pyopencl 2024.2.2__cp312-cp312-win_amd64.whl → 2024.2.5__cp312-cp312-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of pyopencl might be problematic. Click here for more details.
- pyopencl/__init__.py +16 -4
- pyopencl/_cl.cp312-win_amd64.pyd +0 -0
- pyopencl/algorithm.py +3 -1
- pyopencl/bitonic_sort.py +2 -0
- pyopencl/characterize/__init__.py +23 -0
- pyopencl/compyte/.git +1 -0
- pyopencl/compyte/.gitignore +21 -0
- pyopencl/compyte/ndarray/Makefile +31 -0
- pyopencl/compyte/ndarray/gpu_ndarray.h +35 -0
- pyopencl/compyte/ndarray/pygpu_language.h +207 -0
- pyopencl/compyte/ndarray/pygpu_language_cuda.cu +622 -0
- pyopencl/compyte/ndarray/pygpu_language_opencl.cpp +317 -0
- pyopencl/compyte/ndarray/pygpu_ndarray.cpp +1546 -0
- pyopencl/compyte/ndarray/pygpu_ndarray.h +71 -0
- pyopencl/compyte/ndarray/pygpu_ndarray_object.h +232 -0
- pyopencl/tools.py +60 -56
- pyopencl/version.py +9 -3
- {pyopencl-2024.2.2.dist-info → pyopencl-2024.2.5.dist-info}/METADATA +105 -105
- pyopencl-2024.2.5.dist-info/RECORD +56 -0
- {pyopencl-2024.2.2.dist-info → pyopencl-2024.2.5.dist-info}/WHEEL +1 -1
- pyopencl-2024.2.2.data/data/CITATION.cff +0 -74
- pyopencl-2024.2.2.data/data/CMakeLists.txt +0 -83
- pyopencl-2024.2.2.data/data/Makefile.in +0 -21
- pyopencl-2024.2.2.data/data/README.rst +0 -70
- pyopencl-2024.2.2.data/data/README_SETUP.txt +0 -34
- pyopencl-2024.2.2.data/data/aksetup_helper.py +0 -1013
- pyopencl-2024.2.2.data/data/configure.py +0 -6
- pyopencl-2024.2.2.data/data/contrib/cldis.py +0 -91
- pyopencl-2024.2.2.data/data/contrib/fortran-to-opencl/README +0 -29
- pyopencl-2024.2.2.data/data/contrib/fortran-to-opencl/translate.py +0 -1441
- pyopencl-2024.2.2.data/data/contrib/pyopencl.vim +0 -84
- pyopencl-2024.2.2.data/data/doc/Makefile +0 -23
- pyopencl-2024.2.2.data/data/doc/algorithm.rst +0 -214
- pyopencl-2024.2.2.data/data/doc/array.rst +0 -305
- pyopencl-2024.2.2.data/data/doc/conf.py +0 -26
- pyopencl-2024.2.2.data/data/doc/howto.rst +0 -105
- pyopencl-2024.2.2.data/data/doc/index.rst +0 -137
- pyopencl-2024.2.2.data/data/doc/make_constants.py +0 -561
- pyopencl-2024.2.2.data/data/doc/misc.rst +0 -885
- pyopencl-2024.2.2.data/data/doc/runtime.rst +0 -51
- pyopencl-2024.2.2.data/data/doc/runtime_const.rst +0 -30
- pyopencl-2024.2.2.data/data/doc/runtime_gl.rst +0 -78
- pyopencl-2024.2.2.data/data/doc/runtime_memory.rst +0 -527
- pyopencl-2024.2.2.data/data/doc/runtime_platform.rst +0 -184
- pyopencl-2024.2.2.data/data/doc/runtime_program.rst +0 -364
- pyopencl-2024.2.2.data/data/doc/runtime_queue.rst +0 -182
- pyopencl-2024.2.2.data/data/doc/subst.rst +0 -36
- pyopencl-2024.2.2.data/data/doc/tools.rst +0 -4
- pyopencl-2024.2.2.data/data/doc/types.rst +0 -42
- pyopencl-2024.2.2.data/data/examples/black-hole-accretion.py +0 -2227
- pyopencl-2024.2.2.data/data/examples/demo-struct-reduce.py +0 -75
- pyopencl-2024.2.2.data/data/examples/demo.py +0 -39
- pyopencl-2024.2.2.data/data/examples/demo_array.py +0 -32
- pyopencl-2024.2.2.data/data/examples/demo_array_svm.py +0 -37
- pyopencl-2024.2.2.data/data/examples/demo_elementwise.py +0 -34
- pyopencl-2024.2.2.data/data/examples/demo_elementwise_complex.py +0 -53
- pyopencl-2024.2.2.data/data/examples/demo_mandelbrot.py +0 -183
- pyopencl-2024.2.2.data/data/examples/demo_meta_codepy.py +0 -56
- pyopencl-2024.2.2.data/data/examples/demo_meta_template.py +0 -55
- pyopencl-2024.2.2.data/data/examples/dump-performance.py +0 -38
- pyopencl-2024.2.2.data/data/examples/dump-properties.py +0 -86
- pyopencl-2024.2.2.data/data/examples/gl_interop_demo.py +0 -84
- pyopencl-2024.2.2.data/data/examples/gl_particle_animation.py +0 -218
- pyopencl-2024.2.2.data/data/examples/ipython-demo.ipynb +0 -203
- pyopencl-2024.2.2.data/data/examples/median-filter.py +0 -99
- pyopencl-2024.2.2.data/data/examples/n-body.py +0 -1070
- pyopencl-2024.2.2.data/data/examples/narray.py +0 -37
- pyopencl-2024.2.2.data/data/examples/noisyImage.jpg +0 -0
- pyopencl-2024.2.2.data/data/examples/pi-monte-carlo.py +0 -1166
- pyopencl-2024.2.2.data/data/examples/svm.py +0 -82
