pyopencl 2024.3__cp312-cp312-musllinux_1_2_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of pyopencl might be problematic. Click here for more details.

Files changed (43) hide show
  1. pyopencl/.libs/libOpenCL-1ef0e16e.so.1.0.0 +0 -0
  2. pyopencl/__init__.py +2410 -0
  3. pyopencl/_cl.cpython-312-x86_64-linux-musl.so +0 -0
  4. pyopencl/_cluda.py +54 -0
  5. pyopencl/_mymako.py +14 -0
  6. pyopencl/algorithm.py +1449 -0
  7. pyopencl/array.py +3437 -0
  8. pyopencl/bitonic_sort.py +242 -0
  9. pyopencl/bitonic_sort_templates.py +594 -0
  10. pyopencl/cache.py +535 -0
  11. pyopencl/capture_call.py +177 -0
  12. pyopencl/characterize/__init__.py +456 -0
  13. pyopencl/characterize/performance.py +237 -0
  14. pyopencl/cl/pyopencl-airy.cl +324 -0
  15. pyopencl/cl/pyopencl-bessel-j-complex.cl +238 -0
  16. pyopencl/cl/pyopencl-bessel-j.cl +1084 -0
  17. pyopencl/cl/pyopencl-bessel-y.cl +435 -0
  18. pyopencl/cl/pyopencl-complex.h +303 -0
  19. pyopencl/cl/pyopencl-eval-tbl.cl +120 -0
  20. pyopencl/cl/pyopencl-hankel-complex.cl +444 -0
  21. pyopencl/cl/pyopencl-random123/array.h +325 -0
  22. pyopencl/cl/pyopencl-random123/openclfeatures.h +93 -0
  23. pyopencl/cl/pyopencl-random123/philox.cl +486 -0
  24. pyopencl/cl/pyopencl-random123/threefry.cl +864 -0
  25. pyopencl/clmath.py +280 -0
  26. pyopencl/clrandom.py +409 -0
  27. pyopencl/cltypes.py +137 -0
  28. pyopencl/compyte/.gitignore +21 -0
  29. pyopencl/compyte/__init__.py +0 -0
  30. pyopencl/compyte/array.py +214 -0
  31. pyopencl/compyte/dtypes.py +290 -0
  32. pyopencl/compyte/pyproject.toml +54 -0
  33. pyopencl/elementwise.py +1171 -0
  34. pyopencl/invoker.py +421 -0
  35. pyopencl/ipython_ext.py +68 -0
  36. pyopencl/reduction.py +786 -0
  37. pyopencl/scan.py +1915 -0
  38. pyopencl/tools.py +1527 -0
  39. pyopencl/version.py +9 -0
  40. pyopencl-2024.3.dist-info/METADATA +108 -0
  41. pyopencl-2024.3.dist-info/RECORD +43 -0
  42. pyopencl-2024.3.dist-info/WHEEL +5 -0
  43. pyopencl-2024.3.dist-info/licenses/LICENSE +104 -0
pyopencl/cltypes.py ADDED
@@ -0,0 +1,137 @@
1
+ __copyright__ = "Copyright (C) 2016 Jonathan Mackenzie"
2
+
3
+ __license__ = """
4
+ Permission is hereby granted, free of charge, to any person obtaining a copy
5
+ of this software and associated documentation files (the "Software"), to deal
6
+ in the Software without restriction, including without limitation the rights
7
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
8
+ copies of the Software, and to permit persons to whom the Software is
9
+ furnished to do so, subject to the following conditions:
10
+ The above copyright notice and this permission notice shall be included in
11
+ all copies or substantial portions of the Software.
12
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
13
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
15
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
16
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
17
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
18
+ THE SOFTWARE.
