pymoo 0.6.1.6__cp312-cp312-macosx_10_13_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (337) hide show
  1. pymoo/__init__.py +3 -0
  2. pymoo/algorithms/__init__.py +0 -0
  3. pymoo/algorithms/base/__init__.py +0 -0
  4. pymoo/algorithms/base/bracket.py +38 -0
  5. pymoo/algorithms/base/genetic.py +110 -0
  6. pymoo/algorithms/base/line.py +62 -0
  7. pymoo/algorithms/base/local.py +39 -0
  8. pymoo/algorithms/base/meta.py +79 -0
  9. pymoo/algorithms/hyperparameters.py +91 -0
  10. pymoo/algorithms/moo/__init__.py +0 -0
  11. pymoo/algorithms/moo/age.py +310 -0
  12. pymoo/algorithms/moo/age2.py +194 -0
  13. pymoo/algorithms/moo/cmopso.py +239 -0
  14. pymoo/algorithms/moo/ctaea.py +305 -0
  15. pymoo/algorithms/moo/dnsga2.py +80 -0
  16. pymoo/algorithms/moo/kgb.py +450 -0
  17. pymoo/algorithms/moo/moead.py +183 -0
  18. pymoo/algorithms/moo/mopso_cd.py +309 -0
  19. pymoo/algorithms/moo/nsga2.py +113 -0
  20. pymoo/algorithms/moo/nsga3.py +361 -0
  21. pymoo/algorithms/moo/pinsga2.py +370 -0
  22. pymoo/algorithms/moo/rnsga2.py +188 -0
  23. pymoo/algorithms/moo/rnsga3.py +246 -0
  24. pymoo/algorithms/moo/rvea.py +214 -0
  25. pymoo/algorithms/moo/sms.py +196 -0
  26. pymoo/algorithms/moo/spea2.py +191 -0
  27. pymoo/algorithms/moo/unsga3.py +49 -0
  28. pymoo/algorithms/soo/__init__.py +0 -0
  29. pymoo/algorithms/soo/convex/__init__.py +0 -0
  30. pymoo/algorithms/soo/nonconvex/__init__.py +0 -0
  31. pymoo/algorithms/soo/nonconvex/brkga.py +162 -0
  32. pymoo/algorithms/soo/nonconvex/cmaes.py +556 -0
  33. pymoo/algorithms/soo/nonconvex/de.py +283 -0
  34. pymoo/algorithms/soo/nonconvex/direct.py +148 -0
  35. pymoo/algorithms/soo/nonconvex/es.py +213 -0
  36. pymoo/algorithms/soo/nonconvex/g3pcx.py +94 -0
  37. pymoo/algorithms/soo/nonconvex/ga.py +95 -0
  38. pymoo/algorithms/soo/nonconvex/ga_niching.py +223 -0
  39. pymoo/algorithms/soo/nonconvex/isres.py +74 -0
  40. pymoo/algorithms/soo/nonconvex/nelder.py +251 -0
  41. pymoo/algorithms/soo/nonconvex/nrbo.py +191 -0
  42. pymoo/algorithms/soo/nonconvex/optuna.py +80 -0
  43. pymoo/algorithms/soo/nonconvex/pattern.py +185 -0
  44. pymoo/algorithms/soo/nonconvex/pso.py +337 -0
  45. pymoo/algorithms/soo/nonconvex/pso_ep.py +307 -0
  46. pymoo/algorithms/soo/nonconvex/random_search.py +25 -0
  47. pymoo/algorithms/soo/nonconvex/sres.py +56 -0
  48. pymoo/algorithms/soo/univariate/__init__.py +0 -0
  49. pymoo/algorithms/soo/univariate/exp.py +46 -0
  50. pymoo/algorithms/soo/univariate/golden.py +65 -0
  51. pymoo/algorithms/soo/univariate/quadr_interp.py +81 -0
  52. pymoo/algorithms/soo/univariate/wolfe.py +163 -0
  53. pymoo/config.py +33 -0
  54. pymoo/constraints/__init__.py +3 -0
  55. pymoo/constraints/adaptive.py +66 -0
  56. pymoo/constraints/as_obj.py +56 -0
  57. pymoo/constraints/as_penalty.py +41 -0
  58. pymoo/constraints/eps.py +34 -0
  59. pymoo/constraints/from_bounds.py +36 -0
  60. pymoo/core/__init__.py +0 -0
  61. pymoo/core/algorithm.py +408 -0
  62. pymoo/core/callback.py +38 -0
  63. pymoo/core/crossover.py +79 -0
  64. pymoo/core/decision_making.py +102 -0
  65. pymoo/core/decomposition.py +76 -0
  66. pymoo/core/duplicate.py +163 -0
  67. pymoo/core/evaluator.py +116 -0
  68. pymoo/core/indicator.py +34 -0
  69. pymoo/core/individual.py +784 -0
  70. pymoo/core/infill.py +65 -0
  71. pymoo/core/initialization.py +44 -0
  72. pymoo/core/mating.py +39 -0
  73. pymoo/core/meta.py +21 -0
  74. pymoo/core/mixed.py +164 -0
  75. pymoo/core/mutation.py +44 -0
  76. pymoo/core/operator.py +46 -0
  77. pymoo/core/parameters.py +134 -0
