pyobo 0.12.8__py3-none-any.whl → 0.12.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
pyobo/__init__.py CHANGED
@@ -59,7 +59,13 @@ from .api import (
59
59
  is_descendent,
60
60
  )
61
61
  from .getters import get_ontology
62
- from .ner import get_grounder, ground
62
+ from .ner import (
63
+ get_grounder,
64
+ get_scispacy_entities,
65
+ get_scispacy_entity_linker,
66
+ get_scispacy_knowledgebase,
67
+ ground,
68
+ )
63
69
  from .plugins import (
64
70
  has_nomenclature_plugin,
65
71
  iter_nomenclature_plugins,
@@ -140,6 +146,9 @@ __all__ = [
140
146
  "get_relation",
141
147
  "get_relation_mapping",
142
148
  "get_relations_df",
149
+ "get_scispacy_entities",
150
+ "get_scispacy_entity_linker",
151
+ "get_scispacy_knowledgebase",
143
152
  "get_species",
144
153
  "get_sssom_df",
145
154
  "get_subhierarchy",
pyobo/api/embedding.py CHANGED
@@ -49,7 +49,8 @@ def get_text_embeddings_df(
49
49
  """Get embeddings for all entities in the resource.
50
50
 
51
51
  :param prefix: A reference, either as a string or Reference object
52
- :param model: A sentence transformer model. Defaults to ``all-MiniLM-L6-v2`` if not given.
52
+ :param model: A sentence transformer model. Defaults to ``all-MiniLM-L6-v2`` if not
53
+ given.
53
54
  """
54
55
  luids, texts = [], []
55
56
  for reference in get_references(prefix):
@@ -72,8 +73,10 @@ def get_text_embedding(
72
73
  """Get a text embedding for an entity, or return none if no text is available.
73
74
 
74
75
  :param reference: A reference, either as a string or Reference object
75
- :param model: A sentence transformer model. Defaults to ``all-MiniLM-L6-v2`` if not given.
76
- :return: A 1D numpy float array of embeddings from :class:`sentence_transformers`
76
+ :param model: A sentence transformer model. Defaults to ``all-MiniLM-L6-v2`` if not
77
+ given.
78
+
79
+ :returns: A 1D numpy float array of embeddings from :class:`sentence_transformers`
77
80
 
78
81
  .. code-block:: python
79
82
 
@@ -112,9 +115,11 @@ def get_text_embedding_similarity(
112
115
 
113
116
  :param reference_1: A reference, given as a string or Reference object
114
117
  :param reference_2: A second reference
115
- :param model: A sentence transformer model. Defaults to ``all-MiniLM-L6-v2`` if not given.
116
- :returns:
117
- A floating point similarity, if text is available for both references, otherwise none
118
+ :param model: A sentence transformer model. Defaults to ``all-MiniLM-L6-v2`` if not
119
+ given.
120
+
121
+ :returns: A floating point similarity, if text is available for both references,
122
+ otherwise none
118
123
 
119
124
  .. code-block:: python
120
125
 
pyobo/api/hierarchy.py CHANGED
@@ -163,7 +163,8 @@ def is_descendent(
163
163
  :param ancestor_prefix: The prefix for the ancestor
164
164
  :param ancestor_identifier: The local unique identifier for the ancestor
165
165
  :param kwargs: Keyword arguments for :func:`get_hierarchy`
166
- :return: If the decendant has the given ancestor
166
+
167
+ :returns: If the decendant has the given ancestor
167
168
 
168
169
  Check that ``GO:0070246`` (natural killer cell apoptotic process) is a descendant of
169
170
  ``GO:0006915`` (apoptotic process)
@@ -254,10 +255,11 @@ def has_ancestor(
254
255
  :param ancestor_prefix: The prefix for the ancestor
255
256
  :param ancestor_identifier: The local unique identifier for the ancestor
256
257
  :param kwargs: Keyword arguments for :func:`get_hierarchy`
257
- :return: If the decendant has the given ancestor
258
258
 
259
- Check that ``GO:0008219`` (cell death) is an ancestor of ``GO:0006915``
260
- (apoptotic process):
259
+ :returns: If the decendant has the given ancestor
260
+
261
+ Check that ``GO:0008219`` (cell death) is an ancestor of ``GO:0006915`` (apoptotic
262
+ process):
261
263
 
262
264
  >>> apoptosis = Reference.from_curie("GO:0006915", name="apoptotic process")
263
265
  >>> cell_death = Reference.from_curie("GO:0008219", name="cell death")
pyobo/api/properties.py CHANGED
@@ -111,6 +111,7 @@ def get_properties_df(prefix: str, **kwargs: Unpack[GetOntologyKwargs]) -> pd.Da
111
111
  """Extract properties.
112
112
 
113
113
  :param prefix: the resource to load
114
+
114
115
  :returns: A dataframe with the properties
115
116
  """
116
117
  df1 = get_literal_properties_df(prefix, **kwargs)
@@ -131,6 +132,7 @@ def get_filtered_properties_mapping(
131
132
 
132
133
  :param prefix: the resource to load
133
134
  :param prop: the property to extract
135
+
134
136
  :returns: A mapping from identifier to property value
135
137
  """
136
138
  df = get_filtered_properties_df(prefix, prop, **kwargs)
@@ -145,6 +147,7 @@ def get_filtered_properties_multimapping(
145
147
 
146
148
  :param prefix: the resource to load
147
149
  :param prop: the property to extract
150
+
148
151
  :returns: A mapping from identifier to property values
149
152
  """
150
153
  df = get_filtered_properties_df(prefix, prop, **kwargs)
@@ -159,7 +162,9 @@ def get_property(
159
162
  :param prefix: the resource to load
160
163
  :param identifier: the identifier withing the resource
161
164
  :param prop: the property to extract
162
- :returns: The single value for the property. If multiple are expected, use :func:`get_properties`
165
+
166
+ :returns: The single value for the property. If multiple are expected, use
167
+ :func:`get_properties`
163
168
 
164
169
  >>> import pyobo
165
170
  >>> pyobo.get_property("chebi", "132964", "http://purl.obolibrary.org/obo/chebi/smiles")
@@ -182,7 +187,9 @@ def get_properties(
182
187
  :param prefix: the resource to load
183
188
  :param identifier: the identifier withing the resource
184
189
  :param prop: the property to extract
185
- :returns: Multiple values for the property. If only one is expected, use :func:`get_property`
190
+
191
+ :returns: Multiple values for the property. If only one is expected, use
192
+ :func:`get_property`
186
193
  """
187
194
  filtered_properties_multimapping = get_filtered_properties_multimapping(
188
195
  prefix=prefix, prop=prop, **kwargs
@@ -198,7 +205,9 @@ def get_filtered_properties_df(
198
205
 
