pyopencl 2026.1.1__cp314-cp314t-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (47) hide show
  1. pyopencl/.libs/libOpenCL-34a55fe4.so.1.0.0 +0 -0
  2. pyopencl/__init__.py +1995 -0
  3. pyopencl/_cl.cpython-314t-aarch64-linux-gnu.so +0 -0
  4. pyopencl/_cl.pyi +2009 -0
  5. pyopencl/_cluda.py +57 -0
  6. pyopencl/_monkeypatch.py +1104 -0
  7. pyopencl/_mymako.py +17 -0
  8. pyopencl/algorithm.py +1454 -0
  9. pyopencl/array.py +3530 -0
  10. pyopencl/bitonic_sort.py +245 -0
  11. pyopencl/bitonic_sort_templates.py +597 -0
  12. pyopencl/cache.py +553 -0
  13. pyopencl/capture_call.py +200 -0
  14. pyopencl/characterize/__init__.py +461 -0
  15. pyopencl/characterize/performance.py +240 -0
  16. pyopencl/cl/pyopencl-airy.cl +324 -0
  17. pyopencl/cl/pyopencl-bessel-j-complex.cl +238 -0
  18. pyopencl/cl/pyopencl-bessel-j.cl +1084 -0
  19. pyopencl/cl/pyopencl-bessel-y.cl +435 -0
  20. pyopencl/cl/pyopencl-complex.h +303 -0
  21. pyopencl/cl/pyopencl-eval-tbl.cl +120 -0
  22. pyopencl/cl/pyopencl-hankel-complex.cl +444 -0
  23. pyopencl/cl/pyopencl-random123/array.h +325 -0
  24. pyopencl/cl/pyopencl-random123/openclfeatures.h +93 -0
  25. pyopencl/cl/pyopencl-random123/philox.cl +486 -0
  26. pyopencl/cl/pyopencl-random123/threefry.cl +864 -0
  27. pyopencl/clmath.py +281 -0
  28. pyopencl/clrandom.py +412 -0
  29. pyopencl/cltypes.py +217 -0
  30. pyopencl/compyte/.gitignore +21 -0
  31. pyopencl/compyte/__init__.py +0 -0
  32. pyopencl/compyte/array.py +211 -0
  33. pyopencl/compyte/dtypes.py +314 -0
  34. pyopencl/compyte/pyproject.toml +49 -0
  35. pyopencl/elementwise.py +1288 -0
  36. pyopencl/invoker.py +417 -0
  37. pyopencl/ipython_ext.py +70 -0
  38. pyopencl/py.typed +0 -0
  39. pyopencl/reduction.py +829 -0
  40. pyopencl/scan.py +1921 -0
  41. pyopencl/tools.py +1680 -0
  42. pyopencl/typing.py +61 -0
  43. pyopencl/version.py +11 -0
  44. pyopencl-2026.1.1.dist-info/METADATA +108 -0
  45. pyopencl-2026.1.1.dist-info/RECORD +47 -0
  46. pyopencl-2026.1.1.dist-info/WHEEL +6 -0
  47. pyopencl-2026.1.1.dist-info/licenses/LICENSE +104 -0
pyopencl/cltypes.py ADDED
@@ -0,0 +1,217 @@
1
+ from __future__ import annotations
2
+
3
+
4
+ __copyright__ = "Copyright (C) 2016 Jonathan Mackenzie"
5
+
6
+ __license__ = """
7
+ Permission is hereby granted, free of charge, to any person obtaining a copy
8
+ of this software and associated documentation files (the "Software"), to deal
9
+ in the Software without restriction, including without limitation the rights
10
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11
+ copies of the Software, and to permit persons to whom the Software is
12
+ furnished to do so, subject to the following conditions:
13
+ The above copyright notice and this permission notice shall be included in
14
+ all copies or substantial portions of the Software.
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21
+ THE SOFTWARE.