- pyopencl-2024.2.2.data/data/examples/transpose.py +0 -229
- pyopencl-2024.2.2.data/data/pytest.ini +0 -3
- pyopencl-2024.2.2.data/data/src/bitlog.cpp +0 -51
- pyopencl-2024.2.2.data/data/src/bitlog.hpp +0 -83
- pyopencl-2024.2.2.data/data/src/clinfo_ext.h +0 -134
- pyopencl-2024.2.2.data/data/src/mempool.hpp +0 -444
- pyopencl-2024.2.2.data/data/src/pyopencl_ext.h +0 -77
- pyopencl-2024.2.2.data/data/src/tools.hpp +0 -90
- pyopencl-2024.2.2.data/data/src/wrap_cl.cpp +0 -61
- pyopencl-2024.2.2.data/data/src/wrap_cl.hpp +0 -5853
- pyopencl-2024.2.2.data/data/src/wrap_cl_part_1.cpp +0 -369
- pyopencl-2024.2.2.data/data/src/wrap_cl_part_2.cpp +0 -702
- pyopencl-2024.2.2.data/data/src/wrap_constants.cpp +0 -1274
- pyopencl-2024.2.2.data/data/src/wrap_helpers.hpp +0 -213
- pyopencl-2024.2.2.data/data/src/wrap_mempool.cpp +0 -738
- pyopencl-2024.2.2.data/data/test/add-vectors-32.spv +0 -0
- pyopencl-2024.2.2.data/data/test/add-vectors-64.spv +0 -0
- pyopencl-2024.2.2.data/data/test/empty-header.h +0 -1
- pyopencl-2024.2.2.data/data/test/test_algorithm.py +0 -1180
- pyopencl-2024.2.2.data/data/test/test_array.py +0 -2392
- pyopencl-2024.2.2.data/data/test/test_arrays_in_structs.py +0 -100
- pyopencl-2024.2.2.data/data/test/test_clmath.py +0 -529
- pyopencl-2024.2.2.data/data/test/test_clrandom.py +0 -75
- pyopencl-2024.2.2.data/data/test/test_enqueue_copy.py +0 -271
- pyopencl-2024.2.2.data/data/test/test_wrapper.py +0 -1565
- pyopencl-2024.2.2.dist-info/LICENSE +0 -282
- pyopencl-2024.2.2.dist-info/RECORD +0 -123
- pyopencl-2024.2.2.dist-info/top_level.txt +0 -1
- {pyopencl-2024.2.2.data/data → pyopencl-2024.2.5.dist-info/licenses}/LICENSE +0 -0
|
@@ -1,100 +0,0 @@
|
|
|
1
|
-
__copyright__ = "Copyright (C) 2020 Sotiris Niarchos"
|
|
2
|
-
|
|
3
|
-
__license__ = """
|
|
4
|
-
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
5
|
-
of this software and associated documentation files (the "Software"), to deal
|
|
6
|
-
in the Software without restriction, including without limitation the rights
|
|
7
|
-
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
8
|
-
copies of the Software, and to permit persons to whom the Software is
|
|
9
|
-
furnished to do so, subject to the following conditions:
|
|
10
|
-
|
|
11
|
-
The above copyright notice and this permission notice shall be included in
|
|
12
|
-
all copies or substantial portions of the Software.
|
|
13
|
-
|
|
14
|
-
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
15
|
-
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
16
|
-
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
17
|
-
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
18
|
-
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
19
|
-
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
20
|
-
THE SOFTWARE.
|
|
21
|
-
"""
|
|
22
|
-
|
|
23
|
-
import numpy as np
|
|
24
|
-
|
|
25
|
-
import pyopencl as cl
|
|
26
|
-
import pyopencl.cltypes as cltypes
|
|
27
|
-
import pyopencl.tools as cl_tools
|
|
28
|
-
from pyopencl import mem_flags
|
|
29
|
-
from pyopencl.tools import \
|
|
30
|
-
pytest_generate_tests_for_pyopencl as pytest_generate_tests # noqa: F401
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
def test_struct_with_array_fields(ctx_factory):
|
|
34
|
-
#
|
|
35
|
-
# typedef struct {
|
|
36
|
-
# uint x[2];
|
|
37
|
-
# float y;
|
|
38
|
-
# uint z[3][4];
|
|
39
|
-
# } my_struct;
|
|
40
|
-
#
|
|
41
|
-
cl_ctx = ctx_factory()
|
|
42
|
-
device = cl_ctx.devices[0]
|
|
43
|
-
queue = cl.CommandQueue(cl_ctx)
|
|
44
|
-
|
|
45
|
-
my_struct = np.dtype([
|
|
46
|
-
("x", cltypes.uint, 2),
|
|
47
|
-
("y", cltypes.int),
|
|
48
|
-
("z", cltypes.uint, (3, 4))
|
|
49
|
-
])
|
|
50
|
-
my_struct, cdecl = cl_tools.match_dtype_to_c_struct(
|
|
51
|
-
device, "my_struct", my_struct
|
|
52
|
-
)
|
|
53
|
-
|
|
54
|
-
# a random buffer of 4 structs
|
|
55
|
-
my_struct_arr = np.array([
|
|
56
|
-
([81, 24], -57, [[15, 28, 45, 7], [71, 95, 65, 84], [2, 11, 59, 9]]),
|
|
57
|
-
([5, 20], 47, [[15, 53, 7, 59], [73, 22, 27, 86], [59, 6, 39, 49]]),