199
206
  :param prefix: the resource to load
200
207
  :param prop: the property to extract
201
- :returns: A dataframe from identifier to property value. Columns are [<prefix>_id, value].
208
+
209
+ :returns: A dataframe from identifier to property value. Columns are [<prefix>_id,
210
+ value].
202
211
  """
203
212
  prop = _ensure_ref(prop, ontology_prefix=prefix)
204
213
  df = get_properties_df(prefix, **kwargs)
pyobo/api/relations.py CHANGED
@@ -135,9 +135,11 @@ def get_relation_mapping(
135
135
  ) -> Mapping[str, str]:
136
136
  """Get relations from identifiers in the source prefix to target prefix with the given relation.
137
137
 
138
- .. warning:: Assumes there's only one version of the property for each term.
138
+ .. warning::
139
139
 
140
- Example usage: get homology between HGNC and MGI:
140
+ Assumes there's only one version of the property for each term.
141
+
142
+ Example usage: get homology between HGNC and MGI:
141
143
 
142
144
  >>> import pyobo
143
145
  >>> human_mapt_hgnc_id = "6893"
@@ -161,16 +163,18 @@ def get_relation(
161
163
  ) -> str | None:
162
164
  """Get the target identifier corresponding to the given relationship from the source prefix/identifier pair.
163
165
 
164
- .. warning:: Assumes there's only one version of the property for each term.
166
+ .. warning::
167
+
168
+ Assumes there's only one version of the property for each term.
165
169
 
166
- Example usage: get homology between MAPT in HGNC and MGI:
170
+ Example usage: get homology between MAPT in HGNC and MGI:
167
171
 
168
172
  >>> import pyobo
169
173
  >>> human_mapt_hgnc_id = "6893"
170
174
  >>> mouse_mapt_mgi_id = "97180"
171
175
  >>> assert mouse_mapt_mgi_id == pyobo.get_relation(
172
176
  ... "hgnc", human_mapt_hgnc_id, "ro:HOM0000017", "mgi"
173
- ... )
177
+ >>> )
174
178
  """
175
179
  relation_mapping = get_relation_mapping(
176
180
  prefix=prefix,
pyobo/ner/__init__.py CHANGED
@@ -2,8 +2,16 @@
2
2
 
3
3
  from .api import get_grounder
4
4
  from .normalizer import ground
5
+ from .scispacy_utils import (
6
+ get_scispacy_entities,
7
+ get_scispacy_entity_linker,
8
+ get_scispacy_knowledgebase,
9
+ )
5
10
 
6
11
  __all__ = [
7
12
  "get_grounder",
13
+ "get_scispacy_entities",
14
+ "get_scispacy_entity_linker",
15
+ "get_scispacy_knowledgebase",
8
16
  "ground",
9
17
  ]
pyobo/ner/normalizer.py CHANGED
@@ -20,8 +20,8 @@ def ground(
20
20
  ) -> Reference | None:
21
21
  """Normalize a string given the prefix's labels and synonyms.
22
22
 