19
+ """
20
+
21
+ import warnings
22
+
23
+ import numpy as np
24
+
25
+ from pyopencl.tools import get_or_register_dtype
26
+
27
+
28
+ if __file__.endswith("array.py"):
29
+ warnings.warn(
30
+ "pyopencl.array.vec is deprecated. Please use pyopencl.cltypes.",
31
+ stacklevel=2)
32
+
33
+ """
34
+ This file provides a type mapping from OpenCl type names to their numpy equivalents
35
+ """
36
+
37
+ char = np.int8
38
+ uchar = np.uint8
39
+ short = np.int16
40
+ ushort = np.uint16
41
+ int = np.int32
42
+ uint = np.uint32
43
+ long = np.int64
44
+ ulong = np.uint64
45
+ half = np.float16
46
+ float = np.float32
47
+ double = np.float64
48
+
49
+
50
+ # {{{ vector types
51
+
52
+ def _create_vector_types():
53
+ _mapping = [(k, globals()[k]) for k in
54
+ ["char", "uchar", "short", "ushort", "int",
55
+ "uint", "long", "ulong", "float", "double"]]
56
+
57
+ def set_global(key, val):
58
+ globals()[key] = val
59
+
60
+ vec_types = {}
61
+ vec_type_to_scalar_and_count = {}
62
+
63
+ field_names = ["x", "y", "z", "w"]
64
+
65
+ counts = [2, 3, 4, 8, 16]
66
+
67
+ for base_name, base_type in _mapping:
68
+ for count in counts:
69
+ name = "%s%d" % (base_name, count)
70
+
71
+ titles = field_names[:count]
72
+
73
+ padded_count = count
74
+ if count == 3:
75
+ padded_count = 4
76
+
77
+ names = ["s%d" % i for i in range(count)]
78
+ while len(names) < padded_count:
79
+ names.append("padding%d" % (len(names) - count))
80
+
81
+ if len(titles) < len(names):
82
+ titles.extend((len(names) - len(titles)) * [None])
83
+
84
+ try:
85
+ dtype = np.dtype({
86
+ "names": names,
87
+ "formats": [base_type] * padded_count,
88
+ "titles": titles})
89
+ except NotImplementedError:
90
+ try:
91
+ dtype = np.dtype([((n, title), base_type)
92
+ for (n, title) in zip(names, titles)])
93
+ except TypeError:
94
+ dtype = np.dtype([(n, base_type) for (n, title)
95
+ in zip(names, titles)])
96
+
97
+ get_or_register_dtype(name, dtype)
98
+
99
+ set_global(name, dtype)
100
+
101
+ def create_array(dtype, count, padded_count, *args, **kwargs):
102
+ if len(args) < count:
103
+ from warnings import warn
104
+ warn("default values for make_xxx are deprecated;"
105
+ " instead specify all parameters or use"
106
+ " cltypes.zeros_xxx",
107
+ DeprecationWarning, stacklevel=4)
108
+
109
+ padded_args = tuple(list(args) + [0] * (padded_count - len(args)))
110
+ array = eval("array(padded_args, dtype=dtype)",
111
+ {"array": np.array,
112
+ "padded_args": padded_args,
113
+ "dtype": dtype})
114
+ for key, val in list(kwargs.items()):
115
+ array[key] = val
116
+ return array
117
+
118
+ set_global("make_" + name, eval(
119
+ "lambda *args, **kwargs: create_array(dtype, %i, %i, "
120
+ "*args, **kwargs)" % (count, padded_count),
121
+ {"create_array": create_array, "dtype": dtype}))
122
+ set_global("filled_" + name, eval(
123
+ "lambda val: make_%s(*[val]*%i)" % (name, count)))
124
+ set_global("zeros_" + name, eval("lambda: filled_%s(0)" % (name)))
125
+ set_global("ones_" + name, eval("lambda: filled_%s(1)" % (name)))
126
+
127
+ vec_types[np.dtype(base_type), count] = dtype
128
+ vec_type_to_scalar_and_count[dtype] = np.dtype(base_type), count
129
+
130
+ return vec_types, vec_type_to_scalar_and_count
131
+
132
+
133
+ vec_types, vec_type_to_scalar_and_count = _create_vector_types()
134
+
135
+ # }}}
136
+
137
+ # vim: foldmethod=marker
@@ -0,0 +1,21 @@
1
+ build
2
+ .*.sw[po]
3
+ .sw[po]
4
+ *~
5
+ *.pyc
6
+ *.pyo
7
+ *.egg-info
8
+ MANIFEST
9
+ dist
10
+ setuptools*egg
11
+ setuptools.pth
12
+ distribute*egg
13
+ distribute*tar.gz
14
+ *.so
15
+ *.o
16
+ *.aux
17
+ *.bbl
18
+ *.blg
19
+ *.log
20
+
21
+ .cache
File without changes
@@ -0,0 +1,214 @@
1
+ __copyright__ = "Copyright (C) 2011 Andreas Kloeckner"
2
+
3
+ __license__ = """
4
+ Permission is hereby granted, free of charge, to any person obtaining a copy
5
+ of this software and associated documentation files (the "Software"), to deal
6
+ in the Software without restriction, including without limitation the rights
7
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
8
+ copies of the Software, and to permit persons to whom the Software is
9
+ furnished to do so, subject to the following conditions:
10
+
11
+ The above copyright notice and this permission notice shall be included in
12
+ all copies or substantial portions of the Software.
