|
-
search_area_size=30,
|
|
85
|
-
window_size=None,
|
|
86
|
-
overlap=None,
|
|
87
|
-
**kwargs,
|
|
88
|
-
):
|
|
89
|
-
"""Perform PIV analysis on two sequential frames following keyword arguments from openpiv.
|
|
90
|
-
|
|
91
|
-
This function also computes the correlations per interrogation window, so that poorly correlated values can be
|
|
92
|
-
filtered out. Furthermore, the resolution is used to convert pixel per second velocity estimates, into meter per
|
|
93
|
-
second velocity estimates. The centre of search area columns and rows are also returned so that a georeferenced
|
|
94
|
-
grid can be written from the results.
|
|
95
|
-
|
|
96
|
-
Note: Typical openpiv kwargs are for instance
|
|
97
|
-
window_size=60, overlap=30, search_area_size=60, dt=1./25
|
|
98
|
-
|
|
99
|
-
Parameters
|
|
100
|
-
----------
|
|
101
|
-
frame_a: np.ndarray (2D)
|
|
102
|
-
first frame
|
|
103
|
-
frame_b: np.ndarray (2D)
|
|
104
|
-
second frame
|
|
105
|
-
dt : float
|
|
106
|
-
time resolution in seconds.
|
|
107
|
-
res_x: float, optional
|
|
108
|
-
resolution of x-dir pixels in a user-defined unit per pixel (e.g. m pixel-1) Default: 0.01
|
|
109
|
-
res_y: float, optional
|
|
110
|
-
resolution of y-dir pixels in a user-defined unit per pixel (e.g. m pixel-1) Default: 0.01
|
|
111
|
-
search_area_size: int, optional
|
|
112
|
-
length of subsetted matrix to search for correlations (default: 30)
|
|
113
|
-
window_size: int, optional
|
|
114
|
-
size of interrogation window in amount of pixels. If not set, it is set equal to search_area_size
|
|
115
|
-
(default: None).
|
|
116
|
-
overlap: int, optional
|
|
117
|
-
length of overlap between interrogation windows. If not set, this defaults to 50% of the window_size parameter
|
|
118
|
-
(default: None).
|
|
119
|
-
**kwargs: dict
|
|
120
|
-
keyword arguments related to openpiv. See openpiv manual for further information
|
|
121
|
-
|
|
122
|
-
Returns
|
|
123
|
-
-------
|
|
124
|
-
v_x: np.ndarray(2D)
|
|
125
|
-
raw x-dir velocities [m s-1] in interrogation windows (requires filtering to get valid velocities)
|
|
126
|
-
v_y: np.ndarray (2D)
|
|
127
|
-
raw y-dir velocities [m s-1] in interrogation windows (requires filtering to get valid velocities)
|
|
128
|
-
s2n: np.ndarray (2D)
|
|
129
|
-
signal to noise ratio, measured as maximum correlation found divided by the mean correlation
|
|
130
|
-
(method="peak2mean") or second to maximum correlation (method="peak2peak") found within search area
|
|
131
|
-
corr: np.ndarray (2D)
|
|
132
|
-
correlation values in interrogation windows
|
|
133
|
-
|
|
134
|
-
"""
|
|
135
|
-
window_size = search_area_size if window_size is None else window_size
|
|
136
|
-
overlap = int(round(window_size) / 2) if overlap is None else overlap
|
|
137
|
-
# modified version of extended_search_area_piv to accomodate exporting corr
|
|
138
|
-
v_x, v_y, s2n, corr = extended_search_area_piv(
|
|
139
|
-
frame_a, frame_b, dt=dt, search_area_size=search_area_size, overlap=overlap, window_size=window_size, **kwargs
|
|
140
|
-
)
|
|
141
|
-
return v_x * res_x, v_y * res_y, s2n, corr
|
|
142
|
-
|
|
143
|
-
|
|
144
|
-
def extended_search_area_piv(
|
|
145
|
-
frame_a: np.ndarray,
|
|
146
|
-
frame_b: np.ndarray,
|
|
147
|
-
window_size: int,
|
|
148
|
-
overlap: int = 0,
|
|
149
|
-
dt: float = 1.0,
|
|
150
|
-
search_area_size: Optional[Union[Tuple[int, int], List[int], int]] = None,
|
|
151
|
-
correlation_method: str = "circular",
|
|
152
|
-
subpixel_method: str = "gaussian",
|
|
153
|
-
sig2noise_method: Optional[str] = "peak2mean",
|
|
154
|
-
width: int = 2,
|
|
155
|
-
normalized_correlation: bool = True,
|
|
156
|
-
use_vectorized: bool = False,
|
|
157
|
-
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
|
|
158
|
-
"""Perform PIV cross-correlation analysis.
|
|
159
|
-
|
|
160
|
-
Extended area search can be used to increased dynamic range. The search region
|
|
161
|
-
in the second frame is larger than the interrogation window size in the
|
|
162
|
-
first frame. For Cython implementation see
|
|
163
|
-
openpiv.process.extended_search_area_piv
|
|
164
|
-
|
|
165
|
-
This is a pure python implementation of the standard PIV cross-correlation
|
|
166
|
-
algorithm. It is a zero order displacement predictor, and no iterative
|
|
167
|
-
process is performed.