22
+ """
23
+
24
+ import warnings
25
+ from typing import TYPE_CHECKING, Any, cast
26
+
27
+ import numpy as np
28
+
29
+ from pyopencl.tools import get_or_register_dtype
30
+
31
+
32
+ if TYPE_CHECKING:
33
+ import builtins
34
+ from collections.abc import MutableSequence
35
+
36
+ if __file__.endswith("array.py"):
37
+ warnings.warn(
38
+ "pyopencl.array.vec is deprecated. Please use pyopencl.cltypes.",
39
+ stacklevel=2)
40
+
41
+ """
42
+ This file provides a type mapping from OpenCl type names to their numpy equivalents
43
+ """
44
+
45
+ char = np.int8
46
+ uchar = np.uint8
47
+ short = np.int16
48
+ ushort = np.uint16
49
+ int = np.int32
50
+ uint = np.uint32
51
+ long = np.int64
52
+ ulong = np.uint64
53
+ half = np.float16
54
+ float = np.float32
55
+ double = np.float64
56
+
57
+
58
+ # {{{ vector types
59
+
60
+ def _create_vector_types() -> tuple[
61
+ dict[tuple[np.dtype[Any], builtins.int], np.dtype[Any]],
62
+ dict[np.dtype[Any], tuple[np.dtype[Any], builtins.int]]]:
63
+ mapping = [(k, globals()[k]) for k in
64
+ ["char", "uchar", "short", "ushort", "int",
65
+ "uint", "long", "ulong", "float", "double"]]
66
+
67
+ def set_global(key: str, val: np.dtype[Any]) -> None:
68
+ globals()[key] = val
69
+
70
+ vec_types: dict[tuple[np.dtype[Any], builtins.int], np.dtype[Any]] = {}
71
+ vec_type_to_scalar_and_count: dict[np.dtype[Any],
72
+ tuple[np.dtype[Any], builtins.int]] = {}
73
+
74
+ field_names = ["x", "y", "z", "w"]
75
+
76
+ counts = [2, 3, 4, 8, 16]
77
+
78
+ for base_name, base_type in mapping:
79
+ for count in counts:
80
+ name = f"{base_name}{count}"
81
+ titles = cast("MutableSequence[str | None]", field_names[:count])
82
+
83
+ padded_count = count
84
+ if count == 3:
85
+ padded_count = 4
86
+
87
+ names = [f"s{i}" for i in range(count)]
88
+ while len(names) < padded_count:
89
+ pad = len(names) - count
90
+ names.append(f"padding{pad}")
91
+
92
+ if len(titles) < len(names):
93
+ pad = len(names) - len(titles)
94
+ titles.extend([None] * pad)
95
+
96
+ try:
97
+ dtype = np.dtype({
98
+ "names": names,
99
+ "formats": [base_type] * padded_count,
100
+ "titles": titles})
101
+ except NotImplementedError:
102
+ try:
103
+ dtype = np.dtype([((n, title), base_type)
104
+ for (n, title)
105
+ in zip(names, titles, strict=True)])
106
+ except TypeError:
107
+ dtype = np.dtype([(n, base_type) for n in names])
108
+
109
+ assert isinstance(dtype, np.dtype)
110
+ get_or_register_dtype(name, dtype)
111
+ set_global(name, dtype)
112
+
113
+ def create_array(dtype: np.dtype[Any],
114
+ count: int,
115
+ padded_count: int,
116
+ *args: Any, **kwargs: Any) -> dict[str, Any]:
117
+ if len(args) < count:
118
+ from warnings import warn
119
+ warn("default values for make_xxx are deprecated;"
120
+ " instead specify all parameters or use"
121
+ " cltypes.zeros_xxx",
122
+ DeprecationWarning, stacklevel=4)
123
+
124
+ padded_args = tuple(list(args) + [0] * (padded_count - len(args)))
125
+ array = eval("array(padded_args, dtype=dtype)",
126
+ {"array": np.array,
127
+ "padded_args": padded_args,
128
+ "dtype": dtype})
129
+
130
+ for key, val in kwargs.items():
131
+ array[key] = val
132
+
133
+ return array
134
+
135
+ set_global(
136