  78. pymoo/core/plot.py +208 -0
  79. pymoo/core/population.py +180 -0
  80. pymoo/core/problem.py +373 -0
  81. pymoo/core/recorder.py +99 -0
  82. pymoo/core/repair.py +23 -0
  83. pymoo/core/replacement.py +96 -0
  84. pymoo/core/result.py +52 -0
  85. pymoo/core/sampling.py +45 -0
  86. pymoo/core/selection.py +61 -0
  87. pymoo/core/solution.py +10 -0
  88. pymoo/core/survival.py +107 -0
  89. pymoo/core/termination.py +70 -0
  90. pymoo/core/variable.py +415 -0
  91. pymoo/decomposition/__init__.py +0 -0
  92. pymoo/decomposition/aasf.py +24 -0
  93. pymoo/decomposition/asf.py +10 -0
  94. pymoo/decomposition/pbi.py +13 -0
  95. pymoo/decomposition/perp_dist.py +13 -0
  96. pymoo/decomposition/tchebicheff.py +11 -0
  97. pymoo/decomposition/util.py +13 -0
  98. pymoo/decomposition/weighted_sum.py +8 -0
  99. pymoo/docs.py +187 -0
  100. pymoo/experimental/__init__.py +0 -0
  101. pymoo/experimental/algorithms/__init__.py +0 -0
  102. pymoo/experimental/algorithms/gde3.py +57 -0
  103. pymoo/functions/__init__.py +135 -0
  104. pymoo/functions/compiled/__init__.py +0 -0
  105. pymoo/functions/compiled/calc_perpendicular_distance.cpp +27464 -0
  106. pymoo/functions/compiled/calc_perpendicular_distance.cpython-312-darwin.so +0 -0
  107. pymoo/functions/compiled/decomposition.cpp +28853 -0
  108. pymoo/functions/compiled/decomposition.cpython-312-darwin.so +0 -0
  109. pymoo/functions/compiled/info.cpp +7058 -0
  110. pymoo/functions/compiled/info.cpython-312-darwin.so +0 -0
  111. pymoo/functions/compiled/mnn.cpp +30095 -0
  112. pymoo/functions/compiled/mnn.cpython-312-darwin.so +0 -0
  113. pymoo/functions/compiled/non_dominated_sorting.cpp +35692 -0
  114. pymoo/functions/compiled/non_dominated_sorting.cpython-312-darwin.so +0 -0
  115. pymoo/functions/compiled/pruning_cd.cpp +29248 -0
  116. pymoo/functions/compiled/pruning_cd.cpython-312-darwin.so +0 -0
  117. pymoo/functions/compiled/stochastic_ranking.cpp +28042 -0
  118. pymoo/functions/compiled/stochastic_ranking.cpython-312-darwin.so +0 -0
  119. pymoo/functions/standard/__init__.py +1 -0
  120. pymoo/functions/standard/calc_perpendicular_distance.py +20 -0
  121. pymoo/functions/standard/decomposition.py +18 -0
  122. pymoo/functions/standard/hv.py +5 -0
  123. pymoo/functions/standard/mnn.py +78 -0
  124. pymoo/functions/standard/non_dominated_sorting.py +474 -0
  125. pymoo/functions/standard/pruning_cd.py +93 -0
  126. pymoo/functions/standard/stochastic_ranking.py +42 -0
  127. pymoo/gradient/__init__.py +24 -0
  128. pymoo/gradient/automatic.py +85 -0
  129. pymoo/gradient/grad_autograd.py +105 -0
  130. pymoo/gradient/grad_complex.py +35 -0
  131. pymoo/gradient/grad_jax.py +51 -0
  132. pymoo/gradient/numpy.py +22 -0
  133. pymoo/gradient/toolbox/__init__.py +19 -0
  134. pymoo/indicators/__init__.py +0 -0
  135. pymoo/indicators/distance_indicator.py +55 -0
  136. pymoo/indicators/gd.py +7 -0
  137. pymoo/indicators/gd_plus.py +7 -0
  138. pymoo/indicators/hv/__init__.py +59 -0
  139. pymoo/indicators/hv/approximate.py +105 -0
  140. pymoo/indicators/hv/exact.py +68 -0
  141. pymoo/indicators/hv/exact_2d.py +102 -0
  142. pymoo/indicators/igd.py +7 -0
  143. pymoo/indicators/igd_plus.py +7 -0
  144. pymoo/indicators/kktpm.py +151 -0
  145. pymoo/indicators/migd.py +55 -0
  146. pymoo/indicators/rmetric.py +203 -0
  147. pymoo/indicators/spacing.py +52 -0
  148. pymoo/mcdm/__init__.py +0 -0
  149. pymoo/mcdm/compromise_programming.py +19 -0
  150. pymoo/mcdm/high_tradeoff.py +40 -0
  151. pymoo/mcdm/pseudo_weights.py +32 -0
  152. pymoo/operators/__init__.py +0 -0