23
- :param prefix: If a string, only grounds against that namespace. If a list, will try grounding
24
- against all in that order
23
+ :param prefix: If a string, only grounds against that namespace. If a list, will try
24
+ grounding against all in that order
25
25
  :param query: The string to try grounding
26
26
  """
27
27
  grounder = get_grounder(prefix, **kwargs)
@@ -0,0 +1,241 @@
1
+ """A bridge between PyOBO and :mod:`scispacy`.
2
+
3
+ :mod:`scispacy` implements a lexical index in
4
+ :class:`scispacy.linking_utils.KnowledgeBase` which keeps track of labels, synonyms, and
5
+ definitions for entities. These are used to construct a TF-IDF index and implement
6
+ entity linking (also called named entity normalization (NEN) or grounding) in
7
+ :class:`scispacy.linking.EntityLinker`.
8
+
9
+ Constructing a Lexical Index
10
+ ============================
11
+
12
+ An *ad hoc* SciSpacy lexical index can be constructed on-the-fly by passing a
13
+ Bioregistry prefix to :func:`pyobo.get_scispacy_knowledgebase`. In the following
14
+ example, the prefix ``to`` is used to construct a lexical index for the `Plant Trait
15
+ Ontology <https://bioregistry.io/to>`_.
16
+
17
+ .. code-block:: python
18
+
19
+ import pyobo
20
+ from scispacy.linking_utils import KnowledgeBase
21
+
22
+ kb: KnowledgeBase = pyobo.get_scispacy_knowledgebase("to")
23
+
24
+ The high-level PyOBO interface abstracts the differences between external ontologies
25
+ like the Plant Trait Ontology and databases that are converted to ontologies in
26
+ :mod:`pyobo.sources` like the `HUGO Gene Nomenclature Committee
27
+ <https://bioregistry.io/hgnc>`_. Therefore, you can also do
28
+
29
+ .. code-block:: python
30
+
31
+ import pyobo
32
+ from scispacy.linking_utils import KnowledgeBase
33
+
34
+ kb: KnowledgeBase = pyobo.get_scispacy_knowledgebase("hgnc")
35
+
36
+ Alternatively, a reusable class can be defined like in the following:
37
+
38
+ .. code-block:: python
39
+
40
+ import pyobo
41
+ from scispacy.linking_utils import KnowledgeBase
42
+
43
+
44
+ class HGNCKnowledgeBase(KnowledgeBase):
45
+ def __init__(self) -> None:
46
+ super().__init__(pyobo.get_scispacy_entities("hgnc"))
47
+
48
+
49
+ kb = HGNCKnowledgeBase()
50
+
51
+ Constructing an Entity Linker
52
+ =============================
53
+
54
+ An entity linker can be constructed from a :class:`scispacy.linking_utils.KnowledgeBase`
55
+ like in:
56
+
57
+ .. code-block:: python
58
+
59
+ import pyobo
60
+ from scispacy.linking import EntityLinker
61
+
62
+ kb = pyobo.get_scispacy_knowledgebase("hgnc")
63
+ linker = EntityLinker.from_kb(kb, filter_for_definitions=False)
64
+
65
+ Where ``filter_for_definitions`` is set to ``False`` to retain entities that don't have
66
+ a definition.
67
+
68
+ PyOBO provides a convenience function :func:`pyobo.get_scispacy_entity_linker` that
69
+ wraps this workflow and also automatically caches the TF-IDF index constructed in the
70
+ process in the correctly versioned folder in the PyOBO cache.
71
+
72
+ .. code-block:: python
73
+
74
+ import pyobo
75
+ from scispacy.linking import EntityLinker
76
+
77
+ linker = pyobo.get_scispacy_entity_linker("hgnc", filter_for_definitions=False)
78
+
79
+ Full Workflow
80
+ =============
81
+
82
+ Once an entity linker has been constructed, it can b used in series with a
83
+ :mod:`spacy.Language` object instantiated with :func:`spacy.load` to ground named
84
+ entities that were recognized by a model like ``en_core_web_sm``
85
+
86
+ .. code-block:: python
87
+
88
+ import pyobo
89
+ import spacy
90
+ from scispacy.linking import EntityLinker
91
+ from tabulate import tabulate
92
+
93
+ linker: EntityLinker = pyobo.get_scispacy_entity_linker("hgnc", filter_for_definitions=False)
94
+
95
+ # now, put it all together with a NER model
96
+ nlp = spacy.load("en_core_web_sm")
97
+
98
+ text = (
99
+ "RAC(Rho family)-alpha serine/threonine-protein kinase "
100
+ "is an enzyme that in humans is encoded by the AKT1 gene."
101
+ )
102
+ doc = linker(nlp(text))
103
+
104
+ rows = [
105
+ (
106
+ span,
107
+ span.start_char,
108
+ span.end_char,
109
+ f"`{curie} <https://bioregistry.io/{curie}>`_",
110
+ score,
111
+ )
112
+ for span in doc.ents
113
+ for curie, score in span._.kb_ents
114
+ ]
115
+ print(tabulate(rows, headers=["text", "start", "end", "prefix", "identifier"], tablefmt="rst"))
116
+
117
+ ==== ===== === ============================================= ========
118
+ text start end curie score
119
+ ==== ===== === ============================================= ========
120
+ AKT1 100 104 `hgnc:391 <https://bioregistry.io/hgnc:391>`_ 1
121
+ AKT1 100 104 `hgnc:392 <https://bioregistry.io/hgnc:392>`_ 0.776504
122
+ AKT1 100 104 `hgnc:393 <https://bioregistry.io/hgnc:393>`_ 0.764049
123
+ ==== ===== === ============================================= ========
124
+
125
+ This example recognizes the AKT serine/threonine kinase 1 (AKT1) gene and provides three
126
+ highly scored groundings, the best of which, `hgnc:391
127
+ <https://bioregistry.io/hgnc:391>`_, is correct.
128
+
129
+ .. note::
130
+
131
+ The groundings and scores are stored by SciSpacy in the hidden attribute
132
+ ``span._.kb_ents``.
133
+ """
134
+
135
+ from __future__ import annotations
136
+
137
+ from collections.abc import Iterable
138
+ from typing import TYPE_CHECKING, Any
139
+
140
+ from typing_extensions import Unpack
141
+
142
+ from ..api.utils import get_version_from_kwargs
143
+ from ..constants import GetOntologyKwargs
144
+ from ..getters import get_ontology
145
+ from ..utils.path import prefix_directory_join
146
+
147
+ if TYPE_CHECKING:
148
+ from scispacy.linking import EntityLinker
149
+ from scispacy.linking_utils import Entity, KnowledgeBase
150
+
151
+ __all__ = [
152
+ "get_scispacy_entities",
153
+ "get_scispacy_entity_linker",
154
+ "get_scispacy_knowledgebase",
155
+ ]
156
+
157
+
158
+ def get_scispacy_entity_linker(
159
+ prefix: str,
160
+ *,
161
+ ontology_kwargs: GetOntologyKwargs | None = None,
162
+ candidate_generator_kwargs: dict[str, Any] | None = None,
163
+ **entity_linker_kwargs: Any,
164
+ ) -> EntityLinker:
165
+ """Get a knowledgebase object for usage with :mod:`scispacy`.
166
+
167
+ :param prefix :
168
+ The ontology's prefix, such as ``go` for Gene Ontology, ``doid`` for the Disease
169
+ Ontology, or more.
170
+
171
+ :param ontology_kwargs: keyword arguments to pass to :func:`pyobo.get_ontology`,
172
+ such as ``version``.
173
+ :param candidate_generator_kwargs: keyword arguments to pass to
174
+ :class:`scispacy.candidate_generation.CandidateGenerator`, such as ``ef_search``
175
+ :param entity_linker_kwargs: keyword arguments to pass to
176
+ :class:`scispacy.linking.EntityLinker`, such as ``ef_search``
177
+
178
+ :returns: An object that can be applied in a :mod:`spacy` natural language
179
+ processing workflow, namely to apply grounding/named entity normalization to
180
+ recognized named entities.
181
+ """
182
+ from scispacy.linking import EntityLinker
183
+
184
+ if ontology_kwargs is None:
185
+ ontology_kwargs = {}
186
+
187
+ version = get_version_from_kwargs(prefix, ontology_kwargs)
188
+ scispacy_cache_directory = prefix_directory_join(prefix, "scispacy", version=version)
189
+
190
+ # TODO see if we can skip loading the KB
191
+ kb = get_scispacy_knowledgebase(prefix, **ontology_kwargs)
192
+ linker = EntityLinker.from_kb(
193
+ kb,
194
+ ann_index_out_dir=scispacy_cache_directory.as_posix(),
195
+ candidate_generator_kwargs=candidate_generator_kwargs,
196
+ **(entity_linker_kwargs or {}),
197
+ )
198
+ return linker
199
+
200
+
201
+ def get_scispacy_knowledgebase(prefix: str, **kwargs: Unpack[GetOntologyKwargs]) -> KnowledgeBase:
202
+ """Get a knowledgebase object for usage with :mod:`scispacy`.
203
+
204
+ :param prefix :
205
+ The ontology's prefix, such as ``go` for Gene Ontology, ``doid`` for the Disease
206
+ Ontology, or more.
207
+
208
+ :param kwargs :
209
+ keyword arguments to pass to :func:`pyobo.get_ontology`, such as ``version``.
210
+
211
+ :returns: An object that represents a lexical index over name, synonym, and
212
+ definition strings from the ontology.
213
+ """
214
+ from scispacy.linking_utils import KnowledgeBase
215
+
216
+ return KnowledgeBase(get_scispacy_entities(prefix, **kwargs))
217
+
218
+
219
+ def get_scispacy_entities(prefix: str, **kwargs: Unpack[GetOntologyKwargs]) -> Iterable[Entity]:
220
+ """Iterate over entities in a given ontology via :mod:`pyobo`.
221
+
222
+ :param prefix :
223
+ The ontology's prefix, such as ``go` for Gene Ontology, ``doid`` for the Disease
224
+ Ontology, or more.
225
+
226
+ :param kwargs :
227
+ keyword arguments to pass to :func:`pyobo.get_ontology`, such as ``version``.
228
+
229
+ :yields: Entity objects for all terms in the ontology
230
+ """
231
+ from scispacy.linking_utils import Entity
232
+
233
+ # TODO reuse labels, synonyms, and definitions cache
234
+ ontology = get_ontology(prefix, **kwargs)
235
+ for term in ontology:
236
+ yield Entity(
237
+ concept_id=term.curie,
238
+ canonical_name=term.name,
239
+ aliases=[s.name for s in term.synonyms],
240
+ definition=term.definition,
241
+ )
pyobo/sources/expasy.py CHANGED
@@ -160,7 +160,8 @@ def normalize_expasy_id(expasy_id: str) -> str:
160
160
  """Return a standardized ExPASy identifier string.
161
161
 