|
|
58
|
-
([11, 99], -32, [[73, 83, 4, 65], [19, 21, 22, 27], [1, 55, 6, 64]]),
|
|
59
|
-
([57, 38], -54, [[74, 90, 38, 67], [77, 30, 99, 18], [91, 3, 63, 67]])
|
|
60
|
-
], dtype=my_struct)
|
|
61
|
-
|
|
62
|
-
expected_res = []
|
|
63
|
-
for x in my_struct_arr:
|
|
64
|
-
expected_res.append(int(np.sum(x[0]) + x[1] + np.sum(x[2])))
|
|
65
|
-
expected_res = np.array(expected_res, dtype=cltypes.int)
|
|
66
|
-
|
|
67
|
-
kernel_src = """%s
|
|
68
|
-
// this kernel sums every number contained in each struct
|
|
69
|
-
__kernel void array_structs(__global my_struct *structs, __global int *res) {
|
|
70
|
-
int i = get_global_id(0);
|
|
71
|
-
my_struct s = structs[i];
|
|
72
|
-
res[i] = s.x[0] + s.x[1] + s.y;
|
|
73
|
-
for (int r = 0; r < 3; r++)
|
|
74
|
-
for (int c = 0; c < 4; c++)
|
|
75
|
-
res[i] += s.z[r][c];
|
|
76
|
-
}""" % cdecl
|
|
77
|
-
|
|
78
|
-
mem_flags1 = mem_flags.READ_ONLY | mem_flags.COPY_HOST_PTR
|
|
79
|
-
mem_flags2 = mem_flags.WRITE_ONLY
|
|
80
|
-
|
|
81
|
-
my_struct_buf = cl.Buffer(cl_ctx, mem_flags1, hostbuf=my_struct_arr)
|
|
82
|
-
res_buf = cl.Buffer(cl_ctx, mem_flags2, size=expected_res.nbytes)
|
|
83
|
-
|
|
84
|
-
program = cl.Program(cl_ctx, kernel_src).build()
|
|
85
|
-
kernel = program.array_structs
|
|
86
|
-
kernel(queue, (4,), None, my_struct_buf, res_buf)
|
|
87
|
-
|
|
88
|
-
res = np.empty_like(expected_res)
|
|
89
|
-
cl.enqueue_copy(queue, res, res_buf)
|
|
90
|
-
|
|
91
|
-
assert (res == expected_res).all()
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
if __name__ == "__main__":
|
|
95
|
-
import sys
|
|
96
|
-
if len(sys.argv) > 1:
|
|
97
|
-
exec(sys.argv[1])
|
|
98
|
-
else:
|
|
99
|
-
from pytest import main
|
|
100
|
-
main([__file__])
|
|
@@ -1,529 +0,0 @@
|
|
|
1
|
-
__copyright__ = "Copyright (C) 2009 Andreas Kloeckner"
|
|
2
|
-
|
|
3
|
-
__license__ = """
|
|
4
|
-
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
5
|
-
of this software and associated documentation files (the "Software"), to deal
|
|
6
|
-
in the Software without restriction, including without limitation the rights
|
|
7
|
-
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
8
|
-
copies of the Software, and to permit persons to whom the Software is
|
|
9
|
-
furnished to do so, subject to the following conditions:
|
|
10
|
-
|
|
11
|
-
The above copyright notice and this permission notice shall be included in
|
|
12
|
-
all copies or substantial portions of the Software.
|
|
13
|
-
|
|
14
|
-
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
15
|
-
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
16
|
-
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
17
|
-
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
18
|
-
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
19
|
-
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
20
|
-
THE SOFTWARE.
|
|
21
|
-
"""
|
|
22
|
-
|
|
23
|
-
import math
|
|
24
|
-
|
|
25
|
-
import numpy as np
|
|
26
|
-
import pytest
|
|
27
|
-
|
|
28
|
-
import pyopencl as cl
|
|
29
|
-
import pyopencl.array as cl_array
|
|
30
|
-
import pyopencl.clmath as clmath
|
|
31
|
-
from pyopencl.characterize import has_double_support, has_struct_arg_count_bug
|
|
32
|
-
from pyopencl.tools import \
|
|
33
|
-
pytest_generate_tests_for_pyopencl as pytest_generate_tests # noqa: F401
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
try:
|
|
37
|
-
import faulthandler
|
|
38
|
-
except ImportError:
|
|
39
|
-
pass
|
|
40
|
-
else:
|
|
41
|
-
faulthandler.enable()
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
sizes = [10, 128, 1 << 10, 1 << 11, 1 << 13]
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
numpy_func_names = {
|
|
48
|
-
"asin": "arcsin",
|
|
49
|
-
"acos": "arccos",
|
|
50
|
-
"atan": "arctan",
|
|
51
|
-
}
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
def make_unary_function_test(name, limits=(0, 1), threshold=0, use_complex=False):
|
|
55
|
-
(a, b) = limits
|
|
56
|
-
a = float(a)
|
|
57
|
-
b = float(b)
|
|
58
|
-
|
|