  153. pymoo/operators/control.py +190 -0
  154. pymoo/operators/crossover/__init__.py +0 -0
  155. pymoo/operators/crossover/binx.py +47 -0
  156. pymoo/operators/crossover/dex.py +125 -0
  157. pymoo/operators/crossover/erx.py +164 -0
  158. pymoo/operators/crossover/expx.py +53 -0
  159. pymoo/operators/crossover/hux.py +37 -0
  160. pymoo/operators/crossover/nox.py +25 -0
  161. pymoo/operators/crossover/ox.py +88 -0
  162. pymoo/operators/crossover/pcx.py +84 -0
  163. pymoo/operators/crossover/pntx.py +49 -0
  164. pymoo/operators/crossover/sbx.py +137 -0
  165. pymoo/operators/crossover/spx.py +5 -0
  166. pymoo/operators/crossover/ux.py +20 -0
  167. pymoo/operators/mutation/__init__.py +0 -0
  168. pymoo/operators/mutation/bitflip.py +17 -0
  169. pymoo/operators/mutation/gauss.py +60 -0
  170. pymoo/operators/mutation/inversion.py +42 -0
  171. pymoo/operators/mutation/nom.py +7 -0
  172. pymoo/operators/mutation/pm.py +96 -0
  173. pymoo/operators/mutation/rm.py +23 -0
  174. pymoo/operators/repair/__init__.py +0 -0
  175. pymoo/operators/repair/bounce_back.py +32 -0
  176. pymoo/operators/repair/bounds_repair.py +97 -0
  177. pymoo/operators/repair/inverse_penalty.py +91 -0
  178. pymoo/operators/repair/rounding.py +18 -0
  179. pymoo/operators/repair/to_bound.py +31 -0
  180. pymoo/operators/repair/vtype.py +11 -0
  181. pymoo/operators/sampling/__init__.py +0 -0
  182. pymoo/operators/sampling/lhs.py +76 -0
  183. pymoo/operators/sampling/rnd.py +52 -0
  184. pymoo/operators/selection/__init__.py +0 -0
  185. pymoo/operators/selection/rnd.py +75 -0
  186. pymoo/operators/selection/tournament.py +78 -0
  187. pymoo/operators/survival/__init__.py +0 -0
  188. pymoo/operators/survival/rank_and_crowding/__init__.py +1 -0
  189. pymoo/operators/survival/rank_and_crowding/classes.py +212 -0
  190. pymoo/operators/survival/rank_and_crowding/metrics.py +208 -0
  191. pymoo/optimize.py +72 -0
  192. pymoo/parallelization/__init__.py +15 -0
  193. pymoo/parallelization/dask.py +25 -0
  194. pymoo/parallelization/joblib.py +28 -0
  195. pymoo/parallelization/ray.py +31 -0
  196. pymoo/parallelization/starmap.py +24 -0
  197. pymoo/problems/__init__.py +157 -0
  198. pymoo/problems/dyn.py +47 -0
  199. pymoo/problems/dynamic/__init__.py +0 -0
  200. pymoo/problems/dynamic/cec2015.py +108 -0
  201. pymoo/problems/dynamic/df.py +451 -0
  202. pymoo/problems/dynamic/misc.py +167 -0
  203. pymoo/problems/functional.py +48 -0
  204. pymoo/problems/many/__init__.py +5 -0
  205. pymoo/problems/many/cdtlz.py +159 -0
  206. pymoo/problems/many/dcdtlz.py +88 -0
  207. pymoo/problems/many/dtlz.py +264 -0
  208. pymoo/problems/many/wfg.py +553 -0
  209. pymoo/problems/multi/__init__.py +14 -0
  210. pymoo/problems/multi/bnh.py +34 -0
  211. pymoo/problems/multi/carside.py +48 -0
  212. pymoo/problems/multi/clutch.py +104 -0
  213. pymoo/problems/multi/csi.py +55 -0
  214. pymoo/problems/multi/ctp.py +198 -0
  215. pymoo/problems/multi/dascmop.py +213 -0
  216. pymoo/problems/multi/kursawe.py +25 -0
  217. pymoo/problems/multi/modact.py +68 -0
  218. pymoo/problems/multi/mw.py +400 -0
  219. pymoo/problems/multi/omnitest.py +48 -0
  220. pymoo/problems/multi/osy.py +32 -0
  221. pymoo/problems/multi/srn.py +28 -0
  222. pymoo/problems/multi/sympart.py +94 -0
  223. pymoo/problems/multi/tnk.py +24 -0
  224. pymoo/problems/multi/truss2d.py +83 -0
  225. pymoo/problems/multi/welded_beam.py +41 -0
  226. pymoo/problems/multi/wrm.py +36 -0
  227. pymoo/problems/multi/zdt.py +151 -0
  228. pymoo/problems/multi_to_single.py +22 -0
  229. pymoo/problems/single/__init__.py +12 -0