+ f"make_{name}",
137
+ eval("lambda *args, **kwargs: "
138
+ f"create_array(dtype, {count}, {padded_count}, *args, **kwargs)",
139
+ {"create_array": create_array, "dtype": dtype}))
140
+ set_global(
141
+ f"filled_{name}",
142
+ eval(f"lambda val: make_{name}(*[val]*{count})"))
143
+ set_global(f"zeros_{name}", eval(f"lambda: filled_{name}(0)"))
144
+ set_global(f"ones_{name}", eval(f"lambda: filled_{name}(1)"))
145
+
146
+ base_dtype = np.dtype(base_type)
147
+ vec_types[base_dtype, count] = dtype
148
+ vec_type_to_scalar_and_count[dtype] = base_dtype, count
149
+
150
+ return vec_types, vec_type_to_scalar_and_count
151
+
152
+
153
+ vec_types, vec_type_to_scalar_and_count = _create_vector_types()
154
+
155
+ # }}}
156
+
157
+ char2: np.dtype[Any]
158
+ char3: np.dtype[Any]
159
+ char4: np.dtype[Any]
160
+ char8: np.dtype[Any]
161
+ char16: np.dtype[Any]
162
+
163
+ uchar2: np.dtype[Any]
164
+ uchar3: np.dtype[Any]
165
+ uchar4: np.dtype[Any]
166
+ uchar8: np.dtype[Any]
167
+ uchar16: np.dtype[Any]
168
+
169
+ short2: np.dtype[Any]
170
+ short3: np.dtype[Any]
171
+ short4: np.dtype[Any]
172
+ short8: np.dtype[Any]
173
+ short16: np.dtype[Any]
174
+
175
+ ushort2: np.dtype[Any]
176
+ ushort3: np.dtype[Any]
177
+ ushort4: np.dtype[Any]
178
+ ushort8: np.dtype[Any]
179
+ ushort16: np.dtype[Any]
180
+
181
+ int2: np.dtype[Any]
182
+ int3: np.dtype[Any]
183
+ int4: np.dtype[Any]
184
+ int8: np.dtype[Any]
185
+ int16: np.dtype[Any]
186
+
187
+ uint2: np.dtype[Any]
188
+ uint3: np.dtype[Any]
189
+ uint4: np.dtype[Any]
190
+ uint8: np.dtype[Any]
191
+ uint16: np.dtype[Any]
192
+
193
+ long2: np.dtype[Any]
194
+ long3: np.dtype[Any]
195
+ long4: np.dtype[Any]
196
+ long8: np.dtype[Any]
197
+ long16: np.dtype[Any]
198
+
199
+ ulong2: np.dtype[Any]
200
+ ulong3: np.dtype[Any]
201
+ ulong4: np.dtype[Any]
202
+ ulong8: np.dtype[Any]
203
+ ulong16: np.dtype[Any]
204
+
205
+ float2: np.dtype[Any]
206
+ float3: np.dtype[Any]
207
+ float4: np.dtype[Any]
208
+ float8: np.dtype[Any]
209
+ float16: np.dtype[Any]
210
+
211
+ double2: np.dtype[Any]
212
+ double3: np.dtype[Any]
213
+ double4: np.dtype[Any]
214
+ double8: np.dtype[Any]
215
+ double16: np.dtype[Any]
216
+
217
+ # vim: foldmethod=marker
@@ -0,0 +1,21 @@
1
+ build
2
+ .*.sw[po]
3
+ .sw[po]
4
+ *~
5
+ *.pyc
6
+ *.pyo
7
+ *.egg-info
8
+ MANIFEST
9
+ dist
10
+ setuptools*egg
11
+ setuptools.pth
12
+ distribute*egg
13
+ distribute*tar.gz
14
+ *.so
15
+ *.o
16
+ *.aux
17
+ *.bbl
18
+ *.blg
19
+ *.log
20
+
21
+ .cache
File without changes
@@ -0,0 +1,211 @@
1
+ __copyright__ = "Copyright (C) 2011 Andreas Kloeckner"
2
+
3
+ __license__ = """
4
+ Permission is hereby granted, free of charge, to any person obtaining a copy
5
+ of this software and associated documentation files (the "Software"), to deal
6
+ in the Software without restriction, including without limitation the rights
7
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
8
+ copies of the Software, and to permit persons to whom the Software is
9
+ furnished to do so, subject to the following conditions:
10
+
11
+ The above copyright notice and this permission notice shall be included in
12
+ all copies or substantial portions of the Software.
