pyogrio 0.12.0__cp314-cp314t-macosx_12_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyogrio/.dylibs/libgdal.37.3.11.4.dylib +0 -0
- pyogrio/__init__.py +57 -0
- pyogrio/_compat.py +54 -0
- pyogrio/_env.py +59 -0
- pyogrio/_err.cpython-314t-darwin.so +0 -0
- pyogrio/_geometry.cpython-314t-darwin.so +0 -0
- pyogrio/_io.cpython-314t-darwin.so +0 -0
- pyogrio/_ogr.cpython-314t-darwin.so +0 -0
- pyogrio/_version.py +21 -0
- pyogrio/_vsi.cpython-314t-darwin.so +0 -0
- pyogrio/core.py +387 -0
- pyogrio/errors.py +25 -0
- pyogrio/gdal_data/GDAL-targets-release.cmake +19 -0
- pyogrio/gdal_data/GDAL-targets.cmake +106 -0
- pyogrio/gdal_data/GDALConfig.cmake +24 -0
- pyogrio/gdal_data/GDALConfigVersion.cmake +65 -0
- pyogrio/gdal_data/GDALLogoBW.svg +138 -0
- pyogrio/gdal_data/GDALLogoColor.svg +126 -0
- pyogrio/gdal_data/GDALLogoGS.svg +126 -0
- pyogrio/gdal_data/LICENSE.TXT +467 -0
- pyogrio/gdal_data/MM_m_idofic.csv +321 -0
- pyogrio/gdal_data/copyright +467 -0
- pyogrio/gdal_data/cubewerx_extra.wkt +48 -0
- pyogrio/gdal_data/default.rsc +0 -0
- pyogrio/gdal_data/ecw_cs.wkt +1453 -0
- pyogrio/gdal_data/eedaconf.json +23 -0
- pyogrio/gdal_data/epsg.wkt +1 -0
- pyogrio/gdal_data/esri_StatePlane_extra.wkt +631 -0
- pyogrio/gdal_data/gdal_algorithm.schema.json +220 -0
- pyogrio/gdal_data/gdalg.schema.json +36 -0
- pyogrio/gdal_data/gdalicon.png +0 -0
- pyogrio/gdal_data/gdalinfo_output.schema.json +390 -0
- pyogrio/gdal_data/gdalmdiminfo_output.schema.json +326 -0
- pyogrio/gdal_data/gdaltileindex.xsd +253 -0
- pyogrio/gdal_data/gdalvrt.xsd +927 -0
- pyogrio/gdal_data/gfs.xsd +246 -0
- pyogrio/gdal_data/gml_registry.xml +117 -0
- pyogrio/gdal_data/gml_registry.xsd +66 -0
- pyogrio/gdal_data/grib2_center.csv +251 -0
- pyogrio/gdal_data/grib2_process.csv +102 -0
- pyogrio/gdal_data/grib2_subcenter.csv +63 -0
- pyogrio/gdal_data/grib2_table_4_2_0_0.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_0_1.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_0_13.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_0_14.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_0_15.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_0_16.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_0_17.csv +11 -0
- pyogrio/gdal_data/grib2_table_4_2_0_18.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_0_19.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_0_190.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_0_191.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_0_2.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_0_20.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_0_21.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_0_3.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_0_4.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_0_5.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_0_6.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_0_7.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_10_0.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_10_1.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_10_191.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_10_2.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_10_3.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_10_4.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_1_0.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_1_1.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_1_2.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_20_0.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_20_1.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_20_2.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_2_0.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_2_3.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_2_4.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_2_5.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_2_6.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_3_0.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_3_1.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_3_2.csv +28 -0
- pyogrio/gdal_data/grib2_table_4_2_3_3.csv +8 -0
- pyogrio/gdal_data/grib2_table_4_2_3_4.csv +14 -0
- pyogrio/gdal_data/grib2_table_4_2_3_5.csv +11 -0
- pyogrio/gdal_data/grib2_table_4_2_3_6.csv +11 -0
- pyogrio/gdal_data/grib2_table_4_2_4_0.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_4_1.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_4_10.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_4_2.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_4_3.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_4_4.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_4_5.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_4_6.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_4_7.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_4_8.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_4_9.csv +261 -0
- pyogrio/gdal_data/grib2_table_4_2_local_Canada.csv +5 -0
- pyogrio/gdal_data/grib2_table_4_2_local_HPC.csv +2 -0
- pyogrio/gdal_data/grib2_table_4_2_local_MRMS.csv +175 -0
- pyogrio/gdal_data/grib2_table_4_2_local_NCEP.csv +401 -0
- pyogrio/gdal_data/grib2_table_4_2_local_NDFD.csv +38 -0
- pyogrio/gdal_data/grib2_table_4_2_local_index.csv +7 -0
- pyogrio/gdal_data/grib2_table_4_5.csv +261 -0
- pyogrio/gdal_data/grib2_table_versions.csv +3 -0
- pyogrio/gdal_data/gt_datum.csv +229 -0
- pyogrio/gdal_data/gt_ellips.csv +24 -0
- pyogrio/gdal_data/header.dxf +1124 -0
- pyogrio/gdal_data/inspire_cp_BasicPropertyUnit.gfs +57 -0
- pyogrio/gdal_data/inspire_cp_CadastralBoundary.gfs +60 -0
- pyogrio/gdal_data/inspire_cp_CadastralParcel.gfs +81 -0
- pyogrio/gdal_data/inspire_cp_CadastralZoning.gfs +161 -0
- pyogrio/gdal_data/jpfgdgml_AdmArea.gfs +59 -0
- pyogrio/gdal_data/jpfgdgml_AdmBdry.gfs +49 -0
- pyogrio/gdal_data/jpfgdgml_AdmPt.gfs +59 -0
- pyogrio/gdal_data/jpfgdgml_BldA.gfs +54 -0
- pyogrio/gdal_data/jpfgdgml_BldL.gfs +54 -0
- pyogrio/gdal_data/jpfgdgml_Cntr.gfs +54 -0
- pyogrio/gdal_data/jpfgdgml_CommBdry.gfs +49 -0
- pyogrio/gdal_data/jpfgdgml_CommPt.gfs +59 -0
- pyogrio/gdal_data/jpfgdgml_Cstline.gfs +54 -0
- pyogrio/gdal_data/jpfgdgml_ElevPt.gfs +54 -0
- pyogrio/gdal_data/jpfgdgml_GCP.gfs +94 -0
- pyogrio/gdal_data/jpfgdgml_LeveeEdge.gfs +49 -0
- pyogrio/gdal_data/jpfgdgml_RailCL.gfs +54 -0
- pyogrio/gdal_data/jpfgdgml_RdASL.gfs +44 -0
- pyogrio/gdal_data/jpfgdgml_RdArea.gfs +54 -0
- pyogrio/gdal_data/jpfgdgml_RdCompt.gfs +59 -0
- pyogrio/gdal_data/jpfgdgml_RdEdg.gfs +59 -0
- pyogrio/gdal_data/jpfgdgml_RdMgtBdry.gfs +49 -0
- pyogrio/gdal_data/jpfgdgml_RdSgmtA.gfs +59 -0
- pyogrio/gdal_data/jpfgdgml_RvrMgtBdry.gfs +49 -0
- pyogrio/gdal_data/jpfgdgml_SBAPt.gfs +49 -0
- pyogrio/gdal_data/jpfgdgml_SBArea.gfs +54 -0
- pyogrio/gdal_data/jpfgdgml_SBBdry.gfs +44 -0
- pyogrio/gdal_data/jpfgdgml_WA.gfs +54 -0
- pyogrio/gdal_data/jpfgdgml_WL.gfs +54 -0
- pyogrio/gdal_data/jpfgdgml_WStrA.gfs +54 -0
- pyogrio/gdal_data/jpfgdgml_WStrL.gfs +54 -0
- pyogrio/gdal_data/leaflet_template.html +102 -0
- pyogrio/gdal_data/nitf_spec.xml +3288 -0