  230. pymoo/problems/single/ackley.py +24 -0
  231. pymoo/problems/single/cantilevered_beam.py +34 -0
  232. pymoo/problems/single/flowshop_scheduling.py +113 -0
  233. pymoo/problems/single/g.py +874 -0
  234. pymoo/problems/single/griewank.py +18 -0
  235. pymoo/problems/single/himmelblau.py +15 -0
  236. pymoo/problems/single/knapsack.py +49 -0
  237. pymoo/problems/single/mopta08.py +26 -0
  238. pymoo/problems/single/multimodal.py +20 -0
  239. pymoo/problems/single/pressure_vessel.py +30 -0
  240. pymoo/problems/single/rastrigin.py +20 -0
  241. pymoo/problems/single/rosenbrock.py +22 -0
  242. pymoo/problems/single/schwefel.py +18 -0
  243. pymoo/problems/single/simple.py +13 -0
  244. pymoo/problems/single/sphere.py +19 -0
  245. pymoo/problems/single/traveling_salesman.py +79 -0
  246. pymoo/problems/single/zakharov.py +19 -0
  247. pymoo/problems/static.py +14 -0
  248. pymoo/problems/util.py +42 -0
  249. pymoo/problems/zero_to_one.py +27 -0
  250. pymoo/termination/__init__.py +23 -0
  251. pymoo/termination/collection.py +12 -0
  252. pymoo/termination/cv.py +48 -0
  253. pymoo/termination/default.py +45 -0
  254. pymoo/termination/delta.py +64 -0
  255. pymoo/termination/fmin.py +16 -0
  256. pymoo/termination/ftol.py +144 -0
  257. pymoo/termination/indicator.py +49 -0
  258. pymoo/termination/max_eval.py +14 -0
  259. pymoo/termination/max_gen.py +15 -0
  260. pymoo/termination/max_time.py +20 -0
  261. pymoo/termination/robust.py +34 -0
  262. pymoo/termination/xtol.py +33 -0
  263. pymoo/util/__init__.py +33 -0
  264. pymoo/util/archive.py +152 -0
  265. pymoo/util/cache.py +29 -0
  266. pymoo/util/clearing.py +82 -0
  267. pymoo/util/display/__init__.py +0 -0
  268. pymoo/util/display/column.py +52 -0
  269. pymoo/util/display/display.py +34 -0
  270. pymoo/util/display/multi.py +100 -0
  271. pymoo/util/display/output.py +53 -0
  272. pymoo/util/display/progress.py +54 -0
  273. pymoo/util/display/single.py +67 -0
  274. pymoo/util/dominator.py +67 -0
  275. pymoo/util/hv.py +21 -0
  276. pymoo/util/matlab_engine.py +39 -0
  277. pymoo/util/misc.py +447 -0
  278. pymoo/util/nds/__init__.py +0 -0
  279. pymoo/util/nds/dominance_degree_non_dominated_sort.py +159 -0
  280. pymoo/util/nds/efficient_non_dominated_sort.py +152 -0
  281. pymoo/util/nds/fast_non_dominated_sort.py +70 -0
  282. pymoo/util/nds/find_non_dominated.py +54 -0
  283. pymoo/util/nds/naive_non_dominated_sort.py +36 -0
  284. pymoo/util/nds/non_dominated_sorting.py +94 -0
  285. pymoo/util/nds/tree_based_non_dominated_sort.py +133 -0
  286. pymoo/util/normalization.py +312 -0
  287. pymoo/util/optimum.py +42 -0
  288. pymoo/util/randomized_argsort.py +63 -0
  289. pymoo/util/ref_dirs/__init__.py +24 -0
  290. pymoo/util/ref_dirs/construction.py +89 -0
  291. pymoo/util/ref_dirs/das_dennis.py +52 -0
  292. pymoo/util/ref_dirs/energy.py +317 -0
  293. pymoo/util/ref_dirs/energy_layer.py +119 -0
  294. pymoo/util/ref_dirs/genetic_algorithm.py +64 -0
  295. pymoo/util/ref_dirs/incremental.py +69 -0
  296. pymoo/util/ref_dirs/misc.py +128 -0
  297. pymoo/util/ref_dirs/optimizer.py +59 -0
  298. pymoo/util/ref_dirs/performance.py +162 -0
  299. pymoo/util/ref_dirs/reduction.py +85 -0
  300. pymoo/util/ref_dirs/sample_and_map.py +24 -0
  301. pymoo/util/reference_direction.py +258 -0
  302. pymoo/util/remote.py +55 -0
  303. pymoo/util/roulette.py +29 -0
  304. pymoo/util/running_metric.py +128 -0
  305. pymoo/util/sliding_window.py +25 -0
  306. pymoo/util/value_functions.py +720 -0
  307. pymoo/util/vectors.py +40 -0
