pyoframe 0.0.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyoframe/__init__.py +15 -0
- pyoframe/_arithmetic.py +228 -0
- pyoframe/constants.py +280 -0
- pyoframe/constraints.py +911 -0
- pyoframe/io.py +149 -0
- pyoframe/io_mappers.py +206 -0
- pyoframe/model.py +92 -0
- pyoframe/model_element.py +116 -0
- pyoframe/monkey_patch.py +54 -0
- pyoframe/objective.py +42 -0
- pyoframe/solvers.py +186 -0
- pyoframe/util.py +271 -0
- pyoframe/variables.py +193 -0
- pyoframe-0.0.4.dist-info/LICENSE +23 -0
- pyoframe-0.0.4.dist-info/METADATA +58 -0
- pyoframe-0.0.4.dist-info/RECORD +18 -0
- pyoframe-0.0.4.dist-info/WHEEL +5 -0
- pyoframe-0.0.4.dist-info/top_level.txt +1 -0
pyoframe/constraints.py
ADDED
|
@@ -0,0 +1,911 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
from typing import (
|
|
3
|
+
Iterable,
|
|
4
|
+
List,
|
|
5
|
+
Mapping,
|
|
6
|
+
Protocol,
|
|
7
|
+
Sequence,
|
|
8
|
+
overload,
|
|
9
|
+
Union,
|
|
10
|
+
Optional,
|
|
11
|
+
)
|
|
12
|
+
from abc import ABC, abstractmethod
|
|
13
|
+
|
|
14
|
+
import pandas as pd
|
|
15
|
+
import polars as pl
|
|
16
|
+
|
|
17
|
+
from pyoframe._arithmetic import _add_expressions, _get_dimensions
|
|
18
|
+
from pyoframe.constants import (
|
|
19
|
+
COEF_KEY,
|
|
20
|
+
CONST_TERM,
|
|
21
|
+
CONSTRAINT_KEY,
|
|
22
|
+
DUAL_KEY,
|
|
23
|
+
RESERVED_COL_KEYS,
|
|
24
|
+
VAR_KEY,
|
|
25
|
+
Config,
|
|
26
|
+
ConstraintSense,
|
|
27
|
+
UnmatchedStrategy,
|
|
28
|
+
)
|
|
29
|
+
from pyoframe.util import (
|
|
30
|
+
IdCounterMixin,
|
|
31
|
+
cast_coef_to_string,
|
|
32
|
+
concat_dimensions,
|
|
33
|
+
get_obj_repr,
|
|
34
|
+
parse_inputs_as_iterable,
|
|
35
|
+
)
|
|
36
|
+
|
|
37
|
+
from pyoframe.model_element import ModelElement
|
|
38
|
+
|
|
39
|
+
VAR_TYPE = pl.UInt32
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
def _forward_to_expression(func_name: str):
|
|
43
|
+
def wrapper(self: "SupportsMath", *args, **kwargs) -> "Expression":
|
|
44
|
+
expr = self.to_expr()
|
|
45
|
+
return getattr(expr, func_name)(*args, **kwargs)
|
|
46
|
+
|
|
47
|
+
return wrapper
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
class SupportsToExpr(Protocol):
|
|
51
|
+
def to_expr(self) -> "Expression": ...
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
class SupportsMath(ABC, SupportsToExpr):
|
|
55
|
+
"""Any object that can be converted into an expression."""
|
|
56
|
+
|
|
57
|
+
def __init__(self):
|
|
58
|
+
self.unmatched_strategy = UnmatchedStrategy.UNSET
|
|
59
|
+
self.allowed_new_dims: List[str] = []
|
|
60
|
+
|
|
61
|
+
def keep_unmatched(self):
|
|
62
|
+
self.unmatched_strategy = UnmatchedStrategy.KEEP
|
|
63
|
+
return self
|
|
64
|
+
|
|
65
|
+
def drop_unmatched(self):
|
|
66
|
+
self.unmatched_strategy = UnmatchedStrategy.DROP
|
|
67
|
+
return self
|
|
68
|
+
|
|
69
|
+
def add_dim(self, *dims: str):
|
|
70
|
+
self.allowed_new_dims.extend(dims)
|
|
71
|
+
return self
|
|
72
|
+
|
|
73
|
+
@abstractmethod
|
|
74
|
+
def to_expr(self) -> "Expression":
|
|
75
|
+
raise NotImplementedError
|
|
76
|
+
|
|
77
|
+
__add__ = _forward_to_expression("__add__")
|
|
78
|
+
__mul__ = _forward_to_expression("__mul__")
|
|
79
|
+
sum = _forward_to_expression("sum")
|
|
80
|
+
map = _forward_to_expression("map")
|
|
81
|
+
|
|
82
|
+
def __neg__(self):
|
|
83
|
+
res = self.to_expr() * -1
|
|
84
|
+
# Negating a constant term should keep the unmatched strategy
|
|
85
|
+
res.unmatched_strategy = self.unmatched_strategy
|
|
86
|
+
return res
|
|
87
|
+
|
|
88
|
+
def __sub__(self, other):
|
|
89
|
+
"""
|
|
90
|
+
>>> import polars as pl
|
|
91
|
+
>>> from pyoframe import Variable
|
|
92
|
+
>>> df = pl.DataFrame({"dim1": [1,2,3], "value": [1,2,3]})
|
|
93
|
+
>>> var = Variable(df["dim1"])
|
|
94
|
+
>>> var - df
|
|
95
|
+
<Expression size=3 dimensions={'dim1': 3} terms=6>
|
|
96
|
+
[1]: x1 -1
|
|
97
|
+
[2]: x2 -2
|
|
98
|
+
[3]: x3 -3
|
|
99
|
+
"""
|
|
100
|
+
if not isinstance(other, (int, float)):
|
|
101
|
+
other = other.to_expr()
|
|
102
|
+
return self.to_expr() + (-other)
|
|
103
|
+
|
|
104
|
+
def __rmul__(self, other):
|
|
105
|
+
return self.to_expr() * other
|
|
106
|
+
|
|
107
|
+
def __radd__(self, other):
|
|
108
|
+
return self.to_expr() + other
|
|
109
|
+
|
|
110
|
+
def __le__(self, other):
|
|
111
|
+
"""Equality constraint.