- pyogrio/gdal_data/nitf_spec.xsd +171 -0
- pyogrio/gdal_data/ogr_fields_override.schema.json +125 -0
- pyogrio/gdal_data/ogrinfo_output.schema.json +528 -0
- pyogrio/gdal_data/ogrvrt.xsd +528 -0
- pyogrio/gdal_data/osmconf.ini +134 -0
- pyogrio/gdal_data/ozi_datum.csv +131 -0
- pyogrio/gdal_data/ozi_ellips.csv +35 -0
- pyogrio/gdal_data/pci_datum.txt +530 -0
- pyogrio/gdal_data/pci_ellips.txt +129 -0
- pyogrio/gdal_data/pdfcomposition.xsd +703 -0
- pyogrio/gdal_data/pds4_template.xml +65 -0
- pyogrio/gdal_data/plscenesconf.json +1985 -0
- pyogrio/gdal_data/ruian_vf_ob_v1.gfs +1455 -0
- pyogrio/gdal_data/ruian_vf_st_uvoh_v1.gfs +86 -0
- pyogrio/gdal_data/ruian_vf_st_v1.gfs +1489 -0
- pyogrio/gdal_data/ruian_vf_v1.gfs +2126 -0
- pyogrio/gdal_data/s57agencies.csv +249 -0
- pyogrio/gdal_data/s57attributes.csv +484 -0
- pyogrio/gdal_data/s57expectedinput.csv +1008 -0
- pyogrio/gdal_data/s57objectclasses.csv +287 -0
- pyogrio/gdal_data/seed_2d.dgn +0 -0
- pyogrio/gdal_data/seed_3d.dgn +0 -0
- pyogrio/gdal_data/stateplane.csv +259 -0
- pyogrio/gdal_data/template_tiles.mapml +28 -0
- pyogrio/gdal_data/tms_LINZAntarticaMapTileGrid.json +190 -0
- pyogrio/gdal_data/tms_MapML_APSTILE.json +268 -0
- pyogrio/gdal_data/tms_MapML_CBMTILE.json +346 -0
- pyogrio/gdal_data/tms_NZTM2000.json +243 -0
- pyogrio/gdal_data/trailer.dxf +434 -0
- pyogrio/gdal_data/usage +4 -0
- pyogrio/gdal_data/vcpkg-cmake-wrapper.cmake +23 -0
- pyogrio/gdal_data/vcpkg.spdx.json +291 -0
- pyogrio/gdal_data/vcpkg_abi_info.txt +45 -0
- pyogrio/gdal_data/vdv452.xml +349 -0
- pyogrio/gdal_data/vdv452.xsd +45 -0
- pyogrio/gdal_data/vicar.json +164 -0
- pyogrio/geopandas.py +978 -0
- pyogrio/proj_data/CH +22 -0
- pyogrio/proj_data/GL27 +23 -0
- pyogrio/proj_data/ITRF2000 +24 -0
- pyogrio/proj_data/ITRF2008 +94 -0
- pyogrio/proj_data/ITRF2014 +55 -0
- pyogrio/proj_data/ITRF2020 +91 -0
- pyogrio/proj_data/copyright +34 -0
- pyogrio/proj_data/deformation_model.schema.json +582 -0
- pyogrio/proj_data/nad.lst +142 -0
- pyogrio/proj_data/nad27 +810 -0
- pyogrio/proj_data/nad83 +745 -0
- pyogrio/proj_data/other.extra +53 -0
- pyogrio/proj_data/proj-config-version.cmake +44 -0
- pyogrio/proj_data/proj-config.cmake +79 -0
- pyogrio/proj_data/proj-targets-release.cmake +19 -0
- pyogrio/proj_data/proj-targets.cmake +107 -0
- pyogrio/proj_data/proj.db +0 -0
- pyogrio/proj_data/proj.ini +59 -0
- pyogrio/proj_data/proj4-targets-release.cmake +19 -0
- pyogrio/proj_data/proj4-targets.cmake +107 -0
- pyogrio/proj_data/projjson.schema.json +1174 -0
- pyogrio/proj_data/triangulation.schema.json +214 -0
- pyogrio/proj_data/usage +9 -0
- pyogrio/proj_data/vcpkg.spdx.json +203 -0
- pyogrio/proj_data/vcpkg_abi_info.txt +28 -0
- pyogrio/proj_data/world +214 -0
- pyogrio/raw.py +897 -0
- pyogrio/tests/__init__.py +0 -0
- pyogrio/tests/conftest.py +588 -0
- pyogrio/tests/fixtures/README.md +108 -0
- pyogrio/tests/fixtures/curve.gpkg +0 -0
- pyogrio/tests/fixtures/curvepolygon.gpkg +0 -0
- pyogrio/tests/fixtures/line_zm.gpkg +0 -0
- pyogrio/tests/fixtures/list_field_values_file.parquet +0 -0
- pyogrio/tests/fixtures/list_nested_struct_file.parquet +0 -0
- pyogrio/tests/fixtures/multisurface.gpkg +0 -0
- pyogrio/tests/fixtures/naturalearth_lowres/naturalearth_lowres.cpg +1 -0
- pyogrio/tests/fixtures/naturalearth_lowres/naturalearth_lowres.dbf +0 -0
- pyogrio/tests/fixtures/naturalearth_lowres/naturalearth_lowres.prj +1 -0
- pyogrio/tests/fixtures/naturalearth_lowres/naturalearth_lowres.shp +0 -0
- pyogrio/tests/fixtures/naturalearth_lowres/naturalearth_lowres.shx +0 -0
- pyogrio/tests/fixtures/sample.osm.pbf +0 -0
- pyogrio/tests/fixtures/test_gpkg_nulls.gpkg +0 -0
- pyogrio/tests/test_arrow.py +1160 -0
- pyogrio/tests/test_core.py +702 -0
- pyogrio/tests/test_geopandas_io.py +3218 -0
- pyogrio/tests/test_path.py +374 -0
- pyogrio/tests/test_raw_io.py +1473 -0
- pyogrio/tests/test_util.py +56 -0
- pyogrio/util.py +258 -0
- pyogrio-0.12.0.dist-info/METADATA +125 -0
- pyogrio-0.12.0.dist-info/RECORD +231 -0
- pyogrio-0.12.0.dist-info/WHEEL +6 -0
- pyogrio-0.12.0.dist-info/licenses/LICENSE +21 -0
- pyogrio-0.12.0.dist-info/top_level.txt +1 -0
pyogrio/geopandas.py
ADDED
|
@@ -0,0 +1,978 @@
|
|
|
1
|
+
"""Functions for reading and writing GeoPandas dataframes."""
|
|
2
|
+
|
|
3
|
+
import json
|
|
4
|
+
import os
|
|
5
|
+
import warnings
|
|
6
|
+
from datetime import datetime
|
|
7
|
+
|
|
8
|
+
import numpy as np
|
|
9
|
+
|
|
10
|
+
from pyogrio._compat import (
|
|
11
|
+
HAS_GEOPANDAS,
|
|
12
|
+
HAS_PYARROW,
|
|
13
|
+
PANDAS_GE_15,
|
|
14
|
+
PANDAS_GE_20,
|
|
15
|
+
PANDAS_GE_22,
|
|
16
|
+
PANDAS_GE_30,
|
|
17
|
+
PYARROW_GE_19,
|
|
18
|
+
__gdal_version__,
|
|
19
|
+
)
|
|
20
|
+
from pyogrio.errors import DataSourceError
|
|
21
|
+
from pyogrio.raw import (
|
|
22
|
+
DRIVERS_NO_MIXED_DIMENSIONS,
|
|
23
|
+
DRIVERS_NO_MIXED_SINGLE_MULTI,
|
|
24
|
+
_get_write_path_driver,
|
|
25
|
+
read,
|
|
26
|
+
read_arrow,
|
|
27
|
+
write,
|
|
28
|
+
)
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
def _stringify_path(path):
|
|
32
|
+
"""Convert path-like to a string if possible, pass-through other objects."""
|
|
33
|
+
if isinstance(path, str):
|
|
34
|
+
return path
|
|
35
|
+
|
|
36
|
+
# checking whether path implements the filesystem protocol
|
|
37
|
+
if hasattr(path, "__fspath__"):
|
|
38
|
+
return path.__fspath__()
|
|
39
|
+
|
|
40
|
+
# pass-though other objects
|
|
41
|
+
return path
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
def _try_parse_datetime(ser, datetime_as_string: bool, mixed_offsets_as_utc: bool):
|
|
45
|
+
import pandas as pd # only called when pandas is known to be installed
|
|
46
|
+
from pandas.api.types import is_string_dtype
|
|
47
|
+
|
|
48
|
+
datetime_kwargs = {}
|
|
49
|
+
if datetime_as_string:
|
|
50
|
+
if not is_string_dtype(ser.dtype):
|
|
51
|
+
# Support to return datetimes as strings using arrow only available for
|
|
52
|
+
# GDAL >= 3.11, so convert to string here if needed.
|
|
53
|
+
res = ser.astype("str")
|
|
54
|
+
if not PANDAS_GE_30:
|
|
55
|
+
# astype("str") also stringifies missing values in pandas < 3
|
|
56
|
+
res[ser.isna()] = None
|
|
57
|
+
res = res.str.replace(" ", "T")
|
|
58
|
+
return res
|
|
59
|
+
if __gdal_version__ < (3, 7, 0):
|
|
60
|
+
# GDAL < 3.7 doesn't return datetimes in ISO8601 format, so fix that
|
|
61
|
+
return ser.str.replace(" ", "T").str.replace("/", "-")
|
|
62
|
+
return ser
|
|
63
|
+
|
|
64
|
+
if PANDAS_GE_22:
|
|
65
|
+
datetime_kwargs["format"] = "ISO8601"
|
|
66
|
+
elif PANDAS_GE_20:
|
|
67
|
+
datetime_kwargs["format"] = "ISO8601"
|
|
68
|
+
datetime_kwargs["errors"] = "ignore"
|
|
69
|
+
else:
|
|
70
|
+
datetime_kwargs["yearfirst"] = True
|
|
71
|
+
|
|
72
|
+
with warnings.catch_warnings():
|
|
73
|
+
warnings.filterwarnings(
|
|
74
|
+
"ignore",
|
|
75
|
+
".*parsing datetimes with mixed time zones will raise.*",
|
|
76
|
+
FutureWarning,
|
|
77
|
+
)
|
|
78
|
+
|
|
79
|
+
warning = "Error parsing datetimes, original strings are returned: {message}"
|
|
80
|
+
try:
|
|
81
|
+
res = pd.to_datetime(ser, **datetime_kwargs)