  308. pymoo/util/vf_dominator.py +102 -0
  309. pymoo/vendor/__init__.py +0 -0
  310. pymoo/vendor/cec2018.py +398 -0
  311. pymoo/vendor/gta.py +617 -0
  312. pymoo/vendor/vendor_cmaes.py +421 -0
  313. pymoo/vendor/vendor_coco.py +81 -0
  314. pymoo/vendor/vendor_scipy.py +232 -0
  315. pymoo/version.py +1 -0
  316. pymoo/visualization/__init__.py +21 -0
  317. pymoo/visualization/app/__init__.py +0 -0
  318. pymoo/visualization/app/pso.py +61 -0
  319. pymoo/visualization/fitness_landscape.py +128 -0
  320. pymoo/visualization/heatmap.py +123 -0
  321. pymoo/visualization/matplotlib.py +61 -0
  322. pymoo/visualization/pcp.py +121 -0
  323. pymoo/visualization/petal.py +91 -0
  324. pymoo/visualization/radar.py +108 -0
  325. pymoo/visualization/radviz.py +68 -0
  326. pymoo/visualization/scatter.py +150 -0
  327. pymoo/visualization/star_coordinate.py +75 -0
  328. pymoo/visualization/util.py +296 -0
  329. pymoo/visualization/video/__init__.py +0 -0
  330. pymoo/visualization/video/callback_video.py +82 -0
  331. pymoo/visualization/video/one_var_one_obj.py +57 -0
  332. pymoo/visualization/video/two_var_one_obj.py +62 -0
  333. pymoo-0.6.1.6.dist-info/METADATA +209 -0
  334. pymoo-0.6.1.6.dist-info/RECORD +337 -0
  335. pymoo-0.6.1.6.dist-info/WHEEL +6 -0
  336. pymoo-0.6.1.6.dist-info/licenses/LICENSE +191 -0
  337. pymoo-0.6.1.6.dist-info/top_level.txt +1 -0
@@ -0,0 +1,13 @@
1
+ from pymoo.core.decomposition import Decomposition
2
+ from pymoo.functions import load_function
3
+
4
+
5
+ class PBI(Decomposition):
6
+
7
+ def __init__(self, theta=5, **kwargs) -> None:
8
+ super().__init__(**kwargs)
9
+ self.theta = theta
10
+
11
+ def _do(self, F, weights, **kwargs):
12
+ d1, d2 = load_function("calc_distance_to_weights")(F, weights, self.utopian_point)
13
+ return d1 + self.theta * d2
@@ -0,0 +1,13 @@
1
+ from pymoo.core.decomposition import Decomposition
2
+ from pymoo.functions import load_function
3
+
4
+
5
+ class PerpendicularDistance(Decomposition):
6
+
7
+ def __init__(self, theta=5, **kwargs) -> None:
8
+ super().__init__(**kwargs)
9
+ self.theta = theta
10
+
11
+ def _do(self, F, weights, **kwargs):
12
+ _, d2 = load_function("calc_distance_to_weights")(F, weights)
13
+ return d2
@@ -0,0 +1,11 @@
1
+ import numpy as np
2
+
3
+ from pymoo.core.decomposition import Decomposition
4
+
5
+
6
+ class Tchebicheff(Decomposition):
7
+
8
+ def _do(self, F, weights, **kwargs):
9
+ v = np.abs(F - self.utopian_point) * weights
10
+ tchebi = v.max(axis=1)
11
+ return tchebi
@@ -0,0 +1,13 @@
1
+ import numpy as np
2
+
3
+
4
+ def calc_distance_to_weights(F, weights, utopian_point=None):
5
+ norm = np.linalg.norm(weights, axis=1)
6
+
7
+ if utopian_point is not None:
8
+ F = F - utopian_point
9
+
10
+ d1 = (F * weights).sum(axis=1) / norm
11
+ d2 = np.linalg.norm(F - (d1[:, None] * weights / norm[:, None]), axis=1)
12
+
13
+ return d1, d2
@@ -0,0 +1,8 @@
1
+ from pymoo.core.decomposition import Decomposition
2
+ import numpy as np
3
+
4
+
5
+ class WeightedSum(Decomposition):
6
+
7
+ def _do(self, F, weights, **kwargs):
8
+ return np.sum(F * weights, axis=1)
pymoo/docs.py ADDED
@@ -0,0 +1,187 @@
1
+ # -*- encoding: utf-8 -*-
2
+
3
+ import inspect
4
+ import re
5
+ from pymoo.config import Config
6
+
7
+ # =========================================================================================================
8
+ # Docstrings Dictionary
9
+ # =========================================================================================================
10
+
11
+
12
+ algorithms = {
13
+ "pop_size": """ int
14
+ The population sized used by the algorithm.