|
|
112
|
+
Examples
|
|
113
|
+
>>> from pyoframe import Variable
|
|
114
|
+
>>> Variable() <= 1
|
|
115
|
+
<Constraint sense='<=' size=1 dimensions={} terms=2>
|
|
116
|
+
x1 <= 1
|
|
117
|
+
"""
|
|
118
|
+
return Constraint(self - other, ConstraintSense.LE)
|
|
119
|
+
|
|
120
|
+
def __ge__(self, other):
|
|
121
|
+
"""Equality constraint.
|
|
122
|
+
Examples
|
|
123
|
+
>>> from pyoframe import Variable
|
|
124
|
+
>>> Variable() >= 1
|
|
125
|
+
<Constraint sense='>=' size=1 dimensions={} terms=2>
|
|
126
|
+
x1 >= 1
|
|
127
|
+
"""
|
|
128
|
+
return Constraint(self - other, ConstraintSense.GE)
|
|
129
|
+
|
|
130
|
+
def __eq__(self, value: object):
|
|
131
|
+
"""Equality constraint.
|
|
132
|
+
Examples
|
|
133
|
+
>>> from pyoframe import Variable
|
|
134
|
+
>>> Variable() == 1
|
|
135
|
+
<Constraint sense='=' size=1 dimensions={} terms=2>
|
|
136
|
+
x1 = 1
|
|
137
|
+
"""
|
|
138
|
+
return Constraint(self - value, ConstraintSense.EQ)
|
|
139
|
+
|
|
140
|
+
|
|
141
|
+
SetTypes = Union[
|
|
142
|
+
pl.DataFrame,
|
|
143
|
+
pd.Index,
|
|
144
|
+
pd.DataFrame,
|
|
145
|
+
SupportsMath,
|
|
146
|
+
Mapping[str, Sequence[object]],
|
|
147
|
+
"Set",
|
|
148
|
+
]
|
|
149
|
+
|
|
150
|
+
|
|
151
|
+
class Set(ModelElement, SupportsMath):
|
|
152
|
+
def __init__(self, *data: SetTypes | Iterable[SetTypes], **named_data):
|
|
153
|
+
data_list = list(data)
|
|
154
|
+
for name, set in named_data.items():
|
|
155
|
+
data_list.append({name: set})
|
|
156
|
+
df = self._parse_acceptable_sets(*data_list)
|
|
157
|
+
if df.is_duplicated().any():
|
|
158
|
+
raise ValueError("Duplicate rows found in input data.")
|
|
159
|
+
super().__init__(df)
|
|
160
|
+
|
|
161
|
+
def _new(self, data: pl.DataFrame):
|
|
162
|
+
s = Set(data)
|
|
163
|
+
s._model = self._model
|
|
164
|
+
# Copy over the unmatched strategy on operations like .rename(), .with_columns(), etc.
|
|
165
|
+
s.unmatched_strategy = self.unmatched_strategy
|
|
166
|
+
return s
|
|
167
|
+
|
|
168
|
+
@staticmethod
|
|
169
|
+
def _parse_acceptable_sets(
|
|
170
|
+
*over: SetTypes | Iterable[SetTypes],
|
|
171
|
+
) -> pl.DataFrame:
|
|
172
|
+
"""
|
|
173
|
+
>>> import pandas as pd
|
|
174
|
+
>>> dim1 = pd.Index([1, 2, 3], name="dim1")
|
|
175
|
+
>>> dim2 = pd.Index(["a", "b"], name="dim1")
|
|
176
|
+
>>> Set._parse_acceptable_sets([dim1, dim2])
|
|
177
|
+
Traceback (most recent call last):
|
|
178
|
+
...
|
|
179
|
+
AssertionError: All coordinates must have unique column names.
|
|
180
|
+
>>> dim2.name = "dim2"
|
|
181
|
+
>>> Set._parse_acceptable_sets([dim1, dim2])
|
|
182
|
+
shape: (6, 2)
|
|
183
|
+
┌──────┬──────┐
|
|
184
|
+
│ dim1 ┆ dim2 │
|
|
185
|
+
│ --- ┆ --- │
|
|
186
|
+
│ i64 ┆ str │
|
|
187
|
+
╞══════╪══════╡
|
|
188
|
+
│ 1 ┆ a │
|
|
189
|
+
│ 1 ┆ b │
|
|
190
|
+
│ 2 ┆ a │
|
|
191
|
+
│ 2 ┆ b │
|
|
192
|
+
│ 3 ┆ a │
|
|
193
|
+
│ 3 ┆ b │
|
|
194
|
+
└──────┴──────┘
|
|
195
|
+
"""
|
|
196
|
+
assert len(over) > 0, "At least one set must be provided."
|
|
197
|
+
over_iter: Iterable[SetTypes] = parse_inputs_as_iterable(*over)
|
|
198
|
+
|
|
199
|
+
over_frames: List[pl.DataFrame] = [Set._set_to_polars(set) for set in over_iter]
|
|
200
|
+
|
|
201
|
+
over_merged = over_frames[0]
|
|
202
|
+
|
|
203
|
+
for df in over_frames[1:]:
|
|
204
|
+
assert (
|
|
205
|
+
set(over_merged.columns) & set(df.columns) == set()
|
|
206
|
+
), "All coordinates must have unique column names."
|
|
207
|
+
over_merged = over_merged.join(df, how="cross")
|
|
208
|
+
return over_merged
|
|
209
|
+
|
|
210
|
+
def to_expr(self) -> Expression:
|
|
211
|
+
return Expression(
|
|
212
|
+
self.data.with_columns(
|
|
213
|
+
pl.lit(1).alias(COEF_KEY), pl.lit(CONST_TERM).alias(VAR_KEY)
|
|
214
|
+
)
|
|
215
|
+
)
|
|
216
|
+
|
|
217
|
+
def __mul__(self, other):
|
|
218
|
+
if isinstance(other, Set):
|
|
219
|
+
assert (
|
|
220
|
+
set(self.data.columns) & set(other.data.columns) == set()
|
|
221
|
+
), "Cannot multiply two sets with columns in common."
|
|
222
|
+
return Set(self.data, other.data)
|
|
223
|
+
return super().__mul__(other)
|
|
224
|
+
|
|
225
|
+
def __add__(self, other):
|
|
226
|
+
if isinstance(other, Set):
|
|
227
|
+
raise ValueError("Cannot add two sets.")