|
|
82
|
+
|
|
83
|
+
# With pandas >2 and <3, mixed time zones were returned as pandas
|
|
84
|
+
# Timestamps, so convert them to datetime objects.
|
|
85
|
+
if not mixed_offsets_as_utc and PANDAS_GE_20 and res.dtype == "object":
|
|
86
|
+
res = res.map(lambda x: x.to_pydatetime(), na_action="ignore")
|
|
87
|
+
|
|
88
|
+
except Exception as ex:
|
|
89
|
+
if isinstance(ex, ValueError) and "Mixed timezones detected" in str(ex):
|
|
90
|
+
# Parsing mixed time zones with to_datetime is not supported
|
|
91
|
+
# anymore in pandas >= 3.0, leading to a ValueError.
|
|
92
|
+
if mixed_offsets_as_utc:
|
|
93
|
+
# Convert mixed time zone datetimes to UTC.
|
|
94
|
+
try:
|
|
95
|
+
res = pd.to_datetime(ser, utc=True, **datetime_kwargs)
|
|
96
|
+
except Exception as ex:
|
|
97
|
+
warnings.warn(warning.format(message=str(ex)), stacklevel=3)
|
|
98
|
+
return ser
|
|
99
|
+
else:
|
|
100
|
+
# Using map seems to be the fastest way to convert the strings to
|
|
101
|
+
# datetime objects.
|
|
102
|
+
try:
|
|
103
|
+
res = ser.map(datetime.fromisoformat, na_action="ignore")
|
|
104
|
+
except Exception as ex:
|
|
105
|
+
warnings.warn(warning.format(message=str(ex)), stacklevel=3)
|
|
106
|
+
return ser
|
|
107
|
+
|
|
108
|
+
else:
|
|
109
|
+
# If the error is not related to mixed time zones, log it and return
|
|
110
|
+
# the original series.
|
|
111
|
+
warnings.warn(warning.format(message=str(ex)), stacklevel=3)
|
|
112
|
+
if __gdal_version__ < (3, 7, 0):
|
|
113
|
+
# GDAL < 3.7 doesn't return datetimes in ISO8601 format, so fix that
|
|
114
|
+
return ser.str.replace(" ", "T").str.replace("/", "-")
|
|
115
|
+
|
|
116
|
+
return ser
|
|
117
|
+
|
|
118
|
+
# For pandas < 3.0, to_datetime converted mixed time zone data to datetime objects.
|
|
119
|
+
# For mixed_offsets_as_utc they should be converted to UTC though...
|
|
120
|
+
if mixed_offsets_as_utc and res.dtype in ("object", "string"):
|
|
121
|
+
try:
|
|
122
|
+
res = pd.to_datetime(ser, utc=True, **datetime_kwargs)
|
|
123
|
+
except Exception as ex:
|
|
124
|
+
warnings.warn(warning.format(message=str(ex)), stacklevel=3)
|
|
125
|
+
|
|
126
|
+
if res.dtype.kind == "M": # any datetime64
|
|
127
|
+
# GDAL only supports ms precision, convert outputs to match.
|
|
128
|
+
# Pandas 2.0 supports datetime[ms] directly, prior versions only support [ns],
|
|
129
|
+
# Instead, round the values to [ms] precision.
|
|
130
|
+
if PANDAS_GE_20:
|
|
131
|
+
res = res.dt.as_unit("ms")
|
|
132
|
+
else:
|
|
133
|
+
res = res.dt.round(freq="ms")
|
|
134
|
+
|
|
135
|
+
return res
|
|
136
|
+
|
|
137
|
+
|
|
138
|
+
def read_dataframe(
|
|
139
|
+
path_or_buffer,
|
|
140
|
+
/,
|
|
141
|
+
layer=None,
|
|
142
|
+
encoding=None,
|
|
143
|
+
columns=None,
|
|
144
|
+
read_geometry=True,
|
|
145
|
+
force_2d=False,
|
|
146
|
+
skip_features=0,
|
|
147
|
+
max_features=None,
|
|
148
|
+
where=None,
|
|
149
|
+
bbox=None,
|
|
150
|
+
mask=None,
|
|
151
|
+
fids=None,
|
|
152
|
+
sql=None,
|
|
153
|
+
sql_dialect=None,
|
|
154
|
+
fid_as_index=False,
|
|
155
|
+
use_arrow=None,
|
|
156
|
+
on_invalid="raise",
|
|
157
|
+
arrow_to_pandas_kwargs=None,
|
|
158
|
+
datetime_as_string=False,
|
|
159
|
+
mixed_offsets_as_utc=True,
|
|
160
|
+
**kwargs,
|
|
161
|
+
):
|
|
162
|
+
"""Read from an OGR data source to a GeoPandas GeoDataFrame or Pandas DataFrame.
|
|
163
|
+
|
|
164
|
+
If the data source does not have a geometry column or ``read_geometry`` is False,
|
|
165
|
+
a DataFrame will be returned.
|
|
166
|
+
|
|
167
|
+
If you read data with datetime columns containing time zone information, check out
|
|
168
|
+
the notes below.
|
|
169
|
+
|
|
170
|
+
Requires ``geopandas`` >= 0.8.
|
|
171
|
+
|
|
172
|
+
Parameters
|
|
173
|
+
----------
|
|
174
|
+
path_or_buffer : pathlib.Path or str, or bytes buffer
|
|
175
|
+
A dataset path or URI, raw buffer, or file-like object with a read method.
|
|
176
|
+
layer : int or str, optional (default: first layer)
|
|
177
|
+
If an integer is provided, it corresponds to the index of the layer
|
|
178
|
+
with the data source. If a string is provided, it must match the name
|
|
179
|
+
of the layer in the data source. Defaults to first layer in data source.
|
|
180
|
+
encoding : str, optional (default: None)
|
|
181
|
+
If present, will be used as the encoding for reading string values from
|
|
182
|
+
the data source. By default will automatically try to detect the native
|
|
183
|
+
encoding and decode to ``UTF-8``.
|
|
184
|
+
columns : list-like, optional (default: all columns)
|
|
185
|
+
List of column names to import from the data source. Column names must
|
|
186
|
+
exactly match the names in the data source, and will be returned in
|
|
187
|
+
the order they occur in the data source. To avoid reading any columns,
|
|
188
|
+
pass an empty list-like. If combined with ``where`` parameter, must
|
|
189
|
+
include columns referenced in the ``where`` expression or the data may
|
|
190
|
+
not be correctly read; the data source may return empty results or
|
|
191
|
+
raise an exception (behavior varies by driver).
|
|
192
|
+
read_geometry : bool, optional (default: True)
|
|
193
|
+
If True, will read geometry into a GeoSeries. If False, a Pandas DataFrame
|
|
194
|
+
will be returned instead.
|
|
195
|
+
force_2d : bool, optional (default: False)
|
|
196
|
+
If the geometry has Z values, setting this to True will cause those to
|
|
197
|
+
be ignored and 2D geometries to be returned
|
|
198
|
+
skip_features : int, optional (default: 0)
|
|
199
|
+
Number of features to skip from the beginning of the file before
|
|
200
|
+
returning features. If greater than available number of features, an
|
|
201
|
+
empty DataFrame will be returned. Using this parameter may incur
|
|
202
|
+
significant overhead if the driver does not support the capability to
|
|
203
|
+
randomly seek to a specific feature, because it will need to iterate
|
|
204
|
+
over all prior features.
|
|
205
|
+
max_features : int, optional (default: None)
|
|
206
|
+
Number of features to read from the file.
|
|
207
|
+
where : str, optional (default: None)
|
|
208
|
+
Where clause to filter features in layer by attribute values. If the data source
|
|
209
|
+
natively supports SQL, its specific SQL dialect should be used (eg. SQLite and
|
|
210
|
+
GeoPackage: `SQLITE`_, PostgreSQL). If it doesn't, the `OGRSQL WHERE`_ syntax
|
|
211
|
+
should be used. Note that it is not possible to overrule the SQL dialect, this
|
|
212
|
+
is only possible when you use the ``sql`` parameter.
|
|
213
|
+
Examples: ``"ISO_A3 = 'CAN'"``, ``"POP_EST > 10000000 AND POP_EST < 100000000"``
|
|
214
|
+
bbox : tuple of (xmin, ymin, xmax, ymax) (default: None)
|
|
215
|
+
If present, will be used to filter records whose geometry intersects this
|
|
216
|
+
box. This must be in the same CRS as the dataset. If GEOS is present
|
|
217
|
+
and used by GDAL, only geometries that intersect this bbox will be
|
|
218
|
+
returned; if GEOS is not available or not used by GDAL, all geometries
|
|
219
|
+
with bounding boxes that intersect this bbox will be returned.
|
|
220
|
+
Cannot be combined with ``mask`` keyword.