59
|
-
def test(ctx_factory):
|
|
60
|
-
context = ctx_factory()
|
|
61
|
-
queue = cl.CommandQueue(context)
|
|
62
|
-
|
|
63
|
-
gpu_func = getattr(clmath, name)
|
|
64
|
-
cpu_func = getattr(np, numpy_func_names.get(name, name))
|
|
65
|
-
|
|
66
|
-
dev = context.devices[0]
|
|
67
|
-
|
|
68
|
-
if has_double_support(dev):
|
|
69
|
-
if use_complex and has_struct_arg_count_bug(dev) == "apple":
|
|
70
|
-
dtypes = [np.float32, np.float64, np.complex64]
|
|
71
|
-
elif use_complex:
|
|
72
|
-
dtypes = [np.float32, np.float64, np.complex64, np.complex128]
|
|
73
|
-
else:
|
|
74
|
-
dtypes = [np.float32, np.float64]
|
|
75
|
-
else:
|
|
76
|
-
if use_complex:
|
|
77
|
-
dtypes = [np.float32, np.complex64]
|
|
78
|
-
else:
|
|
79
|
-
dtypes = [np.float32]
|
|
80
|
-
|
|
81
|
-
for s in sizes:
|
|
82
|
-
for dtype in dtypes:
|
|
83
|
-
dtype = np.dtype(dtype)
|
|
84
|
-
|
|
85
|
-
args = cl_array.arange(queue, a, b, (b-a)/s, dtype=dtype)
|
|
86
|
-
if dtype.kind == "c":
|
|
87
|
-
# args = args + dtype.type(1j) * args
|
|
88
|
-
args = args + args * dtype.type(1j)
|
|
89
|
-
|
|
90
|
-
gpu_results = gpu_func(args).get()
|
|
91
|
-
cpu_results = cpu_func(args.get())
|
|
92
|
-
|
|
93
|
-
my_threshold = threshold
|
|
94
|
-
if dtype.kind == "c" and isinstance(use_complex, float):
|
|
95
|
-
my_threshold = use_complex
|
|
96
|
-
|
|
97
|
-
max_err = np.max(np.abs(cpu_results - gpu_results))
|
|
98
|
-
assert (max_err <= my_threshold).all(), \
|
|
99
|
-
(max_err, name, dtype)
|
|
100
|
-
|
|
101
|
-
return test
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
test_ceil = make_unary_function_test("ceil", (-10, 10))
|
|
105
|
-
test_floor = make_unary_function_test("ceil", (-10, 10))
|
|
106
|
-
test_fabs = make_unary_function_test("fabs", (-10, 10))
|
|
107
|
-
test_exp = make_unary_function_test("exp", (-3, 3), 1e-5, use_complex=True)
|
|
108
|
-
test_log = make_unary_function_test("log", (1e-5, 1), 1e-6, use_complex=True)
|
|
109
|
-
test_log10 = make_unary_function_test("log10", (1e-5, 1), 5e-7)
|
|
110
|
-
test_sqrt = make_unary_function_test("sqrt", (1e-5, 1), 3e-7, use_complex=True)
|
|
111
|
-
|
|
112
|
-
test_sin = make_unary_function_test("sin", (-10, 10), 2e-7, use_complex=2e-2)
|
|
113
|
-
test_cos = make_unary_function_test("cos", (-10, 10), 2e-7, use_complex=2e-2)
|
|
114
|
-
test_asin = make_unary_function_test("asin", (-0.9, 0.9), 5e-7)
|
|
115
|
-
test_acos = make_unary_function_test("acos", (-0.9, 0.9), 5e-7)
|
|
116
|
-
test_tan = make_unary_function_test("tan",
|
|
117
|
-
(-math.pi/2 + 0.1, math.pi/2 - 0.1), 4e-5, use_complex=True)
|
|
118
|
-
test_atan = make_unary_function_test("atan", (-10, 10), 2e-7)
|
|
119
|
-
|
|
120
|
-
test_sinh = make_unary_function_test("sinh", (-3, 3), 3e-6, use_complex=2e-3)
|
|
121
|
-
test_cosh = make_unary_function_test("cosh", (-3, 3), 3e-6, use_complex=2e-3)
|
|
122
|
-
test_tanh = make_unary_function_test("tanh", (-3, 3), 2e-6, use_complex=True)
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
def test_atan2(ctx_factory):
|
|
126
|
-
context = ctx_factory()
|
|
127
|
-
queue = cl.CommandQueue(context)
|
|
128
|
-
|
|
129
|
-
for s in sizes:
|
|
130
|
-
a = (cl_array.arange(queue, s, dtype=np.float32) - np.float32(s / 2)) / 100
|
|
131
|
-
a2 = (s / 2 - 1 - cl_array.arange(queue, s, dtype=np.float32)) / 100
|
|
132
|
-
b = clmath.atan2(a, a2)
|
|
133
|
-
|
|
134
|
-
a = a.get()
|
|
135
|
-
a2 = a2.get()
|
|
136
|
-
b = b.get()
|
|
137
|
-
|
|
138
|
-
for i in range(s):
|
|
139
|
-
assert abs(math.atan2(a[i], a2[i]) - b[i]) < 1e-6
|
|
140
|
-
|
|
141
|
-
|
|
142
|
-
def test_atan2pi(ctx_factory):
|
|
143
|
-
context = ctx_factory()
|
|
144
|
-
queue = cl.CommandQueue(context)
|
|
145
|
-
|
|
146
|
-
for s in sizes:
|
|
147
|
-
a = (cl_array.arange(queue, s, dtype=np.float32) - np.float32(s / 2)) / 100
|
|
148
|
-
a2 = (s / 2 - 1 - cl_array.arange(queue, s, dtype=np.float32)) / 100
|
|
149
|
-
b = clmath.atan2pi(a, a2)
|
|
150
|
-
|
|
151
|
-
a = a.get()
|
|
152
|
-
a2 = a2.get()
|
|
153
|
-
b = b.get()
|
|
154
|