|
|
228
|
+
return super().__add__(other)
|
|
229
|
+
|
|
230
|
+
def __repr__(self):
|
|
231
|
+
return (
|
|
232
|
+
get_obj_repr(self, ("name",), size=self.data.height, dimensions=self.shape)
|
|
233
|
+
+ "\n"
|
|
234
|
+
+ self.to_expr().to_str(max_line_len=80, max_rows=10)
|
|
235
|
+
)
|
|
236
|
+
|
|
237
|
+
@staticmethod
|
|
238
|
+
def _set_to_polars(set: "SetTypes") -> pl.DataFrame:
|
|
239
|
+
if isinstance(set, dict):
|
|
240
|
+
df = pl.DataFrame(set)
|
|
241
|
+
elif isinstance(set, SupportsMath):
|
|
242
|
+
df = set.to_expr().data.drop(RESERVED_COL_KEYS).unique(maintain_order=True)
|
|
243
|
+
elif isinstance(set, pd.Index):
|
|
244
|
+
df = pl.from_pandas(pd.DataFrame(index=set).reset_index())
|
|
245
|
+
elif isinstance(set, pd.DataFrame):
|
|
246
|
+
df = pl.from_pandas(set)
|
|
247
|
+
elif isinstance(set, pl.DataFrame):
|
|
248
|
+
df = set
|
|
249
|
+
elif isinstance(set, pl.Series):
|
|
250
|
+
df = set.to_frame()
|
|
251
|
+
elif isinstance(set, Set):
|
|
252
|
+
df = set.data
|
|
253
|
+
else:
|
|
254
|
+
raise ValueError(f"Cannot convert type {type(set)} to a polars DataFrame")
|
|
255
|
+
|
|
256
|
+
if "index" in df.columns:
|
|
257
|
+
raise ValueError(
|
|
258
|
+
"Please specify a custom dimension name rather than using 'index' to avoid confusion."
|
|
259
|
+
)
|
|
260
|
+
|
|
261
|
+
for reserved_key in RESERVED_COL_KEYS:
|
|
262
|
+
if reserved_key in df.columns:
|
|
263
|
+
raise ValueError(
|
|
264
|
+
f"Cannot use reserved column names {reserved_key} as dimensions."
|
|
265
|
+
)
|
|
266
|
+
|
|
267
|
+
return df
|
|
268
|
+
|
|
269
|
+
|
|
270
|
+
class Expression(ModelElement, SupportsMath):
|
|
271
|
+
"""A linear expression."""
|
|
272
|
+
|
|
273
|
+
def __init__(self, data: pl.DataFrame):
|
|
274
|
+
"""
|
|
275
|
+
>>> import pandas as pd
|
|
276
|
+
>>> from pyoframe import Variable, Model
|
|
277
|
+
>>> df = pd.DataFrame({"item" : [1, 1, 1, 2, 2], "time": ["mon", "tue", "wed", "mon", "tue"], "cost": [1, 2, 3, 4, 5]}).set_index(["item", "time"])
|
|
278
|
+
>>> m = Model()
|
|
279
|
+
>>> m.Time = Variable(df.index)
|
|
280
|
+
>>> m.Size = Variable(df.index)
|
|
281
|
+
>>> expr = df["cost"] * m.Time + df["cost"] * m.Size
|
|
282
|
+
>>> expr
|
|
283
|
+
<Expression size=5 dimensions={'item': 2, 'time': 3} terms=10>
|
|
284
|
+
[1,mon]: Time[1,mon] + Size[1,mon]
|
|
285
|
+
[1,tue]: 2 Time[1,tue] +2 Size[1,tue]
|
|
286
|
+
[1,wed]: 3 Time[1,wed] +3 Size[1,wed]
|
|
287
|
+
[2,mon]: 4 Time[2,mon] +4 Size[2,mon]
|
|
288
|
+
[2,tue]: 5 Time[2,tue] +5 Size[2,tue]
|
|
289
|
+
"""
|
|
290
|
+
# Sanity checks, VAR_KEY and COEF_KEY must be present
|
|
291
|
+
assert VAR_KEY in data.columns, "Missing variable column."
|
|
292
|
+
assert COEF_KEY in data.columns, "Missing coefficient column."
|
|
293
|
+
|
|
294
|
+
# Sanity check no duplicates indices
|
|
295
|
+
if data.drop(COEF_KEY).is_duplicated().any():
|
|
296
|
+
duplicated_data = data.filter(data.drop(COEF_KEY).is_duplicated())
|
|
297
|
+
raise ValueError(
|
|
298
|
+
f"Cannot create an expression with duplicate indices:\n{duplicated_data}."
|
|
299
|
+
)
|
|
300
|
+
|
|
301
|
+
super().__init__(data)
|
|
302
|
+
|
|
303
|
+
def sum(self, over: Union[str, Iterable[str]]):
|
|
304
|
+
"""
|
|
305
|
+
Examples:
|
|
306
|
+
>>> import pandas as pd
|
|
307
|
+
>>> from pyoframe import Variable
|
|
308
|
+
>>> df = pd.DataFrame({"item" : [1, 1, 1, 2, 2], "time": ["mon", "tue", "wed", "mon", "tue"], "cost": [1, 2, 3, 4, 5]}).set_index(["item", "time"])
|
|
309
|
+
>>> quantity = Variable(df.reset_index()[["item"]].drop_duplicates())
|
|
310
|
+
>>> expr = (quantity * df["cost"]).sum("time")
|
|
311
|
+
>>> expr.data
|
|
312
|
+
shape: (2, 3)
|
|
313
|
+
┌──────┬─────────┬───────────────┐
|
|
314
|
+
│ item ┆ __coeff ┆ __variable_id │
|
|
315
|
+
│ --- ┆ --- ┆ --- │
|
|
316
|
+
│ i64 ┆ f64 ┆ u32 │
|
|
317
|
+
╞══════╪═════════╪═══════════════╡
|
|
318
|
+
│ 1 ┆ 6.0 ┆ 1 │
|
|
319
|
+
│ 2 ┆ 9.0 ┆ 2 │
|
|
320
|
+
└──────┴─────────┴───────────────┘
|
|
321
|
+
"""
|
|
322
|
+
if isinstance(over, str):
|
|
323
|
+
over = [over]
|
|
324
|
+
dims = self.dimensions
|
|
325
|
+
if not dims:
|
|
326
|
+
raise ValueError(
|
|
327
|
+
f"Cannot sum over dimensions {over} since the current expression has no dimensions."