|
|
221
|
+
mask : Shapely geometry, optional (default: None)
|
|
222
|
+
If present, will be used to filter records whose geometry intersects
|
|
223
|
+
this geometry. This must be in the same CRS as the dataset. If GEOS is
|
|
224
|
+
present and used by GDAL, only geometries that intersect this geometry
|
|
225
|
+
will be returned; if GEOS is not available or not used by GDAL, all
|
|
226
|
+
geometries with bounding boxes that intersect the bounding box of this
|
|
227
|
+
geometry will be returned. Requires Shapely >= 2.0.
|
|
228
|
+
Cannot be combined with ``bbox`` keyword.
|
|
229
|
+
fids : array-like, optional (default: None)
|
|
230
|
+
Array of integer feature id (FID) values to select. Cannot be combined
|
|
231
|
+
with other keywords to select a subset (``skip_features``,
|
|
232
|
+
``max_features``, ``where``, ``bbox``, ``mask``, or ``sql``). Note that
|
|
233
|
+
the starting index is driver and file specific (e.g. typically 0 for
|
|
234
|
+
Shapefile and 1 for GeoPackage, but can still depend on the specific
|
|
235
|
+
file). The performance of reading a large number of features usings FIDs
|
|
236
|
+
is also driver specific and depends on the value of ``use_arrow``. The order
|
|
237
|
+
of the rows returned is undefined. If you would like to sort based on FID, use
|
|
238
|
+
``fid_as_index=True`` to have the index of the GeoDataFrame returned set to the
|
|
239
|
+
FIDs of the features read. If ``use_arrow=True``, the number of FIDs is limited
|
|
240
|
+
to 4997 for drivers with 'OGRSQL' as default SQL dialect. To read a larger
|
|
241
|
+
number of FIDs, set ``user_arrow=False``.
|
|
242
|
+
sql : str, optional (default: None)
|
|
243
|
+
The SQL statement to execute. Look at the sql_dialect parameter for more
|
|
244
|
+
information on the syntax to use for the query. When combined with other
|
|
245
|
+
keywords like ``columns``, ``skip_features``, ``max_features``,
|
|
246
|
+
``where``, ``bbox``, or ``mask``, those are applied after the SQL query.
|
|
247
|
+
Be aware that this can have an impact on performance, (e.g. filtering
|
|
248
|
+
with the ``bbox`` or ``mask`` keywords may not use spatial indexes).
|
|
249
|
+
Cannot be combined with the ``layer`` or ``fids`` keywords.
|
|
250
|
+
sql_dialect : str, optional (default: None)
|
|
251
|
+
The SQL dialect the SQL statement is written in. Possible values:
|
|
252
|
+
|
|
253
|
+
- **None**: if the data source natively supports SQL, its specific SQL dialect
|
|
254
|
+
will be used by default (eg. SQLite and Geopackage: `SQLITE`_, PostgreSQL).
|
|
255
|
+
If the data source doesn't natively support SQL, the `OGRSQL`_ dialect is
|
|
256
|
+
the default.
|
|
257
|
+
- '`OGRSQL`_': can be used on any data source. Performance can suffer
|
|
258
|
+
when used on data sources with native support for SQL.
|
|
259
|
+
- '`SQLITE`_': can be used on any data source. All spatialite_
|
|
260
|
+
functions can be used. Performance can suffer on data sources with
|
|
261
|
+
native support for SQL, except for Geopackage and SQLite as this is
|
|
262
|
+
their native SQL dialect.
|
|
263
|
+
|
|
264
|
+
fid_as_index : bool, optional (default: False)
|
|
265
|
+
If True, will use the FIDs of the features that were read as the
|
|
266
|
+
index of the GeoDataFrame. May start at 0 or 1 depending on the driver.
|
|
267
|
+
use_arrow : bool, optional (default: False)
|
|
268
|
+
Whether to use Arrow as the transfer mechanism of the read data
|
|
269
|
+
from GDAL to Python (requires GDAL >= 3.6 and `pyarrow` to be
|
|
270
|
+
installed). When enabled, this provides a further speed-up.
|
|
271
|
+
Defaults to False, but this default can also be globally overridden
|
|
272
|
+
by setting the ``PYOGRIO_USE_ARROW=1`` environment variable.
|
|
273
|
+
on_invalid : str, optional (default: "raise")
|
|
274
|
+
The action to take when an invalid geometry is encountered. Possible
|
|
275
|
+
values:
|
|
276
|
+
|
|
277
|
+
- **raise**: an exception will be raised if a WKB input geometry is
|
|
278
|
+
invalid.
|
|
279
|
+
- **warn**: invalid WKB geometries will be returned as ``None`` and a
|
|
280
|
+
warning will be raised.
|
|
281
|
+
- **ignore**: invalid WKB geometries will be returned as ``None``
|
|
282
|
+
without a warning.
|
|
283
|
+
- **fix**: an effort is made to fix invalid input geometries (currently
|
|
284
|
+
just unclosed rings). If this is not possible, they are returned as
|
|
285
|
+
``None`` without a warning. Requires GEOS >= 3.11 and shapely >= 2.1.
|
|
286
|
+
|
|
287
|
+
arrow_to_pandas_kwargs : dict, optional (default: None)
|
|
288
|
+
When `use_arrow` is True, these kwargs will be passed to the `to_pandas`_
|
|
289
|
+
call for the arrow to pandas conversion.
|
|
290
|
+
datetime_as_string : bool, optional (default: False)
|
|
291
|
+
If True, will return datetime columns as detected by GDAL as ISO8601
|
|
292
|
+
strings and ``mixed_offsets_as_utc`` will be ignored.
|
|
293
|
+
mixed_offsets_as_utc: bool, optional (default: True)
|
|
294
|
+
By default, datetime columns are read as the pandas datetime64 dtype.
|
|
295
|
+
This can represent the data as-is in the case that the column contains
|
|
296
|
+
only naive datetimes (without time zone information), only UTC datetimes,
|
|
297
|
+
or if all datetimes in the column have the same time zone offset. Note
|
|
298
|
+
that in time zones with daylight saving time, datetimes will have
|
|
299
|
+
different offsets throughout the year!
|
|
300
|
+
|
|
301
|
+
For columns that don't comply with the above, i.e. columns that contain
|
|
302
|
+
mixed offsets, the behavior depends on the value of this parameter:
|
|
303
|
+
|
|
304
|
+
- If ``True`` (default), such datetimes are converted to UTC. In the case
|
|
305
|
+
of a mixture of time zone aware and naive datetimes, the naive
|
|
306
|
+
datetimes are assumed to be in UTC already. Datetime columns returned
|
|
307
|
+
will always be pandas datetime64.
|
|
308
|
+
- If ``False``, such datetimes with mixed offsets are returned with
|
|
309
|
+
those offsets preserved. Because pandas datetime64 columns don't
|
|
310
|
+
support mixed time zone offsets, such columns are returned as object
|
|
311
|
+
columns with python datetime values with fixed offsets. If you want
|
|
312
|
+
to roundtrip datetimes without data loss, this is the recommended
|
|
313
|
+
option, but you lose the functionality of a datetime64 column.
|
|
314
|
+
|
|
315
|
+
If ``datetime_as_string`` is True, this option is ignored.
|
|
316
|
+
|
|
317
|
+
**kwargs
|
|
318
|
+
Additional driver-specific dataset open options passed to OGR. Invalid
|
|
319
|
+
options will trigger a warning.
|
|
320
|
+
|
|
321
|
+
Returns
|
|
322
|
+
-------
|
|
323
|
+
GeoDataFrame or DataFrame (if no geometry is present)
|
|
324
|
+
|
|
325
|
+
Notes
|
|
326
|
+
-----
|
|
327
|
+
When you have datetime columns with time zone information, it is important to
|
|
328
|
+
note that GDAL only represents time zones as UTC offsets, whilst pandas uses
|
|
329
|
+
IANA time zones (via `pytz` or `zoneinfo`). As a result, even if a column in a
|
|
330
|
+
DataFrame contains datetimes in a single time zone, this will often still result
|
|
331
|
+
in mixed time zone offsets being written for time zones where daylight saving
|
|
332
|
+
time is used (e.g. +01:00 and +02:00 offsets for time zone Europe/Brussels). When
|
|
333
|
+
roundtripping through GDAL, the information about the original time zone is
|
|
334
|
+
lost, only the offsets can be preserved. By default, `pyogrio.read_dataframe()`
|
|
335
|
+
will convert columns with mixed offsets to UTC to return a datetime64 column. If
|
|
336
|
+
you want to preserve the original offsets, you can use `datetime_as_string=True`
|
|
337
|
+
or `mixed_offsets_as_utc=False`.