162
162
  :param expasy_id: A possibly non-normalized ExPASy identifier
163
- :return: A normalized string.
163
+
164
+ :returns: A normalized string.
164
165
  """
165
166
  return expasy_id.replace(" ", "")
166
167
 
@@ -211,6 +212,7 @@ def get_database(lines: Iterable[str]) -> Mapping[str, dict[str, Any]]:
211
212
  """Parse the ExPASy database file and returns a list of enzyme entry dictionaries.
212
213
 
213
214
  :param lines: An iterator over the ExPASy database file or file-like
215
+
214
216
  :returns: A mapping from EC code to data
215
217
  """
216
218
  rv = {}
@@ -285,6 +287,7 @@ def _parse_transfer(value: str) -> list[str]:
285
287
  """Parse transferred entry string.
286
288
 
287
289
  :param value: A string for a transferred entry
290
+
288
291
  :returns: A list of EC codes that it got transferred to
289
292
 
290
293
  >>> _parse_transfer("Transferred entry: 1.1.1.198, 1.1.1.227 and 1.1.1.228.")
pyobo/sources/go.py CHANGED
@@ -13,7 +13,8 @@ def is_biological_process(identifier: str) -> bool:
13
13
  """Return if the given GO identifier is a biological process.
14
14
 
15
15
  :param identifier: A local unique identifier from GO
16
- :return: If the identifier is a biological process
16
+
17
+ :returns: If the identifier is a biological process
17
18
 
18
19
  >>> is_biological_process("0006915")
19
20
  True
@@ -27,7 +28,8 @@ def is_molecular_function(identifier: str) -> bool:
27
28
  """Return if the given GO identifier is a molecular function.
28
29
 
29
30
  :param identifier: A local unique identifier from GO
30
- :return: If the identifier is a molecular function
31
+
32
+ :returns: If the identifier is a molecular function
31
33
 
32
34
  >>> is_molecular_function("0006915")
33
35
  False
@@ -39,7 +41,8 @@ def is_cellular_component(identifier: str) -> bool:
39
41
  """Return if the given GO identifier is a cellular component.
40
42
 
41
43
  :param identifier: A local unique identifier from GO
42
- :return: If the identifier is a cellular component
44
+
45
+ :returns: If the identifier is a cellular component
43
46
 
44
47
  >>> is_cellular_component("0006915")
45
48
  False
pyobo/sources/gtdb.py CHANGED
@@ -117,6 +117,7 @@ def _parse_name(part: str) -> tuple[str, str] | None:
117
117
  """Parse a GTDB taxonomy identifier.
118
118
 
119
119
  :param part: The string
120
+
120
121
  :returns: A tuple with the level and name, if parsable
121
122
 
122
123
  >>> _parse_name("f__Sulfolobaceae")
@@ -1,6 +1,8 @@
1
1
  """An ontology representation of IANA media types (i.e. MIME types).
2
2
 
3
- .. seealso:: https://www.iana.org/assignments/media-types/media-types.xhtml
3
+ .. seealso::
4
+
5
+ https://www.iana.org/assignments/media-types/media-types.xhtml
4
6
  """
5
7
 
6
8
  from collections.abc import Iterable
@@ -1,7 +1,7 @@
1
1
  """Macros over functional OWL.
2
2
 
3
- This module contains classes that are extensions
4
- to functional OWL that reflect common usage.
3
+ This module contains classes that are extensions to functional OWL that reflect common
4
+ usage.
5
5
  """
6
6
 
7
7
  import typing as t
@@ -57,8 +57,7 @@ class Macro(f.Box):
57
57
  class RelationshipMacro(Macro):
58
58
  """A macro for an object-to-object relationship.
59
59
 
60
- Assert that the RAET1E gene from HGNC (16793) is
61
- only in the human taxon (9606)
60
+ Assert that the RAET1E gene from HGNC (16793) is only in the human taxon (9606)
62
61
 
63
62
  >>> RelationshipMacro("hgnc:16793", "RO:0002160", "NCBITaxon:9606").to_funowl()
64
63
  'SubClassOf(hgnc:16793 ObjectSomeValuesFrom(RO:0002160 NCBITaxon:9606))'
@@ -226,8 +225,8 @@ class SynonymMacro(Macro):
226
225
  >>> SynonymMacro("hgnc:16793", "ULBP4").to_funowl()
227
226
  'AnnotationAssertion(oboInOwl:hasRelatedSynonym hgnc:16793 "ULBP4")'
228
227
 
229
- You can make the predicate more explicit either with OBO-style
230
- scoping (``EXACT``, ``BROAD``, ``NARROW``, ``RELATED``) or a CURIE/:class:`curies.Reference`/URIRef
228
+ You can make the predicate more explicit either with OBO-style scoping (``EXACT``,
229
+ ``BROAD``, ``NARROW``, ``RELATED``) or a CURIE/:class:`curies.Reference`/URIRef
231
230
 