13
+
14
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
19
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
20
+ THE SOFTWARE.
21
+ """
22
+
23
+ import numpy as np
24
+
25
+
26
+ def f_contiguous_strides(itemsize, shape):
27
+ if shape:
28
+ strides = [itemsize]
29
+ for s in shape[:-1]:
30
+ # NOTE: max(1, s) is used to handle 0-sized axes in `shape`;
31
+ # the stride for `shape[i] <= 1` doesn't matter, but letting it be 0
32
+ # is not a good idea: https://github.com/inducer/arraycontext/pull/91
33
+ strides.append(strides[-1]*max(1, s))
34
+ return tuple(strides)
35
+ else:
36
+ return ()
37
+
38
+
39
+ def c_contiguous_strides(itemsize, shape):
40
+ if shape:
41
+ strides = [itemsize]
42
+ for s in shape[:0:-1]:
43
+ # NOTE: max(1, s) is used to handle 0-sized axes in `shape`;
44
+ # the stride for `shape[i] <= 1` doesn't matter, but letting it be 0
45
+ # is not a good idea: https://github.com/inducer/arraycontext/pull/91
46
+ strides.append(strides[-1]*max(1, s))
47
+ return tuple(strides[::-1])
48
+ else:
49
+ return ()
50
+
51
+
52
+ def equal_strides(strides1, strides2, shape):
53
+ if strides1 == strides2:
54
+ return True
55
+
56
+ if len(strides1) != len(strides2) or len(strides2) != len(shape):
57
+ return False
58
+
59
+ for s, st1, st2 in zip(shape, strides1, strides2):
60
+ if s != 1 and st1 != st2:
61
+ return False
62
+
63
+ return True
64
+
65
+
66
+ def is_f_contiguous_strides(strides, itemsize, shape):
67
+ from pytools import product
68
+ return (
69
+ equal_strides(strides, f_contiguous_strides(itemsize, shape), shape)
70
+ or product(shape) == 0) # noqa: W503
71
+
72
+
73
+ def is_c_contiguous_strides(strides, itemsize, shape):
74
+ from pytools import product
75
+ return (equal_strides(strides, c_contiguous_strides(itemsize, shape), shape)
76
+ or product(shape) == 0) # noqa: W503
77
+
78
+
79
+ class ArrayFlags:
80
+ def __init__(self, ary):
81
+ self.f_contiguous = is_f_contiguous_strides(
82
+ ary.strides, ary.dtype.itemsize, ary.shape)
83
+ self.c_contiguous = is_c_contiguous_strides(
84
+ ary.strides, ary.dtype.itemsize, ary.shape)
85
+ self.forc = self.f_contiguous or self.c_contiguous
86
+
87
+ def __repr__(self):
88
+ return (
89
+ f" C_CONTIGUOUS : {self.c_contiguous}\n"
90
+ f" F_CONTIGUOUS : {self.f_contiguous}"
91
+ )
92
+
93
+ def __str__(self):
94
+ return repr(self)
95
+
96
+
97
+ def get_common_dtype(obj1, obj2, allow_double):
98
+ # Yes, numpy behaves differently depending on whether
99
+ # we're dealing with arrays or scalars.