-
|
|
155
|
-
for i in range(s):
|
|
156
|
-
assert abs(math.atan2(a[i], a2[i]) / math.pi - b[i]) < 1e-6
|
|
157
|
-
|
|
158
|
-
|
|
159
|
-
def test_fmod(ctx_factory):
|
|
160
|
-
context = ctx_factory()
|
|
161
|
-
queue = cl.CommandQueue(context)
|
|
162
|
-
|
|
163
|
-
for s in sizes:
|
|
164
|
-
a = cl_array.arange(queue, s, dtype=np.float32)/10
|
|
165
|
-
a2 = cl_array.arange(queue, s, dtype=np.float32)/45.2 + 0.1
|
|
166
|
-
b = clmath.fmod(a, a2)
|
|
167
|
-
|
|
168
|
-
# https://salsa.debian.org/opencl-team/python-pyopencl/-/merge_requests/3#note_383761
|
|
169
|
-
assert np.max(np.abs((np.fmod(a.get(), a2.get()) - b.get()))) < 1e-4
|
|
170
|
-
|
|
171
|
-
|
|
172
|
-
def test_ldexp(ctx_factory):
|
|
173
|
-
context = ctx_factory()
|
|
174
|
-
queue = cl.CommandQueue(context)
|
|
175
|
-
|
|
176
|
-
for s in sizes:
|
|
177
|
-
a = cl_array.arange(queue, s, dtype=np.float32)
|
|
178
|
-
a2 = cl_array.arange(queue, s, dtype=np.float32)*1e-3
|
|
179
|
-
b = clmath.ldexp(a, a2)
|
|
180
|
-
|
|
181
|
-
a = a.get()
|
|
182
|
-
a2 = a2.get()
|
|
183
|
-
b = b.get()
|
|
184
|
-
|
|
185
|
-
for i in range(s):
|
|
186
|
-
assert math.ldexp(a[i], int(a2[i])) == b[i]
|
|
187
|
-
|
|
188
|
-
|
|
189
|
-
def test_modf(ctx_factory):
|
|
190
|
-
context = ctx_factory()
|
|
191
|
-
queue = cl.CommandQueue(context)
|
|
192
|
-
|
|
193
|
-
for s in sizes:
|
|
194
|
-
a = cl_array.arange(queue, s, dtype=np.float32)/10
|
|
195
|
-
fracpart, intpart = clmath.modf(a)
|
|
196
|
-
|
|
197
|
-
a = a.get()
|
|
198
|
-
intpart = intpart.get()
|
|
199
|
-
fracpart = fracpart.get()
|
|
200
|
-
|
|
201
|
-
for i in range(s):
|
|
202
|
-
fracpart_true, intpart_true = math.modf(a[i])
|
|
203
|
-
|
|
204
|
-
assert intpart_true == intpart[i]
|
|
205
|
-
assert abs(fracpart_true - fracpart[i]) < 1e-4
|
|
206
|
-
|
|
207
|
-
|
|
208
|
-
def test_frexp(ctx_factory):
|
|
209
|
-
context = ctx_factory()
|
|
210
|
-
queue = cl.CommandQueue(context)
|
|
211
|
-
|
|
212
|
-
for s in sizes:
|
|
213
|
-
a = cl_array.arange(queue, s, dtype=np.float32)/10
|
|
214
|
-
significands, exponents = clmath.frexp(a)
|
|
215
|
-
|
|
216
|
-
a = a.get()
|
|
217
|
-
significands = significands.get()
|
|
218
|
-
exponents = exponents.get()
|
|
219
|
-
|
|
220
|
-
for i in range(s):
|
|
221
|
-
sig_true, ex_true = math.frexp(a[i])
|
|
222
|
-
|
|
223
|
-
assert sig_true == significands[i]
|
|
224
|
-
assert ex_true == exponents[i]
|
|
225
|
-
|
|
226
|
-
|
|
227
|
-
def test_bessel(ctx_factory):
|
|
228
|
-
try:
|
|
229
|
-
import scipy.special as spec
|
|
230
|
-
except ImportError:
|
|
231
|
-
from pytest import skip
|
|
232
|
-
skip("scipy not present--cannot test Bessel function")
|
|
233
|
-
|
|
234
|
-
ctx = ctx_factory()
|
|
235
|
-
queue = cl.CommandQueue(ctx)
|
|
236
|
-
|
|
237
|
-
if not has_double_support(ctx.devices[0]):
|
|
238
|
-
from pytest import skip
|
|
239
|
-
skip("no double precision support--cannot test bessel function")
|
|
240
|
-
|
|
241
|
-
nterms = 30
|
|
242
|
-
|
|
243
|
-
try:
|
|
244
|
-
from pyfmmlib import hank103_vec, jfuns2d
|
|
245
|
-
except ImportError:
|
|
246
|
-
use_pyfmmlib = False
|
|
247
|
-
else:
|
|
248
|
-
use_pyfmmlib = True
|
|
249
|
-
|
|
250
|
-
print("PYFMMLIB", use_pyfmmlib)
|
|
251
|
-
|
|
252
|
-
if use_pyfmmlib:
|
|
253
|
-
a = np.logspace(-3, 3, 10**6)
|
|
254
|
-
else:
|
|
255
|
-
a = np.logspace(-5, 5, 10**6)
|
|
256
|
-
|
|
257
|
-
for which_func, cl_func, scipy_func, is_rel in [
|
|
258
|
-
("j", clmath.bessel_jn, spec.jn, False),
|
|
259
|
-
("y", clmath.bessel_yn, spec.yn, True)
|
|
260
|
-
]:
|
|
261
|
-
if is_rel:
|
|
262
|
-
def get_err(check, ref):
|
|
263
|
-
return np.max(np.abs(check-ref)) / np.max(np.abs(ref))
|
|
264
|
-
else:
|
|
265
|
-
def get_err(check, ref):
|
|
266
|
-
return np.max(np.abs(check-ref))
|
|
267
|
-
|
|
268
|
-
if use_pyfmmlib:
|
|
269
|
-
pfymm_result = np.empty((len(a), nterms), dtype=np.complex128)
|
|
270
|
-
if which_func == "j":
|
|
271
|
-
for i, a_i in enumerate(a):
|
|
272
|
-
if i % 100000 == 0:
|
|
273
|
-