|
|
328
|
+
)
|
|
329
|
+
assert set(over) <= set(dims), f"Cannot sum over {over} as it is not in {dims}"
|
|
330
|
+
remaining_dims = [dim for dim in dims if dim not in over]
|
|
331
|
+
|
|
332
|
+
return self._new(
|
|
333
|
+
self.data.drop(over)
|
|
334
|
+
.group_by(remaining_dims + [VAR_KEY], maintain_order=True)
|
|
335
|
+
.sum()
|
|
336
|
+
)
|
|
337
|
+
|
|
338
|
+
def map(self, mapping_set: SetTypes, drop_shared_dims: bool = True):
|
|
339
|
+
"""
|
|
340
|
+
Replaces the dimensions that are shared with mapping_set with the other dimensions found in mapping_set.
|
|
341
|
+
|
|
342
|
+
This is particularly useful to go from one type of dimensions to another. For example, to convert data that
|
|
343
|
+
is indexed by city to data indexed by country (see example).
|
|
344
|
+
|
|
345
|
+
Parameters:
|
|
346
|
+
mapping_set : SetTypes
|
|
347
|
+
The set to map the expression to. This can be a DataFrame, Index, or another Set.
|
|
348
|
+
drop_shared_dims : bool, default True
|
|
349
|
+
If True, the dimensions shared between the expression and the mapping set are dropped from the resulting expression and
|
|
350
|
+
repeated rows are summed.
|
|
351
|
+
If False, the shared dimensions are kept in the resulting expression.
|
|
352
|
+
|
|
353
|
+
Returns:
|
|
354
|
+
Expression
|
|
355
|
+
A new Expression containing the result of the mapping operation.
|
|
356
|
+
|
|
357
|
+
Examples:
|
|
358
|
+
|
|
359
|
+
>>> import polars as pl
|
|
360
|
+
>>> from pyoframe import Variable, Model
|
|
361
|
+
>>> pop_data = pl.DataFrame({"city": ["Toronto", "Vancouver", "Boston"], "population": [10, 2, 8]}).to_expr()
|
|
362
|
+
>>> cities_and_countries = pl.DataFrame({"city": ["Toronto", "Vancouver", "Boston"], "country": ["Canada", "Canada", "USA"]})
|
|
363
|
+
>>> pop_data.map(cities_and_countries)
|
|
364
|
+
<Expression size=2 dimensions={'country': 2} terms=2>
|
|
365
|
+
[Canada]: 12
|
|
366
|
+
[USA]: 8
|
|
367
|
+
|
|
368
|
+
>>> pop_data.map(cities_and_countries, drop_shared_dims=False)
|
|
369
|
+
<Expression size=3 dimensions={'city': 3, 'country': 2} terms=3>
|
|
370
|
+
[Toronto,Canada]: 10
|
|
371
|
+
[Vancouver,Canada]: 2
|
|
372
|
+
[Boston,USA]: 8
|
|
373
|
+
"""
|
|
374
|
+
mapping_set = Set(mapping_set)
|
|
375
|
+
|
|
376
|
+
dims = self.dimensions
|
|
377
|
+
if dims is None:
|
|
378
|
+
raise ValueError("Cannot use .map() on an expression with no dimensions.")
|
|
379
|
+
|
|
380
|
+
mapping_dims = mapping_set.dimensions
|
|
381
|
+
if mapping_dims is None:
|
|
382
|
+
raise ValueError(
|
|
383
|
+
"Cannot use .map() with a mapping set containing no dimensions."
|
|
384
|
+
)
|
|
385
|
+
|
|
386
|
+
shared_dims = [dim for dim in dims if dim in mapping_dims]
|
|
387
|
+
if not shared_dims:
|
|
388
|
+
raise ValueError(
|
|
389
|
+
f"Cannot apply .map() as there are no shared dimensions between the expression (dims={self.dimensions}) and the mapping set (dims={mapping_set.dimensions})."
|
|
390
|
+
)
|
|
391
|
+
|
|
392
|
+
mapped_expression = self * mapping_set
|
|
393
|
+
|
|
394
|
+
if drop_shared_dims:
|
|
395
|
+
return sum(shared_dims, mapped_expression)
|
|
396
|
+
|
|
397
|
+
return mapped_expression
|
|
398
|
+
|
|
399
|
+
def rolling_sum(self, over: str, window_size: int):
|
|
400
|
+
"""
|
|
401
|
+
Calculates the rolling sum of the Expression over a specified window size for a given dimension.
|
|
402
|
+
|
|
403
|
+
This method applies a rolling sum operation over the dimension specified by `over`,
|
|
404
|
+
using a window defined by `window_size`.
|
|
405
|
+
|
|
406
|
+
|
|
407
|
+
Parameters:
|
|
408
|
+
over : str
|
|
409
|
+
The name of the dimension (column) over which the rolling sum is calculated.
|
|
410
|
+
This dimension must exist within the Expression's dimensions.
|
|
411
|
+
window_size : int
|
|
412
|
+
The size of the moving window in terms of number of records.
|
|
413
|
+
The rolling sum is calculated over this many consecutive elements.
|
|
414
|
+
|
|
415
|
+
Returns:
|
|
416
|
+
Expression
|
|
417
|
+
A new Expression instance containing the result of the rolling sum operation.
|
|
418
|
+
This new Expression retains all dimensions (columns) of the original data,
|
|
419
|
+
with the rolling sum applied over the specified dimension.
|
|
420
|
+
|
|
421
|
+
Examples:
|
|
422
|
+
>>> import polars as pl
|
|
423
|
+
>>> from pyoframe import Variable, Model
|
|
424
|
+
>>> cost = pl.DataFrame({"item" : [1, 1, 1, 2, 2], "time": [1, 2, 3, 1, 2], "cost": [1, 2, 3, 4, 5]})
|
|
425
|
+
>>> m = Model()
|
|
426
|
+
>>> m.quantity = Variable(cost[["item", "time"]])
|
|
427
|
+
>>> (m.quantity * cost).rolling_sum(over="time", window_size=2)
|
|
428
|
+
<Expression size=5 dimensions={'item': 2, 'time': 3} terms=8>
|
|
429
|
+
[1,1]: quantity[1,1]
|
|
430
|
+
[1,2]: quantity[1,1] +2 quantity[1,2]
|
|
431
|
+
[1,3]: 2 quantity[1,2] +3 quantity[1,3]
|
|
432
|
+
[2,1]: 4 quantity[2,1]
|
|
433
|
+
[2,2]: 4 quantity[2,1] +5 quantity[2,2]
|
|
434
|
+
"""
|
|
435
|
+
dims = self.dimensions
|
|
436
|
+
if dims is None:
|
|
437
|
+
raise ValueError(
|
|
438
|
+
"Cannot use rolling_sum() with an expression with no dimensions."