|
|
338
|
+
|
|
339
|
+
.. _OGRSQL:
|
|
340
|
+
|
|
341
|
+
https://gdal.org/user/ogr_sql_dialect.html#ogr-sql-dialect
|
|
342
|
+
|
|
343
|
+
.. _OGRSQL WHERE:
|
|
344
|
+
|
|
345
|
+
https://gdal.org/user/ogr_sql_dialect.html#where
|
|
346
|
+
|
|
347
|
+
.. _SQLITE:
|
|
348
|
+
|
|
349
|
+
https://gdal.org/user/sql_sqlite_dialect.html#sql-sqlite-dialect
|
|
350
|
+
|
|
351
|
+
.. _spatialite:
|
|
352
|
+
|
|
353
|
+
https://www.gaia-gis.it/gaia-sins/spatialite-sql-latest.html
|
|
354
|
+
|
|
355
|
+
.. _to_pandas:
|
|
356
|
+
|
|
357
|
+
https://arrow.apache.org/docs/python/generated/pyarrow.Table.html#pyarrow.Table.to_pandas
|
|
358
|
+
|
|
359
|
+
"""
|
|
360
|
+
if not HAS_GEOPANDAS:
|
|
361
|
+
raise ImportError("geopandas is required to use pyogrio.read_dataframe()")
|
|
362
|
+
|
|
363
|
+
import geopandas as gp
|
|
364
|
+
import pandas as pd
|
|
365
|
+
|
|
366
|
+
import shapely # if geopandas is present, shapely is expected to be present
|
|
367
|
+
|
|
368
|
+
path_or_buffer = _stringify_path(path_or_buffer)
|
|
369
|
+
|
|
370
|
+
if use_arrow is None:
|
|
371
|
+
use_arrow = bool(int(os.environ.get("PYOGRIO_USE_ARROW", "0")))
|
|
372
|
+
|
|
373
|
+
read_func = read_arrow if use_arrow else read
|
|
374
|
+
gdal_force_2d = False if use_arrow else force_2d
|
|
375
|
+
|
|
376
|
+
# Always read datetimes as string values to preserve (mixed) time zone info
|
|
377
|
+
# correctly. If arrow is not used, it is needed because numpy does not
|
|
378
|
+
# directly support time zones + performance is also a lot better. If arrow
|
|
379
|
+
# is used, needed because datetime columns don't support mixed time zone
|
|
380
|
+
# offsets + e.g. for .fgb files time zone info isn't handled correctly even
|
|
381
|
+
# for unique time zone offsets if datetimes are not read as string.
|
|
382
|
+
result = read_func(
|
|
383
|
+
path_or_buffer,
|
|
384
|
+
layer=layer,
|
|
385
|
+
encoding=encoding,
|
|
386
|
+
columns=columns,
|
|
387
|
+
read_geometry=read_geometry,
|
|
388
|
+
force_2d=gdal_force_2d,
|
|
389
|
+
skip_features=skip_features,
|
|
390
|
+
max_features=max_features,
|
|
391
|
+
where=where,
|
|
392
|
+
bbox=bbox,
|
|
393
|
+
mask=mask,
|
|
394
|
+
fids=fids,
|
|
395
|
+
sql=sql,
|
|
396
|
+
sql_dialect=sql_dialect,
|
|
397
|
+
return_fids=fid_as_index,
|
|
398
|
+
datetime_as_string=True,
|
|
399
|
+
**kwargs,
|
|
400
|
+
)
|
|
401
|
+
|
|
402
|
+
if use_arrow:
|
|
403
|
+
import pyarrow as pa
|
|
404
|
+
|
|
405
|
+
meta, table = result
|
|
406
|
+
|
|
407
|
+
# split_blocks and self_destruct decrease memory usage, but have as side effect
|
|
408
|
+
# that accessing table afterwards causes crash, so del table to avoid.
|
|
409
|
+
kwargs = {"self_destruct": True}
|
|
410
|
+
if PANDAS_GE_30:
|
|
411
|
+
# starting with pyarrow 19.0, pyarrow will correctly handle this themselves,
|
|
412
|
+
# so only use types_mapper as workaround for older versions
|
|
413
|
+
if not PYARROW_GE_19:
|
|
414
|
+
kwargs["types_mapper"] = {
|
|
415
|
+
pa.string(): pd.StringDtype(na_value=np.nan),
|
|
416
|
+
pa.large_string(): pd.StringDtype(na_value=np.nan),
|
|
417
|
+
pa.json_(): pd.StringDtype(na_value=np.nan),
|
|
418
|
+
}.get
|
|
419
|
+
# TODO enable the below block when upstream issue to accept extension types
|
|
420
|
+
# is fixed
|
|
421
|
+
# else:
|
|
422
|
+
# # for newer pyarrow, still include mapping for json
|
|
423
|
+
# # GDAL 3.11 started to emit this extension type, but pyarrow does not
|
|
424
|
+
# # yet support it properly in the conversion to pandas
|
|
425
|
+
# kwargs["types_mapper"] = {
|
|
426
|
+
# pa.json_(): pd.StringDtype(na_value=np.nan),
|
|
427
|
+
# }.get
|
|
428
|
+
if arrow_to_pandas_kwargs is not None:
|
|
429
|
+
kwargs.update(arrow_to_pandas_kwargs)
|
|
430
|
+
|
|
431
|
+
try:
|
|
432
|
+
df = table.to_pandas(**kwargs)
|
|
433
|
+
except UnicodeDecodeError as ex:
|
|
434
|
+
# Arrow does not support reading data in a non-UTF-8 encoding
|
|
435
|
+
raise DataSourceError(
|
|
436
|
+
"The file being read is not encoded in UTF-8; please use_arrow=False"
|
|
437
|
+
) from ex
|
|
438
|
+
|
|
439
|
+
del table
|
|
440
|
+
|
|
441
|
+
# convert datetime columns that were read as string to datetime
|
|
442
|
+
for dtype, column in zip(meta["dtypes"], meta["fields"]):
|
|
443
|
+
if dtype is not None and dtype.startswith("datetime"):
|
|
444
|
+
df[column] = _try_parse_datetime(
|
|
445
|
+
df[column], datetime_as_string, mixed_offsets_as_utc
|
|
446
|
+
)
|
|
447
|
+
for ogr_subtype, c in zip(meta["ogr_subtypes"], meta["fields"]):
|
|
448
|
+
if ogr_subtype == "OFSTJSON":
|
|
449
|
+
# When reading .parquet files with arrow, JSON fields are already
|
|
450
|
+
# parsed, so only parse if strings.
|
|
451
|
+
dtype = pd.api.types.infer_dtype(df[c])
|
|
452
|
+
if dtype == "string":
|
|
453
|
+
try:
|
|
454
|
+
df[c] = df[c].map(json.loads, na_action="ignore")
|
|
455
|
+
except Exception:
|
|
456
|
+
warnings.warn(
|
|
457
|
+
f"Could not parse column '{c}' as JSON; leaving as string",
|
|
458
|
+
stacklevel=2,
|
|
459
|
+
)
|
|
460
|
+
|
|
461
|
+
if fid_as_index:
|
|
462
|
+
df = df.set_index(meta["fid_column"])
|
|
463
|
+
df.index.names = ["fid"]
|
|
464
|
+
|
|
465
|
+
geometry_name = meta["geometry_name"] or "wkb_geometry"
|
|
466
|
+
if not fid_as_index and len(df.columns) == 0:
|
|
467
|
+
# Index not asked, no geometry column and no attribute columns: return empty
|
|
468
|
+
return pd.DataFrame()
|
|
469
|
+
elif geometry_name in df.columns:
|
|
470
|
+
wkb_values = df.pop(geometry_name)
|
|
471
|
+
if PANDAS_GE_15 and wkb_values.dtype != object:
|
|
472
|
+
if (
|
|
473
|
+
HAS_PYARROW
|
|
474
|
+
and isinstance(wkb_values.dtype, pd.ArrowDtype)
|
|
475
|
+
and isinstance(wkb_values.dtype.pyarrow_dtype, pa.BaseExtensionType)
|
|
476
|
+
):
|
|
477
|
+
# handle BaseExtensionType(extension<geoarrow.wkb>)
|
|
478
|
+
wkb_values = pa.array(wkb_values.array).to_numpy(
|
|
479
|
+
zero_copy_only=False
|
|
480
|
+
)
|
|
481
|
+
else:
|
|
482
|
+
# for example ArrowDtype will otherwise give numpy array with pd.NA
|
|
483
|
+
wkb_values = wkb_values.to_numpy(na_value=None)
|
|
484
|
+
df["geometry"] = shapely.from_wkb(wkb_values, on_invalid=on_invalid)
|
|
485
|
+
if force_2d:
|
|
486
|
+
df["geometry"] = shapely.force_2d(df["geometry"])
|
|
487
|
+
return gp.GeoDataFrame(df, geometry="geometry", crs=meta["crs"])
|
|
488
|
+
else:
|
|
489
|
+
return df
|
|
490
|
+
|
|
491
|
+
meta, index, geometry, field_data = result
|
|
492
|
+
|
|
493
|
+
columns = meta["fields"].tolist()
|
|
494
|
+
data = {columns[i]: field_data[i] for i in range(len(columns))}
|
|
495
|
+
if fid_as_index:
|
|
496
|
+
index = pd.Index(index, name="fid")
|
|
497
|
+
else:
|
|
498
|
+
index = None
|
|
499
|
+
df = pd.DataFrame(data, columns=columns, index=index)
|
|
500
|
+
for dtype, c in zip(meta["dtypes"], df.columns):
|
|
501
|
+
if dtype.startswith("datetime"):
|
|
502
|
+
df[c] = _try_parse_datetime(df[c], datetime_as_string, mixed_offsets_as_utc)
|
|
503
|
+
for ogr_subtype, c in zip(meta["ogr_subtypes"], meta["fields"]):
|
|
504
|
+
if ogr_subtype == "OFSTJSON":
|
|
505
|
+
dtype = pd.api.types.infer_dtype(df[c])
|
|
506
|
+
if dtype == "string":
|
|
507
|
+
try:
|
|
508
|
+
df[c] = df[c].map(json.loads, na_action="ignore")
|
|
509
|
+
except Exception:
|
|
510
|
+
warnings.warn(
|
|
511
|
+
f"Could not parse column '{c}' as JSON; leaving as string",
|
|
512
|
+
stacklevel=2,
|
|
513
|
+
)
|
|
514
|
+
|
|
515
|
+
if geometry is None or not read_geometry:
|
|
516
|
+
return df
|
|
517
|
+
|
|
518
|
+
geometry = shapely.from_wkb(geometry, on_invalid=on_invalid)
|
|
519
|
+
|
|
520
|
+
return gp.GeoDataFrame(df, geometry=geometry, crs=meta["crs"])
|
|
521
|
+
|
|
522
|
+
|
|
523
|
+
def write_dataframe(
|
|
524
|
+
df,
|
|
525
|
+
path,
|
|
526
|
+
layer=None,
|
|
527
|
+
driver=None,
|
|
528
|
+
encoding=None,
|
|
529
|
+
geometry_type=None,
|
|
530
|
+
promote_to_multi=None,
|
|
531
|
+
nan_as_null=True,
|
|
532
|
+
append=False,
|
|
533
|
+
use_arrow=None,
|
|
534
|
+
dataset_metadata=None,
|
|
535
|
+
layer_metadata=None,
|
|
536
|
+
metadata=None,
|
|
537
|
+
dataset_options=None,
|
|
538
|
+
layer_options=None,
|
|
539
|
+
**kwargs,
|
|
540
|
+
):
|
|
541
|
+
"""Write GeoPandas GeoDataFrame to an OGR file format.