232
231
  >>> SynonymMacro("hgnc:16793", "ULBP4", "EXACT").to_funowl()
233
232
  'AnnotationAssertion(oboInOwl:hasExactSynonym hgnc:16793 "ULBP4")'
@@ -337,14 +336,15 @@ class HoldsOverChain(Macro):
337
336
  class TransitiveOver(HoldsOverChain):
338
337
  """A macro for the OBO-style "transitive over" annotation.
339
338
 
340
- For example, ``BFO:0000066`` (occurs in) is transitive over
341
- ``BFO:0000050`` (part of). This means that if X occurs in Y,
342
- and Y is a part of Z, then X occurs in Z.
339
+ For example, ``BFO:0000066`` (occurs in) is transitive over ``BFO:0000050`` (part
340
+ of). This means that if X occurs in Y, and Y is a part of Z, then X occurs in Z.
343
341
 
344
342
  >>> TransitiveOver("BFO:0000066", "BFO:0000050").to_funowl()
345
343
  'SubObjectPropertyOf(ObjectPropertyChain(BFO:0000066 BFO:0000050) BFO:0000066)'
346
344
 
347
- .. note:: This is a special case of :class:`HoldsOverChain`
345
+ .. note::
346
+
347
+ This is a special case of :class:`HoldsOverChain`
348
348
  """
349
349
 
350
350
  def __init__(self, predicate: f.IdentifierBoxOrHint, target: f.IdentifierBoxOrHint):
@@ -355,8 +355,8 @@ class TransitiveOver(HoldsOverChain):
355
355
  class DataPropertyMaxCardinality(Macro):
356
356
  r"""A macro over :class:`DataMaxCardinality` that adds an axiom.
357
357
 
358
- For example, each person can be annotated with a maximum of one age.
359
- This can be represented as:
358
+ For example, each person can be annotated with a maximum of one age. This can be
359
+ represented as:
360
360
 
361
361
  >>> DataPropertyMaxCardinality(1, "a:hasAge").to_funowl()
362
362
  'SubClassOf(owl:Thing DataMaxCardinality(1 a:hasAge))'
pyobo/struct/reference.py CHANGED
@@ -142,9 +142,11 @@ def get_preferred_curie(
142
142
  def default_reference(prefix: str, identifier: str, name: str | None = None) -> Reference:
143
143
  """Create a CURIE for an "unqualified" reference.
144
144
 
145
- :param prefix: The prefix of the ontology in which the "unqualified" reference is made
145
+ :param prefix: The prefix of the ontology in which the "unqualified" reference is
146
+ made
146
147
  :param identifier: The "unqualified" reference. For example, if you just write
147
148
  "located_in" somewhere there is supposed to be a CURIE
149
+
148
150
  :returns: A CURIE for the "unqualified" reference based on the OBO semantic space
149
151
 
150
152
  >>> default_reference("chebi", "conjugate_base_of")
pyobo/struct/struct.py CHANGED
@@ -383,7 +383,8 @@ class Term(Stanza):
383
383
  def get_species(self, prefix: str = NCBITAXON_PREFIX) -> Reference | None:
384
384
  """Get the species if it exists.
385
385
 
386
- :param prefix: The prefix to use in case the term has several species annotations.
386
+ :param prefix: The prefix to use in case the term has several species
387
+ annotations.
387
388
  """
388
389
  for species in self.get_relationships(v.from_species):
389
390
  if species.prefix == prefix:
@@ -1651,7 +1652,9 @@ class Obo:
1651
1652
  ) -> Mapping[str, str]:
1652
1653
  """Get a mapping from a term's identifier to the property.
1653
1654
 
1654
- .. warning:: Assumes there's only one version of the property for each term.
1655
+ .. warning::
1656
+
1657
+ Assumes there's only one version of the property for each term.
1655
1658
  """
1656
1659
  return {
1657
1660
  term.identifier: value
@@ -1692,8 +1695,8 @@ class Obo:
1692
1695
  ) -> Iterable[tuple[Stanza, TypeDef, Reference]]:
1693
1696
  """Iterate over tuples of terms, relations, and their targets.
1694
1697
 
1695
- This only outputs stuff from the `relationship:` tag, not
1696
- all possible triples. For that, see :func:`iterate_edges`.
1698
+ This only outputs stuff from the `relationship:` tag, not all possible triples.
1699
+ For that, see :func:`iterate_edges`.
1697
1700
  """
1698
1701
  _warned: set[ReferenceTuple] = set()
1699
1702
  typedefs = self._index_typedefs()
@@ -1804,9 +1807,11 @@ class Obo:
1804
1807
  ) -> Mapping[str, str]:
1805
1808
  """Get a mapping from the term's identifier to the target's identifier.
1806
1809
 
1807
- .. warning:: Assumes there's only one version of the property for each term.
1810
+ .. warning::
1811
+
1812
+ Assumes there's only one version of the property for each term.
1808
1813
 
1809
- Example usage: get homology between HGNC and MGI:
1814
+ Example usage: get homology between HGNC and MGI:
1810
1815
 
1811
1816
  >>> from pyobo.sources.hgnc import HGNCGetter
1812
1817
  >>> obo = HGNCGetter()
@@ -2031,7 +2036,8 @@ class Obo:
2031
2036
  class TypeDef(Stanza):
2032
2037
  """A type definition in OBO.
2033
2038
 
2034
- See the subsection of https://owlcollab.github.io/oboformat/doc/GO.format.obo-1_4.html#S.2.2.
2039
+ See the subsection of
2040
+ https://owlcollab.github.io/oboformat/doc/GO.format.obo-1_4.html#S.2.2.
2035
2041
  """
2036
2042
 
2037
2043
  reference: Annotated[Reference, 1]
@@ -2126,14 +2132,16 @@ class TypeDef(Stanza):
2126
2132
  ) -> Iterable[str]:
2127
2133
  """Iterate over the lines to write in an OBO file.
2128
2134
 
2129
- :param ontology_prefix:
2130
- The prefix of the ontology into which the type definition is being written.
2131
- This is used for compressing builtin identifiers
2132
- :yield:
2133
- The lines to write to an OBO file
2135
+ :param ontology_prefix: The prefix of the ontology into which the type
2136
+ definition is being written. This is used for compressing builtin
2137
+ identifiers
2138
+
2139
+ :yield: The lines to write to an OBO file
2134
2140
 