|
|
168
|
-
|
|
169
|
-
Parameters
|
|
170
|
-
----------
|
|
171
|
-
frame_a : 2d np.ndarray
|
|
172
|
-
an two dimensions array of integers containing grey levels of
|
|
173
|
-
the first frame.
|
|
174
|
-
|
|
175
|
-
frame_b : 2d np.ndarray
|
|
176
|
-
an two dimensions array of integers containing grey levels of
|
|
177
|
-
the second frame.
|
|
178
|
-
|
|
179
|
-
window_size : int
|
|
180
|
-
the size of the (square) interrogation window, [default: 32 pix].
|
|
181
|
-
|
|
182
|
-
overlap : int
|
|
183
|
-
the number of pixels by which two adjacent windows overlap
|
|
184
|
-
[default: 16 pix].
|
|
185
|
-
|
|
186
|
-
dt : float
|
|
187
|
-
the time delay separating the two frames [default: 1.0].
|
|
188
|
-
|
|
189
|
-
correlation_method : string
|
|
190
|
-
one of the two methods implemented: 'circular' or 'linear',
|
|
191
|
-
default: 'circular', it's faster, without zero-padding
|
|
192
|
-
'linear' requires also normalized_correlation = True (see below)
|
|
193
|
-
|
|
194
|
-
subpixel_method : string
|
|
195
|
-
one of the following methods to estimate subpixel location of the
|
|
196
|
-
peak:
|
|
197
|
-
'centroid' [replaces default if correlation map is negative],
|
|
198
|
-
'gaussian' [default if correlation map is positive],
|
|
199
|
-
'parabolic'.
|
|
200
|
-
|
|
201
|
-
sig2noise_method : string
|
|
202
|
-
defines the method of signal-to-noise-ratio measure,
|
|
203
|
-
('peak2peak' or 'peak2mean'. If None, no measure is performed.)
|
|
204
|
-
|
|
205
|
-
width : int
|
|
206
|
-
the half size of the region around the first
|
|
207
|
-
correlation peak to ignore for finding the second
|
|
208
|
-
peak. [default: 2]. Only used if ``sig2noise_method==peak2peak``.
|
|
209
|
-
|
|
210
|
-
search_area_size : int
|
|
211
|
-
the size of the interrogation window in the second frame,
|
|
212
|
-
default is the same interrogation window size and it is a
|
|
213
|
-
fallback to the simplest FFT based PIV
|
|
214
|
-
|
|
215
|
-
normalized_correlation: bool
|
|
216
|
-
if True, then the image intensity will be modified by removing
|
|
217
|
-
the mean, dividing by the standard deviation and
|
|
218
|
-
the correlation map will be normalized. It's slower but could be
|
|
219
|
-
more robust
|
|
220
|
-
|
|
221
|
-
use_vectorized : bool
|
|
222
|
-
If set, vectorization is used to speed up analysis.
|
|
223
|
-
|
|
224
|
-
Returns
|
|
225
|
-
-------
|
|
226
|
-
u : 2d np.ndarray
|
|
227
|
-
a two dimensional array containing the u velocity component,
|
|
228
|
-
in pixels/seconds.
|
|
229
|
-
|
|
230
|
-
v : 2d np.ndarray
|
|
231
|
-
a two dimensional array containing the v velocity component,
|
|
232
|
-
in pixels/seconds.
|
|
233
|
-
|
|
234
|
-
sig2noise : 2d np.ndarray ( optional: only if sig2noise_method != None )
|
|
235
|
-
a two dimensional array the signal to noise ratio for each
|
|
236
|
-
window pair.
|
|
237
|
-
|
|
238
|
-
corr : 2d np.ndarray
|
|
239
|
-
a two dimensional array with the maximum correlation values found in each interrogation window.
|
|
240
|
-
|
|
241
|
-
The implementation of the one-step direct correlation with different
|
|
242
|
-
size of the interrogation window and the search area. The increased
|
|
243
|
-
size of the search areas cope with the problem of loss of pairs due
|
|
244
|
-
to in-plane motion, allowing for a smaller interrogation window size,
|
|
245
|
-
without increasing the number of outlier vectors.