|
|
439
|
+
)
|
|
440
|
+
assert over in dims, f"Cannot sum over {over} as it is not in {dims}"
|
|
441
|
+
remaining_dims = [dim for dim in dims if dim not in over]
|
|
442
|
+
|
|
443
|
+
return self._new(
|
|
444
|
+
pl.concat(
|
|
445
|
+
[
|
|
446
|
+
df.with_columns(pl.col(over).max())
|
|
447
|
+
for _, df in self.data.rolling(
|
|
448
|
+
index_column=over, period=f"{window_size}i", by=remaining_dims
|
|
449
|
+
)
|
|
450
|
+
]
|
|
451
|
+
)
|
|
452
|
+
)
|
|
453
|
+
|
|
454
|
+
def within(self, set: "SetTypes") -> Expression:
|
|
455
|
+
"""
|
|
456
|
+
Examples
|
|
457
|
+
>>> import pandas as pd
|
|
458
|
+
>>> general_expr = pd.DataFrame({"dim1": [1, 2, 3], "value": [1, 2, 3]}).to_expr()
|
|
459
|
+
>>> filter_expr = pd.DataFrame({"dim1": [1, 3], "value": [5, 6]}).to_expr()
|
|
460
|
+
>>> general_expr.within(filter_expr).data
|
|
461
|
+
shape: (2, 3)
|
|
462
|
+
┌──────┬─────────┬───────────────┐
|
|
463
|
+
│ dim1 ┆ __coeff ┆ __variable_id │
|
|
464
|
+
│ --- ┆ --- ┆ --- │
|
|
465
|
+
│ i64 ┆ f64 ┆ u32 │
|
|
466
|
+
╞══════╪═════════╪═══════════════╡
|
|
467
|
+
│ 1 ┆ 1.0 ┆ 0 │
|
|
468
|
+
│ 3 ┆ 3.0 ┆ 0 │
|
|
469
|
+
└──────┴─────────┴───────────────┘
|
|
470
|
+
"""
|
|
471
|
+
df: pl.DataFrame = Set(set).data
|
|
472
|
+
set_dims = _get_dimensions(df)
|
|
473
|
+
assert (
|
|
474
|
+
set_dims is not None
|
|
475
|
+
), "Cannot use .within() with a set with no dimensions."
|
|
476
|
+
dims = self.dimensions
|
|
477
|
+
assert (
|
|
478
|
+
dims is not None
|
|
479
|
+
), "Cannot use .within() with an expression with no dimensions."
|
|
480
|
+
dims_in_common = [dim for dim in dims if dim in set_dims]
|
|
481
|
+
by_dims = df.select(dims_in_common).unique(maintain_order=True)
|
|
482
|
+
return self._new(self.data.join(by_dims, on=dims_in_common))
|
|
483
|
+
|
|
484
|
+
def __add__(self, other):
|
|
485
|
+
"""
|
|
486
|
+
Examples:
|
|
487
|
+
>>> import pandas as pd
|
|
488
|
+
>>> from pyoframe import Variable
|
|
489
|
+
>>> add = pd.DataFrame({"dim1": [1,2,3], "add": [10, 20, 30]}).to_expr()
|
|
490
|
+
>>> var = Variable(add)
|
|
491
|
+
>>> var + add
|
|
492
|
+
<Expression size=3 dimensions={'dim1': 3} terms=6>
|
|
493
|
+
[1]: x1 +10
|
|
494
|
+
[2]: x2 +20
|
|
495
|
+
[3]: x3 +30
|
|
496
|
+
>>> var + add + 2
|
|
497
|
+
<Expression size=3 dimensions={'dim1': 3} terms=6>
|
|
498
|
+
[1]: x1 +12
|
|
499
|
+
[2]: x2 +22
|
|
500
|
+
[3]: x3 +32
|
|
501
|
+
>>> var + pd.DataFrame({"dim1": [1,2], "add": [10, 20]})
|
|
502
|
+
Traceback (most recent call last):
|
|
503
|
+
...
|
|
504
|
+
pyoframe._arithmetic.PyoframeError: Failed to add expressions:
|
|
505
|
+
<Expression size=3 dimensions={'dim1': 3} terms=3> + <Expression size=2 dimensions={'dim1': 2} terms=2>
|
|
506
|
+
Due to error:
|
|
507
|
+
Dataframe has unmatched values. If this is intentional, use .drop_unmatched() or .keep_unmatched()
|
|
508
|
+
shape: (1, 2)
|
|
509
|
+
┌──────┬────────────┐
|
|
510
|
+
│ dim1 ┆ dim1_right │
|
|
511
|
+
│ --- ┆ --- │
|
|
512
|
+
│ i64 ┆ i64 │
|
|
513
|
+
╞══════╪════════════╡
|
|
514
|
+
│ 3 ┆ null │
|
|
515
|
+
└──────┴────────────┘
|
|
516
|
+
>>> 5 + 2 * Variable()
|
|
517
|
+
<Expression size=1 dimensions={} terms=2>
|
|
518
|
+
2 x4 +5
|
|
519
|
+
"""
|
|
520
|
+
if isinstance(other, str):
|
|
521
|
+
raise ValueError(
|
|
522
|
+
"Cannot add a string to an expression. Perhaps you meant to use pf.sum() instead of sum()?"
|
|
523
|
+
)
|
|
524
|
+
if isinstance(other, (int, float)):
|
|
525
|
+
return self._add_const(other)
|
|
526
|
+
other = other.to_expr()
|
|
527
|
+
self._learn_from_other(other)
|
|
528
|
+
return _add_expressions(self, other)
|
|
529
|
+
|
|
530
|
+
def __mul__(
|
|
531
|
+
self: "Expression", other: int | float | SupportsToExpr
|
|
532
|
+
) -> "Expression":
|
|
533
|
+
if isinstance(other, (int, float)):
|
|
534
|
+
return self.with_columns(pl.col(COEF_KEY) * other)
|
|
535
|
+
|
|
536
|
+
other = other.to_expr()
|
|
537
|
+
self._learn_from_other(other)
|
|
538
|
+
|
|
539
|
+
if (other.data.get_column(VAR_KEY) != CONST_TERM).any():
|
|
540
|
+
self, other = other, self
|
|
541
|
+
|
|
542
|
+
if (other.data.get_column(VAR_KEY) != CONST_TERM).any():
|
|
543
|
+
raise ValueError(
|
|
544
|
+
"Multiplication of two expressions with variables is non-linear and not supported."