|
|
542
|
+
|
|
543
|
+
Parameters
|
|
544
|
+
----------
|
|
545
|
+
df : GeoDataFrame or DataFrame
|
|
546
|
+
The data to write. For attribute columns of the "object" dtype,
|
|
547
|
+
all values will be converted to strings to be written to the
|
|
548
|
+
output file, except None and np.nan, which will be set to NULL
|
|
549
|
+
in the output file.
|
|
550
|
+
path : str or io.BytesIO
|
|
551
|
+
path to output file on writeable file system or an io.BytesIO object to
|
|
552
|
+
allow writing to memory. Will raise NotImplementedError if an open file
|
|
553
|
+
handle is passed; use BytesIO instead.
|
|
554
|
+
NOTE: support for writing to memory is limited to specific drivers.
|
|
555
|
+
layer : str, optional (default: None)
|
|
556
|
+
layer name to create. If writing to memory and layer name is not
|
|
557
|
+
provided, it layer name will be set to a UUID4 value.
|
|
558
|
+
driver : string, optional (default: None)
|
|
559
|
+
The OGR format driver used to write the vector file. By default attempts
|
|
560
|
+
to infer driver from path. Must be provided to write to memory.
|
|
561
|
+
encoding : str, optional (default: None)
|
|
562
|
+
If present, will be used as the encoding for writing string values to
|
|
563
|
+
the file. Use with caution, only certain drivers support encodings
|
|
564
|
+
other than UTF-8.
|
|
565
|
+
geometry_type : string, optional (default: None)
|
|
566
|
+
By default, the geometry type of the layer will be inferred from the
|
|
567
|
+
data, after applying the promote_to_multi logic. If the data only contains a
|
|
568
|
+
single geometry type (after applying the logic of promote_to_multi), this type
|
|
569
|
+
is used for the layer. If the data (still) contains mixed geometry types, the
|
|
570
|
+
output layer geometry type will be set to "Unknown".
|
|
571
|
+
|
|
572
|
+
This parameter does not modify the geometry, but it will try to force the layer
|
|
573
|
+
type of the output file to this value. Use this parameter with caution because
|
|
574
|
+
using a non-default layer geometry type may result in errors when writing the
|
|
575
|
+
file, may be ignored by the driver, or may result in invalid files. Possible
|
|
576
|
+
values are: "Unknown", "Point", "LineString", "Polygon", "MultiPoint",
|
|
577
|
+
"MultiLineString", "MultiPolygon" or "GeometryCollection".
|
|
578
|
+
promote_to_multi : bool, optional (default: None)
|
|
579
|
+
If True, will convert singular geometry types in the data to their
|
|
580
|
+
corresponding multi geometry type for writing. By default, will convert
|
|
581
|
+
mixed singular and multi geometry types to multi geometry types for drivers
|
|
582
|
+
that do not support mixed singular and multi geometry types. If False, geometry
|
|
583
|
+
types will not be promoted, which may result in errors or invalid files when
|
|
584
|
+
attempting to write mixed singular and multi geometry types to drivers that do
|
|
585
|
+
not support such combinations.
|
|
586
|
+
nan_as_null : bool, default True
|
|
587
|
+
For floating point columns (float32 / float64), whether NaN values are
|
|
588
|
+
written as "null" (missing value). Defaults to True because in pandas
|
|
589
|
+
NaNs are typically used as missing value. Note that when set to False,
|
|
590
|
+
behaviour is format specific: some formats don't support NaNs by
|
|
591
|
+
default (e.g. GeoJSON will skip this property) or might treat them as
|
|
592
|
+
null anyway (e.g. GeoPackage).
|
|
593
|
+
append : bool, optional (default: False)
|
|
594
|
+
If True, the data source specified by path already exists, and the
|
|
595
|
+
driver supports appending to an existing data source, will cause the
|
|
596
|
+
data to be appended to the existing records in the data source. Not
|
|
597
|
+
supported for writing to in-memory files.
|
|
598
|
+
NOTE: append support is limited to specific drivers and GDAL versions.
|
|
599
|
+
use_arrow : bool, optional (default: False)
|
|
600
|
+
Whether to use Arrow as the transfer mechanism of the data to write
|
|
601
|
+
from Python to GDAL (requires GDAL >= 3.8 and `pyarrow` to be
|
|
602
|
+
installed). When enabled, this provides a further speed-up.
|
|
603
|
+
Defaults to False, but this default can also be globally overridden
|
|
604
|
+
by setting the ``PYOGRIO_USE_ARROW=1`` environment variable.
|
|
605
|
+
Using Arrow does not support writing an object-dtype column with
|
|
606
|
+
mixed types.
|
|
607
|
+
dataset_metadata : dict, optional (default: None)
|
|
608
|
+
Metadata to be stored at the dataset level in the output file; limited
|
|
609
|
+
to drivers that support writing metadata, such as GPKG, and silently
|
|
610
|
+
ignored otherwise. Keys and values must be strings.
|
|
611
|
+
layer_metadata : dict, optional (default: None)
|
|
612
|
+
Metadata to be stored at the layer level in the output file; limited to
|
|
613
|
+
drivers that support writing metadata, such as GPKG, and silently
|
|
614
|
+
ignored otherwise. Keys and values must be strings.
|
|
615
|
+
metadata : dict, optional (default: None)
|
|
616
|
+
alias of layer_metadata
|
|
617
|
+
dataset_options : dict, optional
|
|
618
|
+
Dataset creation options (format specific) passed to OGR. Specify as
|
|
619
|
+
a key-value dictionary.
|
|
620
|
+
layer_options : dict, optional
|
|
621
|
+
Layer creation options (format specific) passed to OGR. Specify as
|
|
622
|
+
a key-value dictionary.
|
|
623
|
+
**kwargs
|
|
624
|
+
Additional driver-specific dataset or layer creation options passed
|
|
625
|
+
to OGR. pyogrio will attempt to automatically pass those keywords
|
|
626
|
+
either as dataset or as layer creation option based on the known
|
|
627
|
+
options for the specific driver. Alternatively, you can use the
|
|
628
|
+
explicit `dataset_options` or `layer_options` keywords to manually
|
|
629
|
+
do this (for example if an option exists as both dataset and layer
|
|
630
|
+
option).
|
|
631
|
+
|
|
632
|
+
Notes
|
|
633
|
+
-----
|
|
634
|
+
When you have datetime columns with time zone information, it is important to
|
|
635
|
+
note that GDAL only represents time zones as UTC offsets, whilst pandas uses
|
|
636
|
+
IANA time zones (via `pytz` or `zoneinfo`). As a result, even if a column in a
|
|
637
|
+
DataFrame contains datetimes in a single time zone, this will often still result
|
|
638
|
+
in mixed time zone offsets being written for time zones where daylight saving
|
|
639
|
+
time is used (e.g. +01:00 and +02:00 offsets for time zone Europe/Brussels).
|
|
640
|
+
|
|
641
|
+
Object dtype columns containing `datetime` or `pandas.Timestamp` objects will
|
|
642
|
+
also be written as datetime fields, preserving time zone information where possible.