|
|
246
|
-
|
|
247
|
-
See:
|
|
248
|
-
|
|
249
|
-
Particle-Imaging Techniques for Experimental Fluid Mechanics
|
|
250
|
-
|
|
251
|
-
Annual Review of Fluid Mechanics
|
|
252
|
-
Vol. 23: 261-304 (Volume publication date January 1991)
|
|
253
|
-
DOI: 10.1146/annurev.fl.23.010191.001401
|
|
254
|
-
|
|
255
|
-
originally implemented in process.pyx in Cython and converted to
|
|
256
|
-
a NumPy vectorized solution in pyprocess.py
|
|
257
|
-
|
|
258
|
-
"""
|
|
259
|
-
if search_area_size is not None:
|
|
260
|
-
if isinstance(search_area_size, tuple) == False and isinstance(search_area_size, list) == False:
|
|
261
|
-
search_area_size = [search_area_size, search_area_size]
|
|
262
|
-
if isinstance(window_size, tuple) == False and isinstance(window_size, list) == False:
|
|
263
|
-
window_size = [window_size, window_size]
|
|
264
|
-
if isinstance(overlap, tuple) == False and isinstance(overlap, list) == False:
|
|
265
|
-
overlap = [overlap, overlap]
|
|
266
|
-
|
|
267
|
-
# check the inputs for validity
|
|
268
|
-
search_area_size = window_size if search_area_size is None else search_area_size
|
|
269
|
-
|
|
270
|
-
if overlap[0] >= window_size[0] or overlap[1] >= window_size[1]:
|
|
271
|
-
raise ValueError("Overlap has to be smaller than the window_size")
|
|
272
|
-
|
|
273
|
-
if search_area_size[0] < window_size[0] or search_area_size[1] < window_size[1]:
|
|
274
|
-
raise ValueError("Search size cannot be smaller than the window_size")
|
|
275
|
-
|
|
276
|
-
if (window_size[1] > frame_a.shape[0]) or (window_size[0] > frame_a.shape[1]):
|
|
277
|
-
raise ValueError("window size cannot be larger than the image")
|
|
278
|
-
|
|
279
|
-
# get field shape
|
|
280
|
-
n_rows, n_cols = openpiv.pyprocess.get_field_shape(frame_a.shape, search_area_size, overlap)
|
|
281
|
-
|
|
282
|
-
# We implement the new vectorized code
|
|
283
|
-
aa = openpiv.pyprocess.sliding_window_array(frame_a, search_area_size, overlap)
|
|
284
|
-
bb = openpiv.pyprocess.sliding_window_array(frame_b, search_area_size, overlap)
|
|
285
|
-
|
|
286
|
-
# for the case of extended seearch, the window size is smaller than
|
|
287
|
-
# the search_area_size. In order to keep it all vectorized the
|
|
288
|
-
# approach is to use the interrogation window in both
|
|
289
|
-
# frames of the same size of search_area_asize,
|
|
290
|
-
# but mask out the region around
|
|
291
|
-
# the interrogation window in the frame A
|
|
292
|
-
|
|
293
|
-
if search_area_size > window_size:
|
|
294
|
-
# before masking with zeros we need to remove
|
|
295
|
-
# edges
|
|
296
|
-
|
|
297
|
-
aa = openpiv.pyprocess.normalize_intensity(aa)
|
|
298
|
-
bb = openpiv.pyprocess.normalize_intensity(bb)
|
|
299
|
-
|
|
300
|
-
mask = np.zeros((search_area_size[0], search_area_size[1])).astype(aa.dtype)
|
|
301
|
-
pady = int((search_area_size[0] - window_size[0]) / 2)
|
|
302
|
-
padx = int((search_area_size[1] - window_size[1]) / 2)
|
|
303
|
-
mask[slice(pady, search_area_size[0] - pady), slice(padx, search_area_size[1] - padx)] = 1
|
|
304
|
-
mask = np.broadcast_to(mask, aa.shape)
|
|
305
|
-
aa *= mask
|
|
306
|
-
|
|
307
|
-
corr = openpiv.pyprocess.fft_correlate_images(
|
|
308
|
-
aa, bb, correlation_method=correlation_method, normalized_correlation=normalized_correlation
|
|
309
|
-
)
|
|
310
|
-
if use_vectorized == True:
|
|
311
|
-
u, v = openpiv.pyprocess.vectorized_correlation_to_displacements(
|
|
312
|
-
corr, n_rows, n_cols, subpixel_method=subpixel_method
|
|
313
|
-
)
|
|
314
|
-
else:
|
|
315
|
-
u, v = openpiv.pyprocess.correlation_to_displacement(corr, n_rows, n_cols, subpixel_method=subpixel_method)
|
|
316
|
-
|
|
317
|
-
# return output depending if user wanted sig2noise information
|
|
318
|
-
sig2noise = np.zeros_like(u) * np.nan
|
|
319
|
-
if sig2noise_method is not None:
|
|
320
|
-
if use_vectorized == True:
|
|
321
|
-
sig2noise = openpiv.pyprocess.vectorized_sig2noise_ratio(
|
|
322
|
-
corr, sig2noise_method=sig2noise_method, width=width
|
|
323
|
-
)
|
|
324
|
-
else:
|
|
325
|
-
sig2noise = openpiv.pyprocess.sig2noise_ratio(corr, sig2noise_method=sig2noise_method, width=width)
|
|
326
|
-
|
|
327
|
-
sig2noise = sig2noise.reshape(n_rows, n_cols)
|
|
328
|
-
# extended code for exporting the maximum found value for corr
|
|
329
|
-
corr = corr.max(axis=-1).max(axis=-1).reshape((n_rows, n_cols))
|
|
330
|
-
|
|
331
|
-
return u / dt, v / dt, sig2noise, corr
|
|
File without changes
|
|
File without changes
|
|
File without changes
|