15
+ """,
16
+
17
+ "n_offsprings": """ int
18
+ The number of offsprings that should be created in each generation.
19
+ """,
20
+
21
+ "sampling": """
22
+ :class:`~pymoo.core.sampling.Sampling`, :class:`~pymoo.core.population.Population`, :obj:`numpy.array`
23
+ The sampling process defines the initial set of solutions which are the starting point of the
24
+ optimization algorithm. Here, you have three different options by passing
25
+
26
+ (i) A :class:`~pymoo.core.sampling.Sampling` implementation which is an implementation of a
27
+ random sampling method.
28
+
29
+ (ii) A :class:`~pymoo.core.population.Population` object containing the variables to
30
+ be evaluated initially OR already evaluated solutions (F needs to be set in this case).
31
+
32
+ (iii) Pass a two dimensional :obj:`numpy.array` with (n_individuals, n_var) which contains the variable
33
+ space values for each individual.
34
+ """,
35
+
36
+ "selection": """:class:`~pymoo.core.selection.Selection`
37
+ This object defines the mating selection to be used.
38
+ In an evolutionary algorithm each generation parents need to be selected to produce new offsprings using
39
+ different recombination and mutation operators. Different strategies for selecting parents are possible e.g.
40
+ selecting them just randomly, only in the neighborhood, using a tournament selection to introduce some selection
41
+ pressure, ...
42
+ """,
43
+ "crossover": """:class:`~pymoo.core.crossover.Crossover`
44
+ The crossover has the purpose of create offsprings during the evolution. After the mating selection
45
+ the parents are passed to the crossover operator which will dependent on the implementation create
46
+ a different number of offsprings.
47
+ """,
48
+
49
+ "mutation": """:class:`~pymoo.core.mutation.Mutation`
50
+ Some genetic algorithms rely only on the mutation operation. However, it has shown that increases
51
+ the performance to perform a mutation after creating the offsprings through crossover as well.
52
+ Usually the mutation operator needs to be initialized with a probability to be executed.
53
+ Having a high probability of mutation will most of the time increase the diversity in the population.
54
+ """,
55
+
56
+ "survival": """:class:`~pymoo.core.survival.Survival`
57
+ The survival selection is the key for many genetic algorithms. It is responsible to define the
58
+ goal of convergence by choosing the individual to survive or be truncated each generation.
59
+ For single-objective single a selection based on the fitness is used commonly. However, for
60
+ multi-objective single different concepts are introduced.
61
+ """,
62
+
63
+ "ref_points": """:obj:`numpy.array`
64
+ Reference Points (or also called Aspiration Points) as a :obj:`numpy.array` where each row
65
+ represents a point and each column a variable (must be equal to the objective dimension of the problem)
66
+ """,
67
+
68
+ "eliminate_duplicates": """bool
69
+ The genetic algorithm implementation has a built in feature that eliminates duplicates after merging
70
+ the parent and the offspring population. If there are duplicates with respect to the current
71
+ population or in the offsprings itself they are removed and the mating process is repeated to
72
+ fill up the offsprings until the desired number of unique offsprings is met.
73
+ """,
74
+
75
+ "n_offsprings": """int (default: None)
76
+ Number of offspring that are created through mating. By default *n_offsprings=None* which
77
+ sets the number of offsprings equal to the population size. By setting *n_offsprings=1* a, so called,
78
+ steady-state version of an algorithm can be achieved.
79
+ """,
80
+
81
+ "ref_dirs": """:obj:`numpy.array`
82
+ The reference direction that should be used during the optimization. Each row represents a reference line
83
+ and each column a variable.
84
+ """
85
+
86
+ }
87
+
88
+ visualization = {
89
+ "figsize": """tuple
90
+ The figure size. Default (figsize=(8, 6)). For some plots changing the size might have side effects for position.
91
+ """,
92
+
93
+ "title": """str or tuple
94
+ The title of the figure. If some additional kwargs should be provided this can be achieved by providing a tuple
95
+ ("name", {"key" : val}).
96
+ """,
97
+
98
+ "legend": """str
99
+ Whether a legend should be shown or not.
100
+ """,
101
+
102
+ "tight_layout": """bool
103
+ Whether tight layout should be used.
104
+ """,
105
+
106
+ "bounds": """tuple
107
+ If plot requires normalization, it might be necessary to supply the boundaries. (Otherwise they might be
108
+ approximate by the minimum and maximum of the provided data). The boundaries should be provided as a list/tuple or
109
+ 2D numpy array, where the first element represents the minimum, second the second the maximum values.
110
+ If only an integer or float is supplied, the boundaries apply for each variable.