|
|
643
|
+
|
|
644
|
+
"""
|
|
645
|
+
# TODO: add examples to the docstring (e.g. OGR kwargs)
|
|
646
|
+
|
|
647
|
+
if not HAS_GEOPANDAS:
|
|
648
|
+
raise ImportError("geopandas is required to use pyogrio.write_dataframe()")
|
|
649
|
+
|
|
650
|
+
import pandas as pd
|
|
651
|
+
from geopandas.array import to_wkb
|
|
652
|
+
|
|
653
|
+
if not isinstance(df, pd.DataFrame):
|
|
654
|
+
raise ValueError("'df' must be a DataFrame or GeoDataFrame")
|
|
655
|
+
|
|
656
|
+
if use_arrow is None:
|
|
657
|
+
use_arrow = bool(int(os.environ.get("PYOGRIO_USE_ARROW", "0")))
|
|
658
|
+
path, driver = _get_write_path_driver(path, driver, append=append)
|
|
659
|
+
|
|
660
|
+
geometry_columns = df.columns[df.dtypes == "geometry"]
|
|
661
|
+
if len(geometry_columns) > 1:
|
|
662
|
+
raise ValueError(
|
|
663
|
+
"'df' must have only one geometry column. "
|
|
664
|
+
"Multiple geometry columns are not supported for output using OGR."
|
|
665
|
+
)
|
|
666
|
+
|
|
667
|
+
if len(geometry_columns) > 0:
|
|
668
|
+
geometry_column = geometry_columns[0]
|
|
669
|
+
geometry = df[geometry_column]
|
|
670
|
+
else:
|
|
671
|
+
geometry_column = None
|
|
672
|
+
geometry = None
|
|
673
|
+
|
|
674
|
+
# Determine geometry_type and/or promote_to_multi
|
|
675
|
+
if geometry_column is not None:
|
|
676
|
+
geometry_types_all = geometry.geom_type
|
|
677
|
+
|
|
678
|
+
if geometry_column is not None and (
|
|
679
|
+
geometry_type is None or promote_to_multi is None
|
|
680
|
+
):
|
|
681
|
+
tmp_geometry_type = "Unknown"
|
|
682
|
+
has_z = False
|
|
683
|
+
|
|
684
|
+
# If there is data, infer layer geometry type + promote_to_multi
|
|
685
|
+
if not df.empty:
|
|
686
|
+
# None/Empty geometries sometimes report as Z incorrectly, so ignore them
|
|
687
|
+
with warnings.catch_warnings():
|
|
688
|
+
warnings.filterwarnings("ignore", r"GeoSeries\.notna", UserWarning)
|
|
689
|
+
geometry_notna = geometry.notna()
|
|
690
|
+
has_z_arr = geometry[geometry_notna & (~geometry.is_empty)].has_z
|
|
691
|
+
has_z = has_z_arr.any()
|
|
692
|
+
all_z = has_z_arr.all()
|
|
693
|
+
|
|
694
|
+
if driver in DRIVERS_NO_MIXED_DIMENSIONS and has_z and not all_z:
|
|
695
|
+
raise DataSourceError(
|
|
696
|
+
f"Mixed 2D and 3D coordinates are not supported by {driver}"
|
|
697
|
+
)
|
|
698
|
+
|
|
699
|
+
geometry_types = pd.Series(geometry_types_all.unique()).dropna().values
|
|
700
|
+
if len(geometry_types) == 1:
|
|
701
|
+
tmp_geometry_type = geometry_types[0]
|
|
702
|
+
if promote_to_multi and tmp_geometry_type in (
|
|
703
|
+
"Point",
|
|
704
|
+
"LineString",
|
|
705
|
+
"Polygon",
|
|
706
|
+
):
|
|
707
|
+
tmp_geometry_type = f"Multi{tmp_geometry_type}"
|
|
708
|
+
elif len(geometry_types) == 2:
|
|
709
|
+
# Check if the types are corresponding multi + single types
|
|
710
|
+
if "Polygon" in geometry_types and "MultiPolygon" in geometry_types:
|
|
711
|
+
multi_type = "MultiPolygon"
|
|
712
|
+
elif (
|
|
713
|
+
"LineString" in geometry_types
|
|
714
|
+
and "MultiLineString" in geometry_types
|
|
715
|
+
):
|
|
716
|
+
multi_type = "MultiLineString"
|
|
717
|
+
elif "Point" in geometry_types and "MultiPoint" in geometry_types:
|
|
718
|
+
multi_type = "MultiPoint"
|
|
719
|
+
else:
|
|
720
|
+
multi_type = None
|
|
721
|
+
|
|
722
|
+
# If they are corresponding multi + single types
|
|
723
|
+
if multi_type is not None:
|
|
724
|
+
if (
|
|
725
|
+
promote_to_multi is None
|
|
726
|
+
and driver in DRIVERS_NO_MIXED_SINGLE_MULTI
|
|
727
|
+
):
|
|
728
|
+
promote_to_multi = True
|
|
729
|
+
if promote_to_multi:
|
|
730
|
+
tmp_geometry_type = multi_type
|
|
731
|
+
|
|
732
|
+
if geometry_type is None:
|
|
733
|
+
geometry_type = tmp_geometry_type
|
|
734
|
+
if has_z and geometry_type != "Unknown":
|
|
735
|
+
geometry_type = f"{geometry_type} Z"
|
|
736
|
+
|
|
737
|
+
crs = None
|
|
738
|
+
if geometry_column is not None and geometry.crs:
|
|
739
|
+
# TODO: this may need to be WKT1, due to issues
|
|
740
|
+
# if possible use EPSG codes instead
|
|
741
|
+
epsg = geometry.crs.to_epsg()
|
|
742
|
+
if epsg:
|
|
743
|
+
crs = f"EPSG:{epsg}"
|
|
744
|
+
else:
|
|
745
|
+
crs = geometry.crs.to_wkt("WKT1_GDAL")
|
|
746
|
+
|
|
747
|
+
if use_arrow:
|
|
748
|
+
import pandas as pd # only called when pandas is known to be installed
|
|
749
|
+
import pyarrow as pa
|
|
750
|
+
|
|
751
|
+
from pyogrio.raw import write_arrow
|
|
752
|
+
|
|
753
|
+
if geometry_column is not None:
|
|
754
|
+
# Convert to multi type
|
|
755
|
+
if promote_to_multi:
|
|
756
|
+
import shapely
|
|
757
|
+
|
|
758
|
+
mask_points = geometry_types_all == "Point"
|
|
759
|
+
mask_linestrings = geometry_types_all == "LineString"
|
|
760
|
+
mask_polygons = geometry_types_all == "Polygon"
|
|
761
|
+
|
|
762
|
+
if mask_points.any():
|
|
763
|
+
geometry[mask_points] = shapely.multipoints(
|
|
764
|
+
np.atleast_2d(geometry[mask_points]), axis=0
|
|
765
|
+
)
|
|
766
|
+
|
|
767
|
+
if mask_linestrings.any():
|
|
768
|
+
geometry[mask_linestrings] = shapely.multilinestrings(
|
|
769
|
+
np.atleast_2d(geometry[mask_linestrings]), axis=0
|
|
770
|
+
)
|
|
771
|
+
|
|
772
|
+
if mask_polygons.any():
|
|
773
|
+
geometry[mask_polygons] = shapely.multipolygons(
|
|
774
|
+
np.atleast_2d(geometry[mask_polygons]), axis=0
|
|
775
|
+
)
|
|
776
|
+
|
|
777
|
+
geometry = to_wkb(geometry.values)
|
|
778
|
+
df = df.copy(deep=False)
|
|
779
|
+
# convert to plain DataFrame to avoid warning from geopandas about
|
|
780
|
+
# writing non-geometries to the geometry column
|
|
781
|
+
df = pd.DataFrame(df, copy=False)
|
|
782
|
+
df[geometry_column] = geometry
|
|
783
|
+
|
|
784
|
+
# Arrow doesn't support datetime columns with mixed time zones, and GDAL only
|
|
785
|
+
# supports time zone offsets. Hence, to avoid data loss, convert columns that
|
|
786
|
+
# can contain datetime values with different offsets to strings.
|
|
787
|
+
# Also pass a list of these columns on to GDAL so it can still treat them as
|
|
788
|
+
# datetime columns when writing the dataset.
|
|
789
|
+
datetime_cols = []
|
|
790
|
+
for name, dtype in df.dtypes.items():
|
|
791
|
+
if dtype == "object":
|
|
792
|
+
# An object column with datetimes can contain multiple offsets.
|
|
793
|
+
if pd.api.types.infer_dtype(df[name]) == "datetime":
|
|
794
|
+
df[name] = df[name].astype("string")
|
|
795
|
+
datetime_cols.append(name)
|
|
796
|
+
|
|
797
|
+
elif isinstance(dtype, pd.DatetimeTZDtype) and str(dtype.tz) != "UTC":
|
|
798
|
+
# A pd.datetime64 column with a time zone different than UTC can contain
|
|
799
|
+
# data with different offsets because of summer/winter time.
|
|
800
|
+
df[name] = df[name].astype("string")
|
|
801
|
+
datetime_cols.append(name)
|
|
802
|
+
|
|
803
|
+
table = pa.Table.from_pandas(df, preserve_index=False)