|
|
545
|
+
)
|
|
546
|
+
multiplier = other.data.drop(VAR_KEY)
|
|
547
|
+
|
|
548
|
+
dims = self.dimensions_unsafe
|
|
549
|
+
other_dims = other.dimensions_unsafe
|
|
550
|
+
dims_in_common = [dim for dim in dims if dim in other_dims]
|
|
551
|
+
|
|
552
|
+
data = (
|
|
553
|
+
self.data.join(
|
|
554
|
+
multiplier,
|
|
555
|
+
on=dims_in_common,
|
|
556
|
+
how="inner" if dims_in_common else "cross",
|
|
557
|
+
)
|
|
558
|
+
.with_columns(pl.col(COEF_KEY) * pl.col(COEF_KEY + "_right"))
|
|
559
|
+
.drop(COEF_KEY + "_right")
|
|
560
|
+
)
|
|
561
|
+
|
|
562
|
+
return self._new(data)
|
|
563
|
+
|
|
564
|
+
def to_expr(self) -> Expression:
|
|
565
|
+
return self
|
|
566
|
+
|
|
567
|
+
def _learn_from_other(self, other: Expression):
|
|
568
|
+
if self._model is None and other._model is not None:
|
|
569
|
+
self._model = other._model
|
|
570
|
+
|
|
571
|
+
def _new(self, data: pl.DataFrame) -> Expression:
|
|
572
|
+
e = Expression(data)
|
|
573
|
+
e._model = self._model
|
|
574
|
+
# Note: We intentionally don't propogate the unmatched strategy to the new expression
|
|
575
|
+
e.allowed_new_dims = self.allowed_new_dims
|
|
576
|
+
return e
|
|
577
|
+
|
|
578
|
+
def _add_const(self, const: int | float) -> Expression:
|
|
579
|
+
dim = self.dimensions
|
|
580
|
+
data = self.data
|
|
581
|
+
# Fill in missing constant terms
|
|
582
|
+
if not dim:
|
|
583
|
+
if CONST_TERM not in data[VAR_KEY]:
|
|
584
|
+
data = pl.concat(
|
|
585
|
+
[
|
|
586
|
+
data,
|
|
587
|
+
pl.DataFrame(
|
|
588
|
+
{COEF_KEY: [0.0], VAR_KEY: [CONST_TERM]},
|
|
589
|
+
schema={COEF_KEY: pl.Float64, VAR_KEY: VAR_TYPE},
|
|
590
|
+
),
|
|
591
|
+
],
|
|
592
|
+
how="vertical_relaxed",
|
|
593
|
+
)
|
|
594
|
+
else:
|
|
595
|
+
keys = (
|
|
596
|
+
data.select(dim)
|
|
597
|
+
.unique(maintain_order=True)
|
|
598
|
+
.with_columns(pl.lit(CONST_TERM).alias(VAR_KEY).cast(VAR_TYPE))
|
|
599
|
+
)
|
|
600
|
+
data = data.join(keys, on=dim + [VAR_KEY], how="outer_coalesce")
|
|
601
|
+
data = data.with_columns(pl.col(COEF_KEY).fill_null(0.0))
|
|
602
|
+
|
|
603
|
+
data = data.with_columns(
|
|
604
|
+
pl.when(pl.col(VAR_KEY) == CONST_TERM)
|
|
605
|
+
.then(pl.col(COEF_KEY) + const)
|
|
606
|
+
.otherwise(pl.col(COEF_KEY))
|
|
607
|
+
)
|
|
608
|
+
|
|
609
|
+
return self._new(data)
|
|
610
|
+
|
|
611
|
+
@property
|
|
612
|
+
def constant_terms(self):
|
|
613
|
+
dims = self.dimensions
|
|
614
|
+
constant_terms = self.data.filter(pl.col(VAR_KEY) == CONST_TERM).drop(VAR_KEY)
|
|
615
|
+
if dims is not None:
|
|
616
|
+
return constant_terms.join(
|
|
617
|
+
self.data.select(dims).unique(maintain_order=True),
|
|
618
|
+
on=dims,
|
|
619
|
+
how="outer_coalesce",
|
|
620
|
+
).with_columns(pl.col(COEF_KEY).fill_null(0.0))
|
|
621
|
+
else:
|
|
622
|
+
if len(constant_terms) == 0:
|
|
623
|
+
return pl.DataFrame(
|
|
624
|
+
{COEF_KEY: [0.0], VAR_KEY: [CONST_TERM]},
|
|
625
|
+
schema={COEF_KEY: pl.Float64, VAR_KEY: VAR_TYPE},
|
|
626
|
+
)
|
|
627
|
+
return constant_terms
|
|
628
|
+
|
|
629
|
+
@property
|
|
630
|
+
def variable_terms(self):
|
|
631
|
+
return self.data.filter(pl.col(VAR_KEY) != CONST_TERM)
|
|
632
|
+
|
|
633
|
+
def to_str_table(
|
|
634
|
+
self,
|
|
635
|
+
max_line_len=None,
|
|
636
|
+
max_rows=None,
|
|
637
|
+
include_const_term=True,
|
|
638
|
+
var_map=None,
|
|
639
|
+
float_precision=None,
|
|
640
|
+
):
|
|
641
|
+
data = self.data if include_const_term else self.variable_terms
|
|
642
|
+
data = cast_coef_to_string(data, float_precision=float_precision)
|
|
643
|
+
|
|
644
|
+
if var_map is not None:
|
|
645
|
+
data = var_map.apply(data, to_col="str_var")
|
|
646
|
+
elif self._model is not None and self._model.var_map is not None:
|
|
647
|
+
var_map = self._model.var_map
|
|
648
|
+
data = var_map.apply(data, to_col="str_var")
|
|
649
|
+
else:
|
|
650
|
+
data = data.with_columns(
|
|
651
|
+
pl.concat_str(pl.lit("x"), VAR_KEY).alias("str_var")
|
|
652
|
+
)
|
|
653
|
+
data = data.with_columns(
|
|
654
|
+
pl.when(pl.col(VAR_KEY) == CONST_TERM)
|
|
655
|
+
.then(pl.lit(""))
|
|
656
|
+
.otherwise("str_var")
|
|
657
|
+
.alias(VAR_KEY)
|
|
658
|
+
).drop("str_var")
|
|
659
|
+
|
|
660
|
+
dimensions = self.dimensions
|
|
661
|
+
|
|
662
|
+
# Create a string for each term
|
|
663
|
+
data = data.with_columns(
|
|
664
|
+
expr=pl.concat_str(
|
|
665
|
+
COEF_KEY,
|
|
666
|
+
pl.lit(" "),
|
|
667
|
+
VAR_KEY,
|
|
668
|
+
)
|
|
669
|
+