13
+
14
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
19
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
20
+ THE SOFTWARE.
21
+ """
22
+
23
+ from typing import Any, Protocol
24
+
25
+ import numpy as np
26
+ from typing_extensions import override
27
+
28
+
29
+ def f_contiguous_strides(itemsize: int, shape: tuple[int, ...]) -> tuple[int, ...]:
30
+ if shape:
31
+ strides = [itemsize]
32
+ for s in shape[:-1]:
33
+ # NOTE: max(1, s) is used to handle 0-sized axes in `shape`;
34
+ # the stride for `shape[i] <= 1` doesn't matter, but letting it be 0
35
+ # is not a good idea: https://github.com/inducer/arraycontext/pull/91
36
+ strides.append(strides[-1]*max(1, s))
37
+ return tuple(strides)
38
+ else:
39
+ return ()
40
+
41
+
42
+ def c_contiguous_strides(itemsize: int, shape: tuple[int, ...]) -> tuple[int, ...]:
43
+ if shape:
44
+ strides = [itemsize]
45
+ for s in shape[:0:-1]:
46
+ # NOTE: max(1, s) is used to handle 0-sized axes in `shape`;
47
+ # the stride for `shape[i] <= 1` doesn't matter, but letting it be 0
48
+ # is not a good idea: https://github.com/inducer/arraycontext/pull/91
49
+ strides.append(strides[-1]*max(1, s))
50
+ return tuple(strides[::-1])
51
+ else:
52
+ return ()
53
+
54
+
55
+ def equal_strides(
56
+ strides1: tuple[int, ...],
57
+ strides2: tuple[int, ...],
58
+ shape: tuple[int, ...]
59
+ ) -> bool:
60
+ if strides1 == strides2:
61
+ return True
62
+
63
+ if len(strides1) != len(strides2) or len(strides2) != len(shape):
64
+ return False
65
+
66
+ for s, st1, st2 in zip(shape, strides1, strides2, strict=True):
67
+ if s != 1 and st1 != st2:
68
+ return False
69
+
70
+ return True
71
+
72
+
73
+ def is_f_contiguous_strides(
74
+ strides: tuple[int, ...],
75
+ itemsize: int,
76
+ shape: tuple[int, ...]
77
+ ) -> bool:
78
+ from pytools import product
79
+ return (
80
+ equal_strides(strides, f_contiguous_strides(itemsize, shape), shape)
81
+ or product(shape) == 0)
82
+
83
+
84
+ def is_c_contiguous_strides(
85
+ strides: tuple[int, ...],
86
+ itemsize: int,
87
+ shape: tuple[int, ...]
88
+ ) -> bool:
89
+ from pytools import product
90
+ return (equal_strides(strides, c_contiguous_strides(itemsize, shape), shape)
91
+ or product(shape) == 0)
92
+
93
+
94
+ class ArrayIsh(Protocol):
95
+ shape: tuple[int, ...]
96
+ strides: tuple[int, ...]
97
+ dtype: np.dtype[Any]
98
+
99
+
100
+ class ArrayFlags:
101
+ def __init__(self, ary: ArrayIsh) -> None:
102
+ self.f_contiguous: bool = is_f_contiguous_strides(
103
+ ary.strides, ary.dtype.itemsize, ary.shape)
104
+ self.c_contiguous: bool = is_c_contiguous_strides(
105
+ ary.strides, ary.dtype.itemsize, ary.shape)
106
+ self.forc: bool = self.f_contiguous or self.c_contiguous
107
+
108
+ @override
109
+ def __repr__(self) -> str:
110
+ return (
111
+ f" C_CONTIGUOUS : {self.c_contiguous}\n"
112
+ f" F_CONTIGUOUS : {self.f_contiguous}"
113
+ )
114
+
115
+ @override
116
+ def __str__(self) -> str:
117
+ return repr(self)
118
+
119
+
120
+ def get_common_dtype(obj1: ArrayIsh, obj2: ArrayIsh,
121
+ allow_double: bool) -> np.dtype[Any]:
122
+ # Yes, numpy behaves differently depending on whether
123
+ # we're dealing with arrays or scalars.