100
+
101
+ zero1 = np.zeros(1, dtype=obj1.dtype)
102
+
103
+ try:
104
+ zero2 = np.zeros(1, dtype=obj2.dtype)
105
+ except AttributeError:
106
+ zero2 = obj2
107
+
108
+ result = (zero1 + zero2).dtype
109
+
110
+ if not allow_double:
111
+ if result == np.float64:
112
+ result = np.dtype(np.float32)
113
+ elif result == np.complex128:
114
+ result = np.dtype(np.complex64)
115
+
116
+ return result
117
+
118
+
119
+ def bound(a):
120
+ high = a.bytes
121
+ low = a.bytes
122
+
123
+ for stri, shp in zip(a.strides, a.shape):
124
+ if stri < 0:
125
+ low += (stri)*(shp-1)
126
+ else:
127
+ high += (stri)*(shp-1)
128
+ return low, high
129
+
130
+
131
+ def may_share_memory(a, b):
132
+ # When this is called with a an ndarray and b
133
+ # a sparse matrix, numpy.may_share_memory fails.
134
+ if a is b:
135
+ return True
136
+ if a.__class__ is b.__class__:
137
+ a_l, a_h = bound(a)
138
+ b_l, b_h = bound(b)
139
+ if b_l >= a_h or a_l >= b_h:
140
+ return False
141
+ return True
142
+ else:
143
+ return False
144
+
145
+
146
+ # {{{ as_strided implementation
147
+
148
+ try:
149
+ from numpy.lib.stride_tricks import as_strided as _as_strided
150
+ _test_dtype = np.dtype(
151
+ [("a", np.float64), ("b", np.float64)], align=True)
152
+ _test_result = _as_strided(np.zeros(10, dtype=_test_dtype))
153
+ if _test_result.dtype != _test_dtype:
154
+ raise RuntimeError("numpy's as_strided is broken")
155
+
156
+ as_strided = _as_strided
157
+ except Exception:
158
+ # stolen from numpy to be compatible with older versions of numpy
159
+ class _DummyArray:
160
+ """ Dummy object that just exists to hang __array_interface__ dictionaries
161
+ and possibly keep alive a reference to a base array.
162
+ """
163
+ def __init__(self, interface, base=None):
164
+ self.__array_interface__ = interface
165
+ self.base = base
166
+
167
+ def as_strided(x, shape=None, strides=None):
168
+ """ Make an ndarray from the given array with the given shape and strides.
169
+ """
170
+ # work around Numpy bug 1873 (reported by Irwin Zaid)
171
+ # Since this is stolen from numpy, this implementation has the same bug.
172
+ # http://projects.scipy.org/numpy/ticket/1873
173
+ # == https://github.com/numpy/numpy/issues/2466
174
+
175
+ # Do not recreate the array if nothing need to be changed.
176
+ # This fixes a lot of errors on pypy since DummyArray hack does not
177
+ # currently (2014/May/17) on pypy.
178
+
179
+ if ((shape is None or x.shape == shape)
180
+ and (strides is None or x.strides == strides)): # noqa: W503
181
+ return x
182
+ if not x.dtype.isbuiltin:
183
+ if shape is None:
184
+ shape = x.shape
185
+ strides = tuple(strides)
186
+
187
+ from pytools import product
188
+ if strides is not None and shape is not None \
189
+ and product(shape) == product(x.shape) \
190
+ and x.flags.forc:
191
+ # Workaround: If we're being asked to do what amounts to a
192
+ # contiguous reshape, at least do that.
193
+
194
+ if strides == f_contiguous_strides(x.dtype.itemsize, shape):
195
+ result = x.reshape(-1).reshape(*shape, order="F")
196
+ assert result.strides == strides
197
+ return result
198
+ elif strides == c_contiguous_strides(x.dtype.itemsize, shape):
199
+ result = x.reshape(-1).reshape(*shape, order="C")
200
+ assert result.strides == strides
201
+ return result
202
+
203
+ raise NotImplementedError(
204
+ "as_strided won't work on non-builtin arrays for now. "
205
+ "See https://github.com/numpy/numpy/issues/2466")
206
+
207
+ interface = dict(x.__array_interface__)
208
+ if shape is not None:
209
+ interface["shape"] = tuple(shape)
210
+ if strides is not None:
211
+ interface["strides"] = tuple(strides)
212
+ return np.asarray(_DummyArray(interface, base=x))
213
+
214
+ # }}}
@@ -0,0 +1,290 @@
1
+ """Type mapping helpers."""