).drop(COEF_KEY, VAR_KEY)
|
|
670
|
+
|
|
671
|
+
# Combine terms into one string
|
|
672
|
+
if dimensions is not None:
|
|
673
|
+
data = data.group_by(dimensions, maintain_order=True).agg(
|
|
674
|
+
pl.col("expr").str.concat(delimiter=" ")
|
|
675
|
+
)
|
|
676
|
+
else:
|
|
677
|
+
data = data.select(pl.col("expr").str.concat(delimiter=" "))
|
|
678
|
+
|
|
679
|
+
# Remove leading +
|
|
680
|
+
data = data.with_columns(pl.col("expr").str.strip_chars(characters=" +"))
|
|
681
|
+
|
|
682
|
+
# TODO add vertical ... if too many rows, in the middle of the table
|
|
683
|
+
if max_rows:
|
|
684
|
+
data = data.head(max_rows)
|
|
685
|
+
|
|
686
|
+
if max_line_len:
|
|
687
|
+
data = data.with_columns(
|
|
688
|
+
pl.when(pl.col("expr").str.len_chars() > max_line_len)
|
|
689
|
+
.then(
|
|
690
|
+
pl.concat_str(
|
|
691
|
+
pl.col("expr").str.slice(0, max_line_len),
|
|
692
|
+
pl.lit("..."),
|
|
693
|
+
)
|
|
694
|
+
)
|
|
695
|
+
.otherwise(pl.col("expr"))
|
|
696
|
+
)
|
|
697
|
+
return data
|
|
698
|
+
|
|
699
|
+
def to_str_create_prefix(self, data):
|
|
700
|
+
if self.name is not None or self.dimensions:
|
|
701
|
+
data = concat_dimensions(data, prefix=self.name, ignore_columns=["expr"])
|
|
702
|
+
data = data.with_columns(
|
|
703
|
+
pl.concat_str("concated_dim", pl.lit(": "), "expr").alias("expr")
|
|
704
|
+
).drop("concated_dim")
|
|
705
|
+
return data
|
|
706
|
+
|
|
707
|
+
def to_str(
|
|
708
|
+
self,
|
|
709
|
+
max_line_len=None,
|
|
710
|
+
max_rows=None,
|
|
711
|
+
include_const_term=True,
|
|
712
|
+
var_map=None,
|
|
713
|
+
include_prefix=True,
|
|
714
|
+
include_header=False,
|
|
715
|
+
include_data=True,
|
|
716
|
+
float_precision=None,
|
|
717
|
+
):
|
|
718
|
+
result = ""
|
|
719
|
+
if include_header:
|
|
720
|
+
result += get_obj_repr(
|
|
721
|
+
self, size=len(self), dimensions=self.shape, terms=len(self.data)
|
|
722
|
+
)
|
|
723
|
+
if include_header and include_data:
|
|
724
|
+
result += "\n"
|
|
725
|
+
if include_data:
|
|
726
|
+
str_table = self.to_str_table(
|
|
727
|
+
max_line_len=max_line_len,
|
|
728
|
+
max_rows=max_rows,
|
|
729
|
+
include_const_term=include_const_term,
|
|
730
|
+
var_map=var_map,
|
|
731
|
+
float_precision=float_precision,
|
|
732
|
+
)
|
|
733
|
+
if include_prefix:
|
|
734
|
+
str_table = self.to_str_create_prefix(str_table)
|
|
735
|
+
result += str_table.select(pl.col("expr").str.concat(delimiter="\n")).item()
|
|
736
|
+
|
|
737
|
+
return result
|
|
738
|
+
|
|
739
|
+
def __repr__(self) -> str:
|
|
740
|
+
return self.to_str(
|
|
741
|
+
max_line_len=80,
|
|
742
|
+
max_rows=15,
|
|
743
|
+
include_header=True,
|
|
744
|
+
float_precision=Config.print_float_precision,
|
|
745
|
+
)
|
|
746
|
+
|
|
747
|
+
def __str__(self) -> str:
|
|
748
|
+
return self.to_str()
|
|
749
|
+
|
|
750
|
+
|
|
751
|
+
@overload
|
|
752
|
+
def sum(over: Union[str, Sequence[str]], expr: SupportsToExpr): ...
|
|
753
|
+
|
|
754
|
+
|
|
755
|
+
@overload
|
|
756
|
+
def sum(over: SupportsToExpr): ...
|
|
757
|
+
|
|
758
|
+
|
|
759
|
+
def sum(
|
|
760
|
+
over: Union[str, Sequence[str], SupportsToExpr],
|
|
761
|
+
expr: Optional[SupportsToExpr] = None,
|
|
762
|
+
) -> "Expression":
|
|
763
|
+
if expr is None:
|
|
764
|
+
assert isinstance(over, SupportsMath)
|
|
765
|
+
over = over.to_expr()
|
|
766
|
+
all_dims = over.dimensions
|
|
767
|
+
if all_dims is None:
|
|
768
|
+
raise ValueError(
|
|
769
|
+
"Cannot sum over dimensions with an expression with no dimensions."
|
|
770
|
+
)
|
|
771
|
+
return over.sum(all_dims)
|
|
772
|
+
else:
|
|
773
|
+
assert isinstance(over, (str, Sequence))
|
|
774
|
+
return expr.to_expr().sum(over)
|
|
775
|
+
|
|
776
|
+
|
|
777
|
+
def sum_by(by: Union[str, Sequence[str]], expr: SupportsToExpr) -> "Expression":
|
|
778
|
+
if isinstance(by, str):
|
|
779
|
+
by = [by]
|
|
780
|
+
expr = expr.to_expr()
|
|
781
|
+
dimensions = expr.dimensions
|
|
782
|
+
assert (
|
|
783
|
+
dimensions is not None
|
|
784
|
+
), "Cannot sum by dimensions with an expression with no dimensions."
|
|
785
|
+
remaining_dims = [dim for dim in dimensions if dim not in by]
|
|
786
|
+
return sum(over=remaining_dims, expr=expr)
|
|
787
|
+
|
|
788
|
+
|
|
789
|
+
class Constraint(Expression, IdCounterMixin):
|
|
790
|
+
"""A linear programming constraint."""
|
|
791
|
+
|
|
792
|
+
def __init__(self, lhs: Expression | pl.DataFrame, sense: ConstraintSense):
|
|
793
|
+
"""Initialize a constraint.