|
|
804
|
+
|
|
805
|
+
# Add metadata to datetime columns so GDAL knows they are datetimes.
|
|
806
|
+
table = _add_column_metadata(
|
|
807
|
+
table,
|
|
808
|
+
column_metadata={
|
|
809
|
+
col: {"GDAL:OGR:type": "DateTime"} for col in datetime_cols
|
|
810
|
+
},
|
|
811
|
+
)
|
|
812
|
+
|
|
813
|
+
# Null arrow columns are not supported by GDAL, so convert to string
|
|
814
|
+
for field_index, field in enumerate(table.schema):
|
|
815
|
+
if field.type == pa.null():
|
|
816
|
+
table = table.set_column(
|
|
817
|
+
field_index,
|
|
818
|
+
field.with_type(pa.string()),
|
|
819
|
+
table[field_index].cast(pa.string()),
|
|
820
|
+
)
|
|
821
|
+
|
|
822
|
+
if geometry_column is not None:
|
|
823
|
+
# ensure that the geometry column is binary (for all-null geometries,
|
|
824
|
+
# this could be a wrong type)
|
|
825
|
+
geom_field = table.schema.field(geometry_column)
|
|
826
|
+
if not (
|
|
827
|
+
pa.types.is_binary(geom_field.type)
|
|
828
|
+
or pa.types.is_large_binary(geom_field.type)
|
|
829
|
+
):
|
|
830
|
+
table = table.set_column(
|
|
831
|
+
table.schema.get_field_index(geometry_column),
|
|
832
|
+
geom_field.with_type(pa.binary()),
|
|
833
|
+
table[geometry_column].cast(pa.binary()),
|
|
834
|
+
)
|
|
835
|
+
|
|
836
|
+
write_arrow(
|
|
837
|
+
table,
|
|
838
|
+
path,
|
|
839
|
+
layer=layer,
|
|
840
|
+
driver=driver,
|
|
841
|
+
geometry_name=geometry_column,
|
|
842
|
+
geometry_type=geometry_type,
|
|
843
|
+
crs=crs,
|
|
844
|
+
encoding=encoding,
|
|
845
|
+
append=append,
|
|
846
|
+
dataset_metadata=dataset_metadata,
|
|
847
|
+
layer_metadata=layer_metadata,
|
|
848
|
+
metadata=metadata,
|
|
849
|
+
dataset_options=dataset_options,
|
|
850
|
+
layer_options=layer_options,
|
|
851
|
+
**kwargs,
|
|
852
|
+
)
|
|
853
|
+
return
|
|
854
|
+
|
|
855
|
+
# If there is geometry data, prepare it to be written
|
|
856
|
+
if geometry_column is not None:
|
|
857
|
+
geometry = to_wkb(geometry.values)
|
|
858
|
+
fields = [c for c in df.columns if not c == geometry_column]
|
|
859
|
+
else:
|
|
860
|
+
fields = list(df.columns)
|
|
861
|
+
|
|
862
|
+
# Convert data to numpy arrays for writing
|
|
863
|
+
# TODO: may need to fill in pd.NA, etc
|
|
864
|
+
field_data = []
|
|
865
|
+
field_mask = []
|
|
866
|
+
# dict[str, np.array(int)] special case for dt-tz fields
|
|
867
|
+
gdal_tz_offsets = {}
|
|
868
|
+
for name in fields:
|
|
869
|
+
col = df[name]
|
|
870
|
+
values = None
|
|
871
|
+
|
|
872
|
+
if isinstance(col.dtype, pd.DatetimeTZDtype):
|
|
873
|
+
# Deal with datetimes with time zones by passing down time zone separately
|
|
874
|
+
# pass down naive datetime
|
|
875
|
+
naive = col.dt.tz_localize(None)
|
|
876
|
+
values = naive.values
|
|
877
|
+
# compute offset relative to UTC explicitly
|
|
878
|
+
tz_offset = naive - col.dt.tz_convert("UTC").dt.tz_localize(None)
|
|
879
|
+
# Convert to GDAL time zone offset representation.
|
|
880
|
+
# GMT is represented as 100 and offsets are represented by adding /
|
|
881
|
+
# subtracting 1 for every 15 minutes different from GMT.
|
|
882
|
+
# https://gdal.org/development/rfc/rfc56_millisecond_precision.html#core-changes
|
|
883
|
+
# Convert each row offset to a signed multiple of 15m and add to GMT value
|
|
884
|
+
gdal_offset_representation = tz_offset // pd.Timedelta("15m") + 100
|
|
885
|
+
gdal_tz_offsets[name] = gdal_offset_representation.values
|
|
886
|
+
|
|
887
|
+
elif col.dtype == "object":
|
|
888
|
+
# Column of Timestamp/datetime objects, split in naive datetime and tz.
|
|
889
|
+
if pd.api.types.infer_dtype(df[name]) == "datetime":
|
|
890
|
+
tz_offset = col.map(lambda x: x.utcoffset(), na_action="ignore")
|
|
891
|
+
gdal_offset_repr = tz_offset // pd.Timedelta("15m") + 100
|
|
892
|
+
gdal_tz_offsets[name] = gdal_offset_repr.values
|
|
893
|
+
naive = col.map(lambda x: x.replace(tzinfo=None), na_action="ignore")
|
|
894
|
+
values = naive.values
|
|
895
|
+
|
|
896
|
+
if values is None:
|
|
897
|
+
values = col.values
|
|
898
|
+
|
|
899
|
+
if isinstance(values, pd.api.extensions.ExtensionArray):
|
|
900
|
+
from pandas.arrays import BooleanArray, FloatingArray, IntegerArray
|
|
901
|
+
|
|
902
|
+
if isinstance(values, IntegerArray | FloatingArray | BooleanArray):
|
|
903
|
+
field_data.append(values._data)
|
|
904
|
+
field_mask.append(values._mask)
|
|
905
|
+
else:
|
|
906
|
+
field_data.append(np.asarray(values))
|
|
907
|
+
field_mask.append(np.asarray(values.isna()))
|
|
908
|
+
else:
|
|
909
|
+
field_data.append(values)
|
|
910
|
+
field_mask.append(None)
|
|
911
|
+
|
|
912
|
+
write(
|
|
913
|
+
path,
|
|
914
|
+
layer=layer,
|
|
915
|
+
driver=driver,
|
|
916
|
+
geometry=geometry,
|
|
917
|
+
field_data=field_data,
|
|
918
|
+
field_mask=field_mask,
|
|
919
|
+
fields=fields,
|
|
920
|
+
crs=crs,
|
|
921
|
+
geometry_type=geometry_type,
|
|
922
|
+
encoding=encoding,
|
|
923
|
+
promote_to_multi=promote_to_multi,
|
|
924
|
+
nan_as_null=nan_as_null,
|
|
925
|
+
append=append,
|
|
926
|
+
dataset_metadata=dataset_metadata,
|
|
927
|
+
layer_metadata=layer_metadata,
|
|
928
|
+
metadata=metadata,
|
|
929
|
+
dataset_options=dataset_options,
|
|
930
|
+
layer_options=layer_options,
|
|
931
|
+
gdal_tz_offsets=gdal_tz_offsets,
|
|
932
|
+
**kwargs,
|
|
933
|
+
)
|
|
934
|
+
|
|
935
|
+
|
|
936
|
+
def _add_column_metadata(table, column_metadata: dict = {}):
|
|
937
|
+
"""Add or update column-level metadata to an arrow table.
|
|
938
|
+
|
|
939
|
+
Parameters
|
|
940
|
+
----------
|
|
941
|
+
table : pyarrow.Table
|
|
942
|
+
The table to add the column metadata to.
|
|
943
|
+
column_metadata : dict
|
|
944
|
+
A dictionary with column metadata in the form
|
|
945
|
+
{
|
|
946
|
+
"column_1": {"some": "data"},
|
|
947
|
+
"column_2": {"more": "stuff"},
|
|
948
|
+
}
|
|
949
|
+
|
|
950
|
+
Returns
|
|
951
|
+
-------
|
|
952
|
+
pyarrow.Table: table with the updated column metadata.
|
|
953
|
+
"""
|
|
954
|
+
import pyarrow as pa
|
|
955
|
+
|
|
956
|
+
if not column_metadata:
|
|
957
|
+
return table
|
|
958
|
+
|
|
959
|
+
# Create updated column fields with new metadata
|
|
960
|
+
fields = []
|
|
961
|
+
for col in table.schema.names:
|
|
962
|
+
if col in column_metadata:
|
|
963
|
+
# Add/update column metadata
|
|
964
|
+
metadata = table.field(col).metadata or {}
|
|
965
|
+
for key, value in column_metadata[col].items():
|
|
966
|
+
metadata[key] = value
|
|
967
|
+
# Update field with updated metadata
|
|
968
|
+
fields.append(table.field(col).with_metadata(metadata))
|
|
969
|
+
else:
|
|
970
|
+
fields.append(table.field(col))
|
|
971
|
+
|
|
972
|
+
# Create new schema with the updated field metadata
|
|
973
|
+
schema = pa.schema(fields, metadata=table.schema.metadata)
|
|
974
|
+
|
|
975
|
+
# Build new table with updated schema (shouldn't copy data)
|
|
976
|
+
table = table.cast(schema)
|
|
977
|
+
|
|
978
|
+
return table
|