2
+
3
+
4
+ __copyright__ = "Copyright (C) 2011 Andreas Kloeckner"
5
+
6
+ __license__ = """
7
+ Permission is hereby granted, free of charge, to any person
8
+ obtaining a copy of this software and associated documentation
9
+ files (the "Software"), to deal in the Software without
10
+ restriction, including without limitation the rights to use,
11
+ copy, modify, merge, publish, distribute, sublicense, and/or sell
12
+ copies of the Software, and to permit persons to whom the
13
+ Software is furnished to do so, subject to the following
14
+ conditions:
15
+
16
+ The above copyright notice and this permission notice shall be
17
+ included in all copies or substantial portions of the Software.
18
+
19
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
20
+ EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
21
+ OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
22
+ NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
23
+ HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
24
+ WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
25
+ FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
26
+ OTHER DEALINGS IN THE SOFTWARE.
27
+ """
28
+
29
+ import numpy as np
30
+
31
+
32
+ class TypeNameNotKnown(RuntimeError): # noqa: N818
33
+ pass
34
+
35
+
36
+ # {{{ registry
37
+
38
+ class DTypeRegistry:
39
+ def __init__(self):
40
+ self.dtype_to_name = {}
41
+ self.name_to_dtype = {}
42
+
43
+ def get_or_register_dtype(self, c_names, dtype=None):
44
+ """Get or register a :class:`numpy.dtype` associated with the C type names
45
+ in the string list *c_names*. If *dtype* is `None`, no registration is
46
+ performed, and the :class:`numpy.dtype` must already have been registered.
47
+ If so, it is returned. If not, :exc:`TypeNameNotKnown` is raised.
48
+
49
+ If *dtype* is not `None`, registration is attempted. If the *c_names* are
50
+ already known and registered to identical :class:`numpy.dtype` objects,
51
+ then the previously dtype object of the previously registered type is
52
+ returned. If the *c_names* are not yet known, the type is registered. If
53
+ one of the *c_names* is known but registered to a different type, an error
54
+ is raised. In this latter case, the type may end up partially registered
55
+ and any further behavior is undefined.
56
+
57
+ .. versionadded:: 2012.2
58
+ """
59
+
60
+ if isinstance(c_names, str):
61
+ c_names = [c_names]
62
+
63
+ if dtype is None:
64
+ from pytools import single_valued
65
+ return single_valued(self.name_to_dtype[name] for name in c_names)
66
+
67
+ dtype = np.dtype(dtype)
68
+
69
+ # check if we've seen an identical dtype, if so retrieve exact dtype object.
70
+ try:
71
+ existing_name = self.dtype_to_name[dtype]
72
+ except KeyError:
73
+ existed = False
74
+ else:
75
+ existed = True
76
+ existing_dtype = self.name_to_dtype[existing_name]
77
+ assert existing_dtype == dtype
78
+ dtype = existing_dtype
79
+
80
+ for nm in c_names:
81
+ try:
82
+ name_dtype = self.name_to_dtype[nm]
83
+ except KeyError:
84
+ self.name_to_dtype[nm] = dtype
85
+ else:
86
+ if name_dtype != dtype:
87
+ raise RuntimeError("name '%s' already registered to "
88
+ "different dtype" % nm)
89
+
90
+ if not existed:
91
+ self.dtype_to_name[dtype] = c_names[0]
92
+ if str(dtype) not in self.dtype_to_name:
93
+ self.dtype_to_name[str(dtype)] = c_names[0]
94
+
95
+ return dtype
96
+
97
+ def dtype_to_ctype(self, dtype):
98
+ if dtype is None:
99
+ raise ValueError("dtype may not be None")
100
+
101
+ dtype = np.dtype(dtype)
102
+
103
+ try:
104
+ return self.dtype_to_name[dtype]
105
+ except KeyError:
106
+ raise ValueError("unable to map dtype '%s'" % dtype) from None
107
+
108
+ # }}}
109
+
110
+
111
+ # {{{ C types
112
+
113
+ def fill_registry_with_c_types(reg, respect_windows, include_bool=True):
114
+ import struct
115
+ from sys import platform
116
+
117
+ if include_bool:
118
+ # bool is of unspecified size in the OpenCL spec and may in fact be
119
+ # 4-byte.