124
+
125
+ zero1 = np.zeros(1, dtype=obj1.dtype)
126
+
127
+ try:
128
+ zero2 = np.zeros(1, dtype=obj2.dtype)
129
+ except AttributeError:
130
+ zero2 = obj2
131
+
132
+ result = (zero1 + zero2).dtype
133
+
134
+ if not allow_double:
135
+ if result == np.float64:
136
+ result = np.dtype(np.float32)
137
+ elif result == np.complex128:
138
+ result = np.dtype(np.complex64)
139
+
140
+ return result
141
+
142
+
143
+ # {{{ as_strided implementation
144
+
145
+ try:
146
+ from numpy.lib.stride_tricks import as_strided as _as_strided
147
+ _test_dtype = np.dtype(
148
+ [("a", np.float64), ("b", np.float64)], align=True)
149
+ _test_result = _as_strided(np.zeros(10, dtype=_test_dtype))
150
+ if _test_result.dtype != _test_dtype:
151
+ raise RuntimeError("numpy's as_strided is broken")
152
+
153
+ as_strided = _as_strided
154
+ except Exception:
155
+ # stolen from numpy to be compatible with older versions of numpy
156
+ class _DummyArray:
157
+ """ Dummy object that just exists to hang __array_interface__ dictionaries
158
+ and possibly keep alive a reference to a base array.
159
+ """
160
+ def __init__(self, interface, base=None):
161
+ self.__array_interface__ = interface
162
+ self.base = base
163
+
164
+ def as_strided(x, shape=None, strides=None):
165
+ """ Make an ndarray from the given array with the given shape and strides.
166
+ """
167
+ # work around Numpy bug 1873 (reported by Irwin Zaid)
168
+ # Since this is stolen from numpy, this implementation has the same bug.
169
+ # http://projects.scipy.org/numpy/ticket/1873
170
+ # == https://github.com/numpy/numpy/issues/2466
171
+
172
+ # Do not recreate the array if nothing need to be changed.
173
+ # This fixes a lot of errors on pypy since DummyArray hack does not
174
+ # currently (2014/May/17) on pypy.
175
+
176
+ if ((shape is None or x.shape == shape)
177
+ and (strides is None or x.strides == strides)):
178
+ return x
179
+ if not x.dtype.isbuiltin:
180
+ if shape is None:
181
+ shape = x.shape
182
+ strides = tuple(strides)
183
+
184
+ from pytools import product
185
+ if strides is not None and shape is not None \
186
+ and product(shape) == product(x.shape) \
187
+ and x.flags.forc:
188
+ # Workaround: If we're being asked to do what amounts to a
189
+ # contiguous reshape, at least do that.
190
+
191
+ if strides == f_contiguous_strides(x.dtype.itemsize, shape):
192
+ result = x.reshape(-1).reshape(*shape, order="F")
193
+ assert result.strides == strides
194
+ return result
195
+ elif strides == c_contiguous_strides(x.dtype.itemsize, shape):
196
+ result = x.reshape(-1).reshape(*shape, order="C")
197
+ assert result.strides == strides
198
+ return result
199
+
200
+ raise NotImplementedError(
201
+ "as_strided won't work on non-builtin arrays for now. "
202
+ "See https://github.com/numpy/numpy/issues/2466")
203
+
204
+ interface = dict(x.__array_interface__)
205
+ if shape is not None:
206
+ interface["shape"] = tuple(shape)
207
+ if strides is not None:
208
+ interface["strides"] = tuple(strides)
209
+ return np.asarray(_DummyArray(interface, base=x))
210
+
211
+ # }}}