|
|
794
|
+
|
|
795
|
+
Parameters:
|
|
796
|
+
lhs: Expression
|
|
797
|
+
The left hand side of the constraint.
|
|
798
|
+
sense: Sense
|
|
799
|
+
The sense of the constraint.
|
|
800
|
+
"""
|
|
801
|
+
if isinstance(lhs, Expression):
|
|
802
|
+
data = lhs.data
|
|
803
|
+
else:
|
|
804
|
+
data = lhs
|
|
805
|
+
super().__init__(data)
|
|
806
|
+
if isinstance(lhs, Expression):
|
|
807
|
+
self._model = lhs._model
|
|
808
|
+
self.sense = sense
|
|
809
|
+
|
|
810
|
+
dims = self.dimensions
|
|
811
|
+
data_per_constraint = (
|
|
812
|
+
pl.DataFrame() if dims is None else self.data.select(dims).unique()
|
|
813
|
+
)
|
|
814
|
+
self.data_per_constraint = self._assign_ids(data_per_constraint)
|
|
815
|
+
|
|
816
|
+
@property
|
|
817
|
+
def dual(self) -> Union[pl.DataFrame, float]:
|
|
818
|
+
if DUAL_KEY not in self.data_per_constraint.columns:
|
|
819
|
+
raise ValueError(f"No dual values founds for constraint '{self.name}'")
|
|
820
|
+
result = self.data_per_constraint.select(self.dimensions_unsafe + [DUAL_KEY])
|
|
821
|
+
if result.shape == (1, 1):
|
|
822
|
+
return result.item()
|
|
823
|
+
return result
|
|
824
|
+
|
|
825
|
+
@dual.setter
|
|
826
|
+
def dual(self, value):
|
|
827
|
+
assert sorted(value.columns) == sorted([DUAL_KEY, CONSTRAINT_KEY])
|
|
828
|
+
df = self.data_per_constraint
|
|
829
|
+
if DUAL_KEY in df.columns:
|
|
830
|
+
df = df.drop(DUAL_KEY)
|
|
831
|
+
self.data_per_constraint = df.join(
|
|
832
|
+
value, on=CONSTRAINT_KEY, how="left", validate="1:1"
|
|
833
|
+
)
|
|
834
|
+
|
|
835
|
+
@classmethod
|
|
836
|
+
def get_id_column_name(cls):
|
|
837
|
+
return CONSTRAINT_KEY
|
|
838
|
+
|
|
839
|
+
@property
|
|
840
|
+
def ids(self) -> pl.DataFrame:
|
|
841
|
+
return self.data_per_constraint.select(
|
|
842
|
+
self.dimensions_unsafe + [CONSTRAINT_KEY]
|
|
843
|
+
)
|
|
844
|
+
|
|
845
|
+
def to_str_create_prefix(self, data, const_map=None):
|
|
846
|
+
if const_map is None:
|
|
847
|
+
return super().to_str_create_prefix(data)
|
|
848
|
+
|
|
849
|
+
data_map = const_map.apply(self.ids, to_col=None)
|
|
850
|
+
|
|
851
|
+
if self.dimensions is None:
|
|
852
|
+
assert data.height == 1
|
|
853
|
+
prefix = data_map.select(pl.col(CONSTRAINT_KEY)).item()
|
|
854
|
+
return data.select(
|
|
855
|
+
pl.concat_str(pl.lit(f"{prefix}: "), "expr").alias("expr")
|
|
856
|
+
)
|
|
857
|
+
|
|
858
|
+
data = data.join(data_map, on=self.dimensions)
|
|
859
|
+
return data.with_columns(
|
|
860
|
+
pl.concat_str(CONSTRAINT_KEY, pl.lit(": "), "expr").alias("expr")
|
|
861
|
+
).drop(CONSTRAINT_KEY)
|
|
862
|
+
|
|
863
|
+
def to_str(
|
|
864
|
+
self,
|
|
865
|
+
max_line_len=None,
|
|
866
|
+
max_rows=None,
|
|
867
|
+
var_map=None,
|
|
868
|
+
float_precision=None,
|
|
869
|
+
const_map=None,
|
|
870
|
+
):
|
|
871
|
+
dims = self.dimensions
|
|
872
|
+
str_table = self.to_str_table(
|
|
873
|
+
max_line_len=max_line_len,
|
|
874
|
+
max_rows=max_rows,
|
|
875
|
+
include_const_term=False,
|
|
876
|
+
var_map=var_map,
|
|
877
|
+
)
|
|
878
|
+
str_table = self.to_str_create_prefix(str_table, const_map=const_map)
|
|
879
|
+
rhs = self.constant_terms.with_columns(pl.col(COEF_KEY) * -1)
|
|
880
|
+
rhs = cast_coef_to_string(rhs, drop_ones=False, float_precision=float_precision)
|
|
881
|
+
# Remove leading +
|
|
882
|
+
rhs = rhs.with_columns(pl.col(COEF_KEY).str.strip_chars(characters=" +"))
|
|
883
|
+
rhs = rhs.rename({COEF_KEY: "rhs"})
|
|
884
|
+
constr_str = pl.concat(
|
|
885
|
+
[str_table, rhs], how=("align" if dims else "horizontal")
|
|
886
|
+
)
|
|
887
|
+
constr_str = constr_str.select(
|
|
888
|
+
pl.concat_str("expr", pl.lit(f" {self.sense.value} "), "rhs").str.concat(
|
|
889
|
+
delimiter="\n"
|
|
890
|
+
)
|
|
891
|
+
).item()
|
|
892
|
+
return constr_str
|
|
893
|
+
|
|
894
|
+
def __repr__(self) -> str:
|
|
895
|
+
return (
|
|
896
|
+
get_obj_repr(
|
|
897
|
+
self,
|
|
898
|
+
("name",),
|
|
899
|
+
sense=f"'{self.sense.value}'",
|
|
900
|
+
size=len(self),
|
|
901
|
+
dimensions=self.shape,
|
|
902
|
+
terms=len(self.data),
|
|
903
|
+
)
|
|
904
|
+
+ "\n"
|
|
905
|
+
+ self.to_str(max_line_len=80, max_rows=15)
|
|
906
|
+
)
|
|
907
|
+
|
|
908
|
+
def _new(self, data: pl.DataFrame):
|
|
909
|
+
c = Constraint(data, self.sense)
|
|
910
|
+
c._model = self._model
|
|
911
|
+
return c
|