111
+ """,
112
+
113
+ "reverse": """bool
114
+ If plot requires normalization, then the reverse values can be plotted (1 - Input). For some plots
115
+ it can be useful to interpret a larger area as better regarding a value. If minimization applies, a smaller
116
+ area means better, which can be misleading.
117
+ """,
118
+
119
+ "axis_style": """dict
120
+ Most of the plots consists of an axis. The style of the axis, e.g. color, alpha, ..., can be changed to
121
+ further modify the plot appealing.
122
+ """,
123
+
124
+ "cmap": """colormap
125
+ For some plots different kind of colors are used. The colormap can be changed to modify the color sequence
126
+ for the plots.
127
+ """,
128
+
129
+ "labels": """str or list
130
+ The labels to be used for each variable provided in the plot. If a string is used, then they will
131
+ be enumerated. Otherwise, a list equal to the number of variables can be provided directly.
132
+ """,
133
+
134
+ "func_number_to_text": """func
135
+ A function which defines how numerical values should be represented if present in the plot
136
+ for instance scientific notation, rounding and so on.
137
+ """,
138
+
139
+ }
140
+
141
+ docs = {**algorithms, **visualization}
142
+
143
+
144
+ # =========================================================================================================
145
+ # Util for docstrings
146
+ # =========================================================================================================
147
+
148
+ def parse_doc_string(source, dest=None, other={}):
149
+ if not Config.parse_custom_docs:
150
+ return
151
+
152
+ if dest is None:
153
+ dest = source
154
+
155
+ D = {k: v.strip() for k, v in docs.items()}
156
+
157
+ doc = source.__doc__
158
+
159
+
160
+ lines = inspect.getsource(source)
161
+ if doc is not None:
162
+
163
+ doc = doc.format(**{**D, **other})
164
+
165
+ lines = inspect.getsource(source)
166
+
167
+ cnt = 0
168
+ b = False
169
+
170
+ for i, c in enumerate(lines):
171
+
172
+ if b and cnt == 0:
173
+ break
174
+ if c == "(":
175
+ cnt += 1
176
+ b = True
177
+ elif c == ")":
178
+ cnt -= 1
179
+
180
+ signature = lines[:i]
181
+ signature = re.sub(r"[\n\t]*", "", signature)
182
+ signature = re.sub(r"\s+", " ", signature)
183
+ signature = re.sub(r"def\s*", "", signature)
184
+ signature = signature.strip()
185
+
186
+ if dest is not None:
187
+ dest.__doc__ = signature + "\n" + doc
File without changes
File without changes
@@ -0,0 +1,57 @@
1
+ from pymoo.algorithms.moo.nsga2 import RankAndCrowdingSurvival
2
+ from pymoo.algorithms.soo.nonconvex.de import DE, Variant
3
+ from pymoo.core.population import Population
4
+
5
+ from pymoo.docs import parse_doc_string
6
+ from pymoo.operators.control import NoParameterControl
7
+ from pymoo.util.display.multi import MultiObjectiveOutput
8
+ from pymoo.util.dominator import get_relation
9
+ from pymoo.termination.default import DefaultMultiObjectiveTermination
10
+
11
+
12
+ class GDE3(DE):
13
+
14
+ def __init__(self, variant=None, **kwargs):
15
+
16
+ if variant is None:
17
+
18
+ if "control" not in kwargs:
19
+ kwargs["control"] = NoParameterControl
20
+
21
+ # the setting as proposed in the paper
22
+ variant = Variant(selection="rand", F=0.1, CR=0.9, **kwargs)
23
+
24
+ super().__init__(variant=variant, output=MultiObjectiveOutput(), **kwargs)
25
+ self.termination = DefaultMultiObjectiveTermination()
26
+
27
+ def _initialize_advance(self, infills=None, **kwargs):
28
+ RankAndCrowdingSurvival().do(self.problem, infills, return_indices=True)
29
+
30
+ def _advance(self, infills=None, **kwargs):
31
+ assert infills is not None, "This algorithms uses the AskAndTell interface thus 'infills' must to be provided."