print("%.1f %%" % (100 * i/len(a)))
|
|
274
|
-
ier, fjs, _, _ = jfuns2d(nterms, a_i, 1, 0, 10000)
|
|
275
|
-
pfymm_result[i] = fjs[:nterms]
|
|
276
|
-
assert ier == 0
|
|
277
|
-
elif which_func == "y":
|
|
278
|
-
h0, h1 = hank103_vec(a, ifexpon=1)
|
|
279
|
-
pfymm_result[:, 0] = h0.imag
|
|
280
|
-
pfymm_result[:, 1] = h1.imag
|
|
281
|
-
|
|
282
|
-
a_dev = cl_array.to_device(queue, a)
|
|
283
|
-
|
|
284
|
-
for n in range(0, nterms):
|
|
285
|
-
cl_bessel = cl_func(n, a_dev).get()
|
|
286
|
-
scipy_bessel = scipy_func(n, a)
|
|
287
|
-
|
|
288
|
-
error_scipy = get_err(cl_bessel, scipy_bessel)
|
|
289
|
-
assert error_scipy < 1e-10, error_scipy
|
|
290
|
-
|
|
291
|
-
if use_pyfmmlib and (
|
|
292
|
-
which_func == "j"
|
|
293
|
-
or (which_func == "y" and n in [0, 1])):
|
|
294
|
-
pyfmm_bessel = pfymm_result[:, n]
|
|
295
|
-
error_pyfmm = get_err(cl_bessel, pyfmm_bessel)
|
|
296
|
-
assert error_pyfmm < 1e-10, error_pyfmm
|
|
297
|
-
error_pyfmm_scipy = get_err(scipy_bessel, pyfmm_bessel)
|
|
298
|
-
print(which_func, n, error_scipy, error_pyfmm, error_pyfmm_scipy)
|
|
299
|
-
else:
|
|
300
|
-
print(which_func, n, error_scipy)
|
|
301
|
-
|
|
302
|
-
assert not np.isnan(cl_bessel).any()
|
|
303
|
-
|
|
304
|
-
if 0 and n == 15:
|
|
305
|
-
import matplotlib.pyplot as pt
|
|
306
|
-
|
|
307
|
-
#pt.plot(scipy_bessel)
|
|
308
|
-
#pt.plot(cl_bessel)
|
|
309
|
-
|
|
310
|
-
pt.loglog(a, np.abs(cl_bessel-scipy_bessel), label="vs scipy")
|
|
311
|
-
if use_pyfmmlib:
|
|
312
|
-
pt.loglog(a, np.abs(cl_bessel-pyfmm_bessel), label="vs pyfmmlib")
|
|
313
|
-
pt.legend()
|
|
314
|
-
pt.show()
|
|
315
|
-
|
|
316
|
-
|
|
317
|
-
@pytest.mark.parametrize("ref_src", ["pyfmmlib", "scipy"])
|
|
318
|
-
def test_complex_bessel(ctx_factory, ref_src):
|
|
319
|
-
ctx = ctx_factory()
|
|
320
|
-
queue = cl.CommandQueue(ctx)
|
|
321
|
-
|
|
322
|
-
if not has_double_support(ctx.devices[0]):
|
|
323
|
-
from pytest import skip
|
|
324
|
-
skip("no double precision support--cannot test complex bessel function")
|
|
325
|
-
|
|
326
|
-
v = 40
|
|
327
|
-
n = 10**5
|
|
328
|
-
|
|
329
|
-
rng = np.random.default_rng(seed=13)
|
|
330
|
-
z = (
|
|
331
|
-
np.logspace(-5, 2, n)
|
|
332
|
-
* np.exp(1j * 2 * np.pi * rng.random(n)))
|
|
333
|
-
|
|
334
|
-
if ref_src == "pyfmmlib":
|
|
335
|
-
pyfmmlib = pytest.importorskip("pyfmmlib")
|
|
336
|
-
|
|
337
|
-
jv_ref = np.zeros(len(z), "complex")
|
|
338
|
-
|
|
339
|
-
vin = v+1
|
|
340
|
-
|
|
341
|
-
for i in range(len(z)):
|
|
342
|
-
ier, fjs, _, _ = pyfmmlib.jfuns2d(vin, z[i], 1, 0, 10000)
|
|
343
|
-
assert ier == 0
|
|
344
|
-
jv_ref[i] = fjs[v]
|
|
345
|
-
|
|
346
|
-
elif ref_src == "scipy":
|
|
347
|
-
spec = pytest.importorskip("scipy.special")
|
|
348
|
-
jv_ref = spec.jv(v, z)
|
|
349
|
-
|
|
350
|
-
else:
|
|
351
|
-
raise ValueError("ref_src")
|
|
352
|
-
|
|
353
|
-
z_dev = cl_array.to_device(queue, z)
|
|
354
|
-
|
|
355
|
-
jv_dev = clmath.bessel_jn(v, z_dev)
|
|
356
|
-
|
|
357
|
-
abs_err_jv = np.abs(jv_dev.get() - jv_ref)
|
|
358
|
-
abs_jv_ref = np.abs(jv_ref)
|
|
359
|
-
rel_err_jv = abs_err_jv/abs_jv_ref
|
|
360
|
-
|
|
361
|
-
# use absolute error instead if the function value itself is too small
|
|
362
|
-
tiny = 1e-300
|
|
363
|
-
ind = abs_jv_ref < tiny
|
|
364
|
-
rel_err_jv[ind] = abs_err_jv[ind]
|
|
365
|
-
|
|
366
|
-
# if the reference value is inf or nan, set the error to zero
|
|
367
|
-
ind1 = np.isinf(abs_jv_ref)
|
|
368
|
-
ind2 = np.isnan(abs_jv_ref)
|
|
369
|
-
|
|
370
|
-
rel_err_jv[ind1] = 0
|
|
371
|
-
rel_err_jv[ind2] = 0
|
|
372
|
-
|
|
373
|
-
if 0:
|
|
374
|
-
print(abs(z))
|
|
375
|
-
print(np.abs(jv_ref))
|
|
376
|
-
print(np.abs(jv_dev.get()))
|
|
377
|
-
print(rel_err_jv)
|
|
378
|
-
|
|
379
|
-
max_err = np.max(rel_err_jv)
|
|
380
|
-
assert max_err <= 2e-13, max_err
|
|
381
|
-
|
|
382
|
-
print("Jv", np.max(rel_err_jv))
|
|
383
|
-
|
|
384
|
-
if 0:
|
|
385
|
-
import matplotlib.pyplot as pt
|
|
386
|
-
pt.loglog(np.abs(z), rel_err_jv)
|
|
387
|
-
pt.show()
|
|
388
|
-
|
|
389
|
-
|
|
390
|
-