2135
- `S.3.5.5 <https://owlcollab.github.io/oboformat/doc/GO.format.obo-1_4.html#S.3.5.5>`_
2136
- of the OBO Flat File Specification v1.4 says tags should appear in the following order:
2141
+ `S.3.5.5
2142
+ <https://owlcollab.github.io/oboformat/doc/GO.format.obo-1_4.html#S.3.5.5>`_ of
2143
+ the OBO Flat File Specification v1.4 says tags should appear in the following
2144
+ order:
2137
2145
 
2138
2146
  1. id
2139
2147
  2. is_anonymous
pyobo/version.py CHANGED
@@ -12,7 +12,7 @@ __all__ = [
12
12
  "get_version",
13
13
  ]
14
14
 
15
- VERSION = "0.12.8"
15
+ VERSION = "0.12.9"
16
16
 
17
17
 
18
18
  def get_git_hash() -> str:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: pyobo
3
- Version: 0.12.8
3
+ Version: 0.12.9
4
4
  Summary: A python package for handling and generating OBO
5
5
  Keywords: snekpack,cookiecutter,ontologies,biomedical ontologies,life sciences,natural sciences,bioinformatics,cheminformatics,Open Biomedical Ontologies,OBO
6
6
  Author: Charles Tapley Hoyt
@@ -59,6 +59,9 @@ Requires-Dist: psycopg2-binary ; extra == 'drugcentral'
59
59
  Requires-Dist: ssslm[gilda] ; extra == 'gilda'
60
60
  Requires-Dist: ssslm[gilda-slim] ; extra == 'gilda-slim'
61
61
  Requires-Dist: protmapper ; extra == 'pid'
62
+ Requires-Dist: scispacy ; python_full_version < '3.13' and extra == 'scispacy'
63
+ Requires-Dist: spacy ; python_full_version < '3.13' and extra == 'scispacy'
64
+ Requires-Dist: scipy<1.11 ; python_full_version < '3.13' and extra == 'scispacy'
62
65
  Requires-Dist: pyobo[drugcentral,pid] ; extra == 'sources'
63
66
  Maintainer: Charles Tapley Hoyt
64
67
  Maintainer-email: Charles Tapley Hoyt <cthoyt@gmail.com>
@@ -72,6 +75,7 @@ Provides-Extra: drugcentral
72
75
  Provides-Extra: gilda
73
76
  Provides-Extra: gilda-slim
74
77
  Provides-Extra: pid
78
+ Provides-Extra: scispacy
75
79
  Provides-Extra: sources
76
80
  Description-Content-Type: text/markdown
77
81
 