120
+ reg.get_or_register_dtype("bool", np.bool_)
121
+
122
+ reg.get_or_register_dtype(["signed char", "char"], np.int8)
123
+ reg.get_or_register_dtype("unsigned char", np.uint8)
124
+ reg.get_or_register_dtype(["short", "signed short",
125
+ "signed short int", "short signed int"], np.int16)
126
+ reg.get_or_register_dtype(["unsigned short",
127
+ "unsigned short int", "short unsigned int"], np.uint16)
128
+ reg.get_or_register_dtype(["int", "signed int"], np.int32)
129
+ reg.get_or_register_dtype(["unsigned", "unsigned int"], np.uint32)
130
+
131
+ is_64_bit = struct.calcsize("@P") * 8 == 64
132
+ if is_64_bit:
133
+ if "win32" in platform and respect_windows:
134
+ i64_name = "long long"
135
+ else:
136
+ i64_name = "long"
137
+
138
+ reg.get_or_register_dtype(
139
+ [i64_name, "%s int" % i64_name, "signed %s int" % i64_name,
140
+ "%s signed int" % i64_name],
141
+ np.int64)
142
+ reg.get_or_register_dtype(
143
+ ["unsigned %s" % i64_name, "unsigned %s int" % i64_name,
144
+ "%s unsigned int" % i64_name],
145
+ np.uint64)
146
+
147
+ # http://projects.scipy.org/numpy/ticket/2017
148
+ if is_64_bit:
149
+ reg.get_or_register_dtype(["unsigned %s" % i64_name], np.uintp)
150
+ else:
151
+ reg.get_or_register_dtype(["unsigned"], np.uintp)
152
+
153
+ reg.get_or_register_dtype("float", np.float32)
154
+ reg.get_or_register_dtype("double", np.float64)
155
+
156
+
157
+ def fill_registry_with_opencl_c_types(reg):
158
+ reg.get_or_register_dtype(["char", "signed char"], np.int8)
159
+ reg.get_or_register_dtype(["uchar", "unsigned char"], np.uint8)
160
+ reg.get_or_register_dtype(["short", "signed short",
161
+ "signed short int", "short signed int"], np.int16)
162
+ reg.get_or_register_dtype(["ushort", "unsigned short",
163
+ "unsigned short int", "short unsigned int"], np.uint16)
164
+ reg.get_or_register_dtype(["int", "signed int"], np.int32)
165
+ reg.get_or_register_dtype(["uint", "unsigned", "unsigned int"], np.uint32)
166
+
167
+ reg.get_or_register_dtype(
168
+ ["long", "long int", "signed long int",
169
+ "long signed int"],
170
+ np.int64)
171
+ reg.get_or_register_dtype(
172
+ ["ulong", "unsigned long", "unsigned long int",
173
+ "long unsigned int"],
174
+ np.uint64)
175
+
176
+ reg.get_or_register_dtype(["intptr_t"], np.intp)
177
+ reg.get_or_register_dtype(["uintptr_t"], np.uintp)
178
+
179
+ reg.get_or_register_dtype("float", np.float32)
180
+ reg.get_or_register_dtype("double", np.float64)
181
+
182
+
183
+ def fill_registry_with_c99_stdint_types(reg):
184
+ reg.get_or_register_dtype("bool", np.bool_)
185
+
186
+ reg.get_or_register_dtype("int8_t", np.int8)
187
+ reg.get_or_register_dtype("uint8_t", np.uint8)
188
+ reg.get_or_register_dtype("int16_t", np.int16)
189
+ reg.get_or_register_dtype("uint16_t", np.uint16)
190
+ reg.get_or_register_dtype("int32_t", np.int32)
191
+ reg.get_or_register_dtype("uint32_t", np.uint32)
192
+ reg.get_or_register_dtype("int64_t", np.int64)
193
+ reg.get_or_register_dtype("uint64_t", np.uint64)
194
+ reg.get_or_register_dtype("uintptr_t", np.uintp)
195
+
196
+ reg.get_or_register_dtype("float", np.float32)
197
+ reg.get_or_register_dtype("double", np.float64)
198
+
199
+
200
+ def fill_registry_with_c99_complex_types(reg):
201
+ reg.get_or_register_dtype("float complex", np.complex64)
202
+ reg.get_or_register_dtype("double complex", np.complex128)
203
+ reg.get_or_register_dtype("long double complex", np.clongdouble)
204
+
205
+ # }}}
206
+
207
+
208
+ # {{{ backward compatibility
209
+
210
+ TYPE_REGISTRY = DTypeRegistry()
211
+
212
+ # These are deprecated and should no longer be used
213
+ DTYPE_TO_NAME = TYPE_REGISTRY.dtype_to_name
214
+ NAME_TO_DTYPE = TYPE_REGISTRY.name_to_dtype
215
+
216
+ dtype_to_ctype = TYPE_REGISTRY.dtype_to_ctype
217
+ get_or_register_dtype = TYPE_REGISTRY.get_or_register_dtype
218
+
219
+
220
+ def _fill_dtype_registry(respect_windows, include_bool=True):
221
+ fill_registry_with_c_types(
222
+ TYPE_REGISTRY, respect_windows, include_bool)
223
+
224
+ # }}}
225
+
226
+
227
+ # {{{ c declarator parsing
228
+
229
+ def parse_c_arg_backend(c_arg, scalar_arg_factory, vec_arg_factory,
230
+ name_to_dtype=None):
231
+ if isinstance(name_to_dtype, DTypeRegistry):
232
+ name_to_dtype = name_to_dtype.name_to_dtype__getitem__
233
+ elif name_to_dtype is None:
234
+ name_to_dtype = NAME_TO_DTYPE.__getitem__
235
+
236
+ c_arg = (c_arg
237
+ .replace("const", "")
238
+ .replace("volatile", "")
239
+ .replace("__restrict__", "")
240
+ .replace("restrict", ""))
241
+
242
+ # process and remove declarator
243
+ import re
244
+ decl_re = re.compile(r"(\**)\s*([_a-zA-Z0-9]+)(\s*\[[ 0-9]*\])*\s*$")
245
+ decl_match = decl_re.search(c_arg)
246
+
247
+ if decl_match is None:
248
+ raise ValueError("couldn't parse C declarator '%s'" % c_arg)
249
+
250
+ name = decl_match.group(2)
251
+
252
+ if decl_match.group(1) or decl_match.group(3) is not None:
253
+ arg_class = vec_arg_factory
254
+ else:
255
+ arg_class = scalar_arg_factory
256
+
257
+ tp = c_arg[:decl_match.start()]
258
+ tp = " ".join(tp.split())
259
+
260
+ try:
261
+ dtype = name_to_dtype(tp)
262
+ except KeyError:
263
+ raise ValueError("unknown type '%s'" % tp) from None
264
+
265
+ return arg_class(dtype, name)
266
+
267
+ # }}}
268
+
269
+
270
+ def register_dtype(dtype, c_names, alias_ok=False):
271
+ from warnings import warn
272
+ warn("register_dtype is deprecated. Use get_or_register_dtype instead.",
273
+ DeprecationWarning, stacklevel=2)
274
+
275
+ if isinstance(c_names, str):
276
+ c_names = [c_names]
277
+
278
+ dtype = np.dtype(dtype)
279
+
280
+ # check if we've seen this dtype before and error out if a) it was seen before
281
+ # and b) alias_ok is False.
282
+
283
+ if not alias_ok and dtype in TYPE_REGISTRY.dtype_to_name:
284
+ raise RuntimeError("dtype '%s' already registered (as '%s', new names '%s')"
285
+ % (dtype, TYPE_REGISTRY.dtype_to_name[dtype], ", ".join(c_names)))
286
+
287
+ TYPE_REGISTRY.get_or_register_dtype(c_names, dtype)
288
+
289
+
290
+ # vim: foldmethod=marker