@pytest.mark.parametrize("ref_src", ["pyfmmlib", "scipy"])
|
|
391
|
-
def test_hankel_01_complex(ctx_factory, ref_src):
|
|
392
|
-
ctx = ctx_factory()
|
|
393
|
-
queue = cl.CommandQueue(ctx)
|
|
394
|
-
|
|
395
|
-
if not has_double_support(ctx.devices[0]):
|
|
396
|
-
from pytest import skip
|
|
397
|
-
skip("no double precision support--cannot test complex bessel function")
|
|
398
|
-
|
|
399
|
-
rng = np.random.default_rng(seed=11)
|
|
400
|
-
n = 10**6
|
|
401
|
-
z = (
|
|
402
|
-
np.logspace(-5, 2, n)
|
|
403
|
-
* np.exp(1j * 2 * np.pi * rng.random(n)))
|
|
404
|
-
|
|
405
|
-
def get_err(check, ref):
|
|
406
|
-
return np.max(np.abs(check-ref)) / np.max(np.abs(ref))
|
|
407
|
-
|
|
408
|
-
if ref_src == "pyfmmlib":
|
|
409
|
-
pyfmmlib = pytest.importorskip("pyfmmlib")
|
|
410
|
-
h0_ref, h1_ref = pyfmmlib.hank103_vec(z, ifexpon=1)
|
|
411
|
-
elif ref_src == "scipy":
|
|
412
|
-
spec = pytest.importorskip("scipy.special")
|
|
413
|
-
h0_ref = spec.hankel1(0, z)
|
|
414
|
-
h1_ref = spec.hankel1(1, z)
|
|
415
|
-
|
|
416
|
-
else:
|
|
417
|
-
raise ValueError("ref_src")
|
|
418
|
-
|
|
419
|
-
z_dev = cl_array.to_device(queue, z)
|
|
420
|
-
|
|
421
|
-
h0_dev, h1_dev = clmath.hankel_01(z_dev)
|
|
422
|
-
|
|
423
|
-
rel_err_h0 = np.abs(h0_dev.get() - h0_ref)/np.abs(h0_ref)
|
|
424
|
-
rel_err_h1 = np.abs(h1_dev.get() - h1_ref)/np.abs(h1_ref)
|
|
425
|
-
|
|
426
|
-
max_rel_err_h0 = np.max(rel_err_h0)
|
|
427
|
-
max_rel_err_h1 = np.max(rel_err_h1)
|
|
428
|
-
|
|
429
|
-
print("H0", max_rel_err_h0)
|
|
430
|
-
print("H1", max_rel_err_h1)
|
|
431
|
-
|
|
432
|
-
assert max_rel_err_h0 < 4e-13
|
|
433
|
-
assert max_rel_err_h1 < 2e-13
|
|
434
|
-
|
|
435
|
-
if 0:
|
|
436
|
-
import matplotlib.pyplot as pt
|
|
437
|
-
pt.loglog(np.abs(z), rel_err_h0)
|
|
438
|
-
pt.loglog(np.abs(z), rel_err_h1)
|
|
439
|
-
pt.show()
|
|
440
|
-
|
|
441
|
-
|
|
442
|
-
@pytest.mark.parametrize("dtype", [np.complex64, np.complex128])
|
|
443
|
-
def test_complex_muladd(ctx_factory, dtype):
|
|
444
|
-
ctx = ctx_factory()
|
|
445
|
-
queue = cl.CommandQueue(ctx)
|
|
446
|
-
|
|
447
|
-
if dtype == np.complex128 and not has_double_support(ctx.devices[0]):
|
|
448
|
-
from pytest import skip
|
|
449
|
-
skip("no double precision support")
|
|
450
|
-
|
|
451
|
-
if dtype == np.complex64:
|
|
452
|
-
real_type = np.float32
|
|
453
|
-
real_type_name = "float"
|
|
454
|
-
else:
|
|
455
|
-
real_type = np.float64
|
|
456
|
-
real_type_name = "double"
|
|
457
|
-
|
|
458
|
-
rng = np.random.default_rng(seed=11)
|
|
459
|
-
n = 100
|
|
460
|
-
|
|
461
|
-
arrs = [rng.random(n, dtype=real_type) + 1j*rng.random(n, dtype=real_type)
|
|
462
|
-
for i in range(3)]
|
|
463
|
-
arrs = [arr.astype(dtype) for arr in arrs]
|
|
464
|
-
|
|
465
|
-
arrs_dev = [cl_array.to_device(queue, arr) for arr in arrs]
|
|
466
|
-
|
|
467
|
-
prg_str = """
|
|
468
|
-
#if __OPENCL_C_VERSION__ < 120
|
|
469
|
-
#pragma OPENCL EXTENSION cl_khr_fp64: enable
|
|
470
|
-
#endif
|
|
471
|
-
#define PYOPENCL_DEFINE_CDOUBLE
|
|
472
|
-
|
|
473
|
-
#include <pyopencl-complex.h>
|
|
474
|
-
|
|
475
|
-
__kernel void foo(
|
|
476
|
-
__global const c{real_type_name}_t *a,
|
|
477
|
-
__global const c{real_type_name}_t *b,
|
|
478
|
-
__global const c{real_type_name}_t *c,
|
|
479
|
-
__global c{real_type_name}_t *res
|
|
480
|
-
)
|
|
481
|
-
{{
|
|
482
|
-
int gid = get_global_id(0);
|
|
483
|
-
res[gid] = c{real_type_name}_fma(a[gid], b[gid], c[gid]);
|
|
484
|
-
}}
|
|
485
|
-
""".format(real_type_name=real_type_name)
|
|
486
|
-
|
|
487
|
-
prg = cl.Program(ctx, prg_str).build()
|
|
488
|
-
knl = prg.foo
|
|
489
|
-
|
|
490
|
-
result_dev = cl_array.empty_like(arrs_dev[0])
|
|
491
|
-
knl(queue, (n,), None, arrs_dev[0].data,
|
|
492
|
-
arrs_dev[1].data, arrs_dev[2].data, result_dev.data)
|
|
493
|
-
|
|
494
|
-
ref = arrs[0] * arrs[1] + arrs[2]
|
|
495
|
-
|
|
496
|
-
rel_err = np.abs(result_dev.get() - ref)/np.abs(ref)
|
|
497
|
-
|
|
498
|
-
if dtype == np.complex64:
|
|
499
|
-
assert np.max(rel_err) < 1e-6
|
|
500