@@ -1,16 +1,16 @@
1
1
  pyobo/.DS_Store,sha256=icmyUcy152KPoCV2jHO6ZiHzdoYZ79aYVdPXzcGzMEQ,8196
2
- pyobo/__init__.py,sha256=fyOnbld1sVgX2g_bGxfxJ0yFUsevW7MNJ4mkYBodz1Q,3690
2
+ pyobo/__init__.py,sha256=9pWTUfKGgpfZuQ4BS1zrHChealMlCrqrlR5htZJ80xg,3891
3
3
  pyobo/__main__.py,sha256=cOYQ2OELxF-9T6nuZ9xnLSu9bLHk6einrsSoz7EcD9M,83
4
4
  pyobo/api/__init__.py,sha256=sFrxkD5A6bof7MuL-34Lz3nU4ZBL9vSw5L5EwzGR5Rk,3145
5
5
  pyobo/api/alts.py,sha256=R4sxYldGFvKCe9cxB_gPXf2vWXHq9saBMQkQnbqJ5SI,3032
6
6
  pyobo/api/combine.py,sha256=7T8Qj8W1wWQ1KgKJsO1kFRHZxkQcrfKM1hBrhqHsEkU,1106
7
7
  pyobo/api/edges.py,sha256=SEm2gJx6LoOkhXGj11V42uLg4FidFa9jJqW9Hznlfwk,1974
8
- pyobo/api/embedding.py,sha256=Ck2fiKcnWANCHCGstOq4x_zomhPn_fRhFc9LXrsTPQU,4411
9
- pyobo/api/hierarchy.py,sha256=N_JzgfCKPIWa20odRhMvpgiJpczOiGdiDbLkNTqlpp8,10314
8
+ pyobo/api/embedding.py,sha256=Biw5DLCEP0R2IPXcP-cnCbUlWXerQPHiSXJww_x4kn8,4438
9
+ pyobo/api/hierarchy.py,sha256=Ek1Rkr7qwTinz5DfCIlSXNLe4geMH_6Zta9dgoQIVXs,10318
10
10
  pyobo/api/metadata.py,sha256=stJaiX_l7x0R1V77TNwHvPtokuZ-Eoqb9HMRL70NiWs,1029
11
11
  pyobo/api/names.py,sha256=Z00vuReU7CGKL39EZvMAMQu3VGLKYlJFzMBHT4kV4xA,10935
12
- pyobo/api/properties.py,sha256=bYWvHr1bf0xdIyMj-qudj4oRpBnqsKhuyjYFKyKy93g,6914
13
- pyobo/api/relations.py,sha256=bf2lnYriw63bgW19rSuXhWkWxvLmEU96d0v8r_HCV0c,5859
12
+ pyobo/api/properties.py,sha256=2LFERWJtvopI8OtfTrmPLj_SdeVvVHP4DcpQf8TO9tk,6944
13
+ pyobo/api/relations.py,sha256=Kebguj5khScU2c0Pm8dJrewu8je9DnKlNenRtmYWGKI,5875
14
14
  pyobo/api/species.py,sha256=YxzJeClfuKI-pjYLpu5797jdDeyTkXpjQDgdmc9MKwo,2376
15
15
  pyobo/api/typedefs.py,sha256=HTui0kl_VELxgji0vfBr-NBG3zrrpCU8tmuQOSWK6fw,1262
16
16
  pyobo/api/utils.py,sha256=SCMsy4QyYVhn-QK0h90Ef1XUMbyHKR1fvteRESzs-bk,5192
@@ -33,9 +33,10 @@ pyobo/identifier_utils/relations/data_owl.json,sha256=pw_ohQoLMvDKX5NYCFo0ApejRk
33
33
  pyobo/identifier_utils/relations/data_rdf.json,sha256=T1PNoYwrqgwDVLtfmj7L5e0Sq02OEbqHPC8RFhICuUU,2
34
34
  pyobo/identifier_utils/relations/data_rdfs.json,sha256=bjpxZte3g4WvrGJsmHuAJN_cg_faxqIa9tCL7auHdqQ,86
35
35
  pyobo/mocks.py,sha256=j545K9P_DPsDBuYHDrhyTLjmlPoNlRdEtcRlLhXlbXI,2440
36
- pyobo/ner/__init__.py,sha256=AZm3BPEjUYTVIQaQNII8PZlg_2dWIFwplkm4eku9QEE,153
36
+ pyobo/ner/__init__.py,sha256=7Os84d8_gZktUxyUW9Tn2dW33rYFWSO8cviJJef-ZeE,373
37
37
  pyobo/ner/api.py,sha256=s0MJgz6sj13qiB1TEyO_aC8103fgnYBwZroRgygpZNw,2167
38
- pyobo/ner/normalizer.py,sha256=TpDZOAGHf3Ly-rgGnbmG55zHSVM6BoqLB6nXyeN8ucI,954
38
+ pyobo/ner/normalizer.py,sha256=pdvwFG9elriK83FKqjQfT2s-ZuC-QZZuMPudjfay21w,954
39
+ pyobo/ner/scispacy_utils.py,sha256=trEwCeLzMJdD_b7SmSrbZrw1DgGlMDI39iH6RyNOLjs,8201
39
40
  pyobo/plugins.py,sha256=wEr-NpyZ7Z6uEr0uGDNOeXLOGZokGbFmo3e-z2PNKJM,1232
40
41
  pyobo/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
41
42
  pyobo/resource_utils.py,sha256=bloSKbHfMLz0hB8AkhMkfLOGqw6FyO8CEU6LNg0PVMk,4406
@@ -78,7 +79,7 @@ pyobo/sources/drugbank/__init__.py,sha256=iAstvZQZ01JcJeAIm2BnJ923UBvi8aSQ4tEVhE
78
79
  pyobo/sources/drugbank/drugbank.py,sha256=WiFsy_6INZkgetmbUYkE1vPpg5dLwjBfz3cVJjIo1wU,10914
79
80
  pyobo/sources/drugbank/drugbank_salt.py,sha256=abVl_igLemmMw4ULi3_ItTgfCaq3uybjqnsT9Rh7C1k,1646
80
81
  pyobo/sources/drugcentral.py,sha256=xIG_sPebbV-_S1vUQLzOuLqHa_RM-zAOfZ8oqr1aqbc,4052
81
- pyobo/sources/expasy.py,sha256=JfEW0im1wlhY24Kt16A36MW0BeQNv9dtP_Z6H1gch1U,11053
82
+ pyobo/sources/expasy.py,sha256=o0KcbRxF5GNupSjUBe9BznnfrW60sZr7Df2Eo4noOB4,11057
82
83
  pyobo/sources/famplex.py,sha256=qCvj6WB_6uq2RHHVPIaGhyqkf1ubI6XrO8Da-Yta96Q,5628
83
84
  pyobo/sources/flybase.py,sha256=gUS39NF_qc723R2SAbhQYqPg6UOiwKwPXhXQ1JwC68Q,5666
84
85
  pyobo/sources/gard.py,sha256=9oRvpNdt94cUqSYF529PFz9QCvF4sP-JBfhWkJroEZc,1768
@@ -87,15 +88,15 @@ pyobo/sources/geonames/features.py,sha256=JV7fC1vNkDJ9_PpGSVXe9A9vXN22GTWTvfgj3V
87
88
  pyobo/sources/geonames/geonames.py,sha256=FI7YnOoLjoT8w90S6GXigUPsmrmGrmYn4hAJD4pzOho,10112
88
89
  pyobo/sources/geonames/utils.py,sha256=iUiFMeo_U8FoAlijMoX7NhyEaG9MfppzEtVbiyUuza4,4012
89
90
  pyobo/sources/gmt_utils.py,sha256=zLkbHGLxBUPHxW7jCOHaZTW11YzPj8ON-E4QfPQTHxE,1327
90
- pyobo/sources/go.py,sha256=zXLDfcqbiU60M3FUCtqzfPzYoHlSvkUzAA8ZtPEQw3Y,1530
91
- pyobo/sources/gtdb.py,sha256=q0IEhlaMitHWo5IAy2l58uXMLWekCt3rIwOmDssDETg,5221
91
+ pyobo/sources/go.py,sha256=b3zbPGKd6wDclw68fA4Iq9awEZTIVRx37iXeruKQqmk,1536
92
+ pyobo/sources/gtdb.py,sha256=LrJfruJCkEUs1NCCPQUpHyL6r2dzMttToNPgmqudIr0,5222