32
+ pop = self.pop
33
+
34
+ # the pool of solutions considered to survive
35
+ pool = pop.tolist()
36
+
37
+ # now do the replacement of individuals
38
+ for infill in infills:
39
+ k = infill.get("index")
40
+
41
+ # get the relation between the infill and the solution from the population
42
+ rel = get_relation(infill, pop[k])
43
+
44
+ # if the new solution is not dominated by the individual
45
+ if rel <= 0:
46
+ pool.append(infill)
47
+
48
+ # if the individual is not dominated by the new solution
49
+ if rel >= 0:
50
+ pool.append(pop[k])
51
+
52
+ # set the rank and crowding in the current population
53
+ pool = Population.create(*pool)
54
+ self.pop = RankAndCrowdingSurvival().do(self.problem, pool, n_survive=self.pop_size)
55
+
56
+
57
+ parse_doc_string(GDE3.__init__)
@@ -0,0 +1,135 @@
1
+ # Function package for pymoo
2
+ # Contains both compiled (Cython) and standard (Python) implementations
3
+
4
+ import importlib
5
+
6
+ from pymoo.config import Config
7
+
8
+
9
+ def get_functions():
10
+ from pymoo.functions.standard.non_dominated_sorting import (
11
+ fast_non_dominated_sort,
12
+ efficient_non_dominated_sort,
13
+ tree_based_non_dominated_sort,
14
+ dominance_degree_non_dominated_sort,
15
+ find_non_dominated,
16
+ fast_best_order_sort,
17
+ )
18
+ from pymoo.functions.standard.decomposition import calc_distance_to_weights
19
+ from pymoo.functions.standard.calc_perpendicular_distance import calc_perpendicular_distance
20
+ from pymoo.functions.standard.hv import hv
21
+ from pymoo.functions.standard.stochastic_ranking import stochastic_ranking
22
+ from pymoo.functions.standard.mnn import calc_mnn, calc_2nn
23
+ from pymoo.functions.standard.pruning_cd import calc_pcd
24
+
25
+ FUNCTIONS = {
26
+ "fast_non_dominated_sort": {
27
+ "python": fast_non_dominated_sort,
28
+ "cython": "pymoo.functions.compiled.non_dominated_sorting",
29
+ },
30
+ "find_non_dominated": {
31
+ "python": find_non_dominated,
32
+ "cython": "pymoo.functions.compiled.non_dominated_sorting",
33
+ },
34
+ "efficient_non_dominated_sort": {
35
+ "python": efficient_non_dominated_sort,
36
+ "cython": "pymoo.functions.compiled.non_dominated_sorting",
37
+ },
38
+ "fast_best_order_sort": {
39
+ "python": fast_best_order_sort,
40
+ "cython": "pymoo.functions.compiled.non_dominated_sorting",
41
+ },
42
+ "tree_based_non_dominated_sort": {
43
+ "python": tree_based_non_dominated_sort,
44
+ "cython": "pymoo.functions.compiled.non_dominated_sorting",
45
+ },
46
+ "dominance_degree_non_dominated_sort": {
47
+ "python": dominance_degree_non_dominated_sort,
48
+ "cython": "pymoo.functions.compiled.non_dominated_sorting",
49
+ },
50
+ "calc_distance_to_weights": {
51
+ "python": calc_distance_to_weights,
52
+ "cython": "pymoo.functions.compiled.decomposition",
53
+ },
54
+ "calc_perpendicular_distance": {
55
+ "python": calc_perpendicular_distance,
56
+ "cython": "pymoo.functions.compiled.calc_perpendicular_distance",
57
+ },
58
+ "stochastic_ranking": {
59
+ "python": stochastic_ranking,
60
+ "cython": "pymoo.functions.compiled.stochastic_ranking",
61
+ },
62
+ "calc_mnn": {"python": calc_mnn, "cython": "pymoo.functions.compiled.mnn"},
63
+ "calc_2nn": {"python": calc_2nn, "cython": "pymoo.functions.compiled.mnn"},
64
+ "calc_pcd": {"python": calc_pcd, "cython": "pymoo.functions.compiled.pruning_cd"},
65
+ }
66
+
67
+ return FUNCTIONS
68
+
69
+
70
+ class FunctionLoader:
71
+ # -------------------------------------------------
72
+ # Singleton Pattern
73
+ # -------------------------------------------------
74
+ __instance = None
75
+
76
+ @staticmethod
77
+ def get_instance():
78
+ if FunctionLoader.__instance is None:
79
+ FunctionLoader.__instance = FunctionLoader()
80
+ return FunctionLoader.__instance
81
+
82
+ # -------------------------------------------------
83
+
84
+ def __init__(self) -> None:
85
+ super().__init__()
86
+ self.is_compiled = is_compiled()
87
+ self.mode = "auto"
88
+
89
+ if Config.warnings["not_compiled"] and not self.is_compiled:
90
+ print("\nCompiled modules for significant speedup can not be used!")
91
+ print("https://pymoo.org/installation.html#installation")
92
+ print()
93
+ print("To disable this warning:")
94
+ print("from pymoo.config import Config")
95
+ print("Config.warnings['not_compiled'] = False\n")
96
+
97
+ def load(self, func_name=None, mode=None):
98
+ if mode is None:
99
+ mode = self.mode
100
+
101
+ FUNCTIONS = get_functions()
102
+
103
+ if mode == "auto":
104
+ mode = "cython" if self.is_compiled else "python"
105
+
106
+ if func_name not in FUNCTIONS:
107
+ raise Exception("Function %s not found: %s" % (func_name, FUNCTIONS.keys()))
108
+
109
+ func = FUNCTIONS[func_name