|
-
else:
|
|
501
|
-
assert np.max(rel_err) < 1e-12
|
|
502
|
-
|
|
503
|
-
|
|
504
|
-
def test_outoforderqueue_clmath(ctx_factory):
|
|
505
|
-
context = ctx_factory()
|
|
506
|
-
try:
|
|
507
|
-
queue = cl.CommandQueue(context,
|
|
508
|
-
properties=cl.command_queue_properties.OUT_OF_ORDER_EXEC_MODE_ENABLE)
|
|
509
|
-
except Exception:
|
|
510
|
-
pytest.skip("out-of-order queue not available")
|
|
511
|
-
|
|
512
|
-
rng = np.random.default_rng(seed=42)
|
|
513
|
-
a = rng.random(10**6, dtype=np.float32)
|
|
514
|
-
a_gpu = cl_array.to_device(queue, a)
|
|
515
|
-
# testing that clmath functions wait for and create events
|
|
516
|
-
b_gpu = clmath.fabs(clmath.sin(a_gpu * 5))
|
|
517
|
-
queue.finish()
|
|
518
|
-
b1 = b_gpu.get()
|
|
519
|
-
b = np.abs(np.sin(a * 5))
|
|
520
|
-
assert np.abs(b1 - b).mean() < 1e-5
|
|
521
|
-
|
|
522
|
-
|
|
523
|
-
if __name__ == "__main__":
|
|
524
|
-
import sys
|
|
525
|
-
if len(sys.argv) > 1:
|
|
526
|
-
exec(sys.argv[1])
|
|
527
|
-
else:
|
|
528
|
-
from pytest import main
|
|
529
|
-
main([__file__])
|
|
@@ -1,75 +0,0 @@
|
|
|
1
|
-
__copyright__ = "Copyright (C) 2018 Matt Wala"
|
|
2
|
-
|
|
3
|
-
__license__ = """
|
|
4
|
-
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
5
|
-
of this software and associated documentation files (the "Software"), to deal
|
|
6
|
-
in the Software without restriction, including without limitation the rights
|
|
7
|
-
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
8
|
-
copies of the Software, and to permit persons to whom the Software is
|
|
9
|
-
furnished to do so, subject to the following conditions:
|
|
10
|
-
|
|
11
|
-
The above copyright notice and this permission notice shall be included in
|
|
12
|
-
all copies or substantial portions of the Software.
|
|
13
|
-
|
|
14
|
-
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
15
|
-
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
16
|
-
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
17
|
-
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
18
|
-
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
19
|
-
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
20
|
-
THE SOFTWARE.
|
|
21
|
-
"""
|
|
22
|
-
|
|
23
|
-
import numpy as np
|
|
24
|
-
import pytest
|
|
25
|
-
|
|
26
|
-
import pyopencl as cl
|
|
27
|
-
import pyopencl.clrandom as clrandom
|
|
28
|
-
import pyopencl.cltypes as cltypes
|
|
29
|
-
from pyopencl.characterize import has_double_support
|
|
30
|
-
from pyopencl.tools import \
|
|
31
|
-
pytest_generate_tests_for_pyopencl as pytest_generate_tests # noqa: F401
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
try:
|
|
35
|
-
import faulthandler
|
|
36
|
-
except ImportError:
|
|
37
|
-
pass
|
|
38
|
-
else:
|
|
39
|
-
faulthandler.enable()
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
@pytest.mark.parametrize("rng_class", [
|
|
43
|
-
clrandom.PhiloxGenerator,
|
|
44
|
-
clrandom.ThreefryGenerator])
|
|
45
|
-
@pytest.mark.parametrize("dtype", [
|
|
46
|
-
np.int32,
|
|
47
|
-
np.int64,
|
|
48
|
-
np.float32,
|
|
49
|
-
np.float64,
|
|
50
|
-
cltypes.float2, # type: ignore[attr-defined]
|
|
51
|
-
cltypes.float3, # type: ignore[attr-defined]
|
|
52
|
-
cltypes.float4, # type: ignore[attr-defined]
|
|
53
|
-
])
|
|
54
|
-
def test_clrandom_dtypes(ctx_factory, rng_class, dtype):
|
|
55
|
-
cl_ctx = ctx_factory()
|
|
56
|
-
if dtype == np.float64 and not has_double_support(cl_ctx.devices[0]):
|
|
57
|
-
pytest.skip("double precision not supported on this device")
|
|
58
|
-
rng = rng_class(cl_ctx)
|
|
59
|
-
|
|
60
|
-
size = 10
|
|
61
|
-
|
|
62
|
-
with cl.CommandQueue(cl_ctx) as queue:
|
|
63
|
-
rng.uniform(queue, size, dtype)
|
|
64
|
-
|
|
65
|
-
if dtype not in (np.int32, np.int64):
|
|
66
|
-
rng.normal(queue, size, dtype)
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
if __name__ == "__main__":
|
|
70
|
-
import sys
|
|
71
|
-
if len(sys.argv) > 1:
|
|
72
|
-
exec(sys.argv[1])
|
|
73
|
-
else:
|
|
74
|
-
from pytest import main
|
|
75
|
-
main([__file__])
|