92
93
  pyobo/sources/gwascentral/__init__.py,sha256=VdHIgBVR-36B7gLuhR4XV5UXn_EgNZ0-i1g9NjhOjY0,231
93
94
  pyobo/sources/gwascentral/gwascentral_phenotype.py,sha256=SvMCF3sYqc3F5nNXCf76AzIhNT698ZHHnTpO0IGft8o,1788
94
95
  pyobo/sources/gwascentral/gwascentral_study.py,sha256=fzDiRuWU84085gclzuWNLbxDEsIdVysqXScMU0BdXnM,2672
95
96
  pyobo/sources/hgnc/__init__.py,sha256=1QhM7GdP6_AxCMzaBz2k3SRLkDTOkS2hUhPMLETSGWM,157
96
97
  pyobo/sources/hgnc/hgnc.py,sha256=esV7w3fiXm2sD1racQBfUKO_C4LBr_iP_nBywE84ztI,16699
97
98
  pyobo/sources/hgnc/hgncgenefamily.py,sha256=4-jQt1DVmn2j0KwrEA4kjo2tUa9UwEVAWhJwTjbbIM0,3710
98
- pyobo/sources/iana_media_type.py,sha256=KtY7T118r2UfuPG1qTt5q_eiPjsXWw7iGGIQVEHFno4,5019
99
+ pyobo/sources/iana_media_type.py,sha256=X20G2a1ozF-JPaqNs3tUrNoeSb7jv_YsClKSTPH-8io,5024
99
100
  pyobo/sources/icd/__init__.py,sha256=DrZVl76P8essJ4tlZPcauFVrXVkIIZB6sJ0c6Km6SWI,142
100
101
  pyobo/sources/icd/icd10.py,sha256=YatVzgr229J_WeJca4FQAHqWrx7c7N4fHbhb1cQ1TeU,2587
101
102
  pyobo/sources/icd/icd11.py,sha256=W25Z-AKM-9QfhgFR0RZFFL4mU6UAeMD8h0jCC4Fe4Rs,4867
@@ -177,7 +178,7 @@ pyobo/ssg/typedef.html,sha256=KrdqzB6xjt689bG33D26AL-11JrvNuEkoxNNI-EG-Tg,2038
177
178
  pyobo/struct/__init__.py,sha256=fv1gJHCgn4n5ggInuu4QuWebeoQislVOF8QOlwAHGfg,1516
178
179
  pyobo/struct/functional/__init__.py,sha256=1Tbtt_6GoarRlgffPepitJ3QtLsrMPMbhDGoQnAKSZ4,32
179
180
  pyobo/struct/functional/dsl.py,sha256=odDX33lzSkKcRjcrsteraFSc00wIOPBHJtxXe9c9RHE,101591
180
- pyobo/struct/functional/macros.py,sha256=zGVPEx-mhdSvyH2Me16FZdobeJ3V1zBFp3s-AzqM7VI,13785
181
+ pyobo/struct/functional/macros.py,sha256=uzklvI_CGkDNphb0jY_N-_J_89S5ZIRnWriSkZDwBvA,13786
181
182
  pyobo/struct/functional/obo_to_functional.py,sha256=cei8fSwD3HlCy6Vvrba3j1hXkkIMY8kXLeuQLDCN1cs,13493
182
183
  pyobo/struct/functional/ontology.py,sha256=-a8jx-61NsI3dgCBEYNP-VeswAy8wWxLBlAEFMJucyI,9342
183
184
  pyobo/struct/functional/utils.py,sha256=c-XG2SJ7ChYtz7KU3K0F-T6ocMjYevei0WxlkfkkmtE,3487
@@ -188,8 +189,8 @@ pyobo/struct/obograph/__init__.py,sha256=B4rNP9OCTnMXm8YpQ0rar1swn4GIw9b4gQD-IVu
188
189
  pyobo/struct/obograph/export.py,sha256=yk3MHulDM_SMohfwiFdeB62-XGJ2ZNgRUZGjGjiyonY,9945
189
190
  pyobo/struct/obograph/reader.py,sha256=264yVeD8a3jGx9EaGUZVxFbSQ_pwQ_6ckVw9S8wiJfM,8525
190
191
  pyobo/struct/obograph/utils.py,sha256=je0kSkC24MU9pWRHq1_K-J5jWhjWESY6NI3TpZqvZ_Q,1516
191
- pyobo/struct/reference.py,sha256=T8fTtmXNGMjfu7K4tJ3kvDCo4QHRT_Jr9fiOnFYrwtM,11735
192
- pyobo/struct/struct.py,sha256=WP1qGEMYuLx9RO25D2NeQne4O0VL6DCZlhdfqGZhr38,93743
192
+ pyobo/struct/reference.py,sha256=qgwTa-0VIoDklQ7LjlYH-mf2WG0_uO7KlHt0PSBail4,11744
193
+ pyobo/struct/struct.py,sha256=_1rJa5vmVNyjtE2wdnGUkWtyHd2l5AQJnr4TZ3206YM,93789
193
194
  pyobo/struct/struct_utils.py,sha256=_D689bNlGg1_r-4vQQ-imVEOxzq95XBqBFxqFMV077U,40346
194
195
  pyobo/struct/typedef.py,sha256=iLm8-DVY0v_dK_RwoNKCeOF7nI6XlaieS2CaCHePSlI,13088
195
196
  pyobo/struct/utils.py,sha256=zkpOE42JQIfkN0rc5qNENK03VIKmkf_57tHojMJK71Y,906
@@ -201,9 +202,9 @@ pyobo/utils/iter.py,sha256=rYRbbaFJHxMaE0yU-rQZoCagYIrtev09uY0mxFkf5zY,1524
201
202
  pyobo/utils/misc.py,sha256=499pencyDqW9_xm0H0Cq0FhOw0MoNoq-9IVQTKh-eaE,7992
202
203
  pyobo/utils/ndex_utils.py,sha256=EokCWS00Wrk_4y8ldeQuUyaaC6yNzBg3DagUl-J2czY,2326
203
204
  pyobo/utils/path.py,sha256=Ep8lTRWgFU9_XF5vqJV5B3G4PcUBglIitMkaUNxjzvo,4091
204
- pyobo/version.py,sha256=4ZoFosWusuhKhtFgldoVBlyFSJXrC4TFp3od6hzM_H8,926
205
- pyobo-0.12.8.dist-info/licenses/LICENSE,sha256=QcgJZKGxlW5BwBNnCBL8VZLVtRvXs81Ch9lJRQSIpJg,1076
206
- pyobo-0.12.8.dist-info/WHEEL,sha256=Pi5uDq5Fdo_Rr-HD5h9BiPn9Et29Y9Sh8NhcJNnFU1c,79
207
- pyobo-0.12.8.dist-info/entry_points.txt,sha256=ANgzvuwF_9_1ipCoxJtbBM6A4i2Mkt39gMPzQO6hvGs,42
208
- pyobo-0.12.8.dist-info/METADATA,sha256=uMMrshUZm5BFd2a2p9ikxnkNTmExvK4lfikLh8wgCLQ,21834
209
- pyobo-0.12.8.dist-info/RECORD,,
205
+ pyobo/version.py,sha256=J-kjTBsp13Gn9z_AZZpwjfHq3kBfqfmvaT-s9SxrWLQ,926
206
+ pyobo-0.12.9.dist-info/licenses/LICENSE,sha256=QcgJZKGxlW5BwBNnCBL8VZLVtRvXs81Ch9lJRQSIpJg,1076
207
+ pyobo-0.12.9.dist-info/WHEEL,sha256=Pi5uDq5Fdo_Rr-HD5h9BiPn9Et29Y9Sh8NhcJNnFU1c,79
208
+ pyobo-0.12.9.dist-info/entry_points.txt,sha256=ANgzvuwF_9_1ipCoxJtbBM6A4i2Mkt39gMPzQO6hvGs,42
209
+ pyobo-0.12.9.dist-info/METADATA,sha256=WoRJx_9HRg8cs2EDXmteoZObNFc-ZLK7QdjxusVpiXI,22095
210
+ pyobo-0.12.9.dist-info/RECORD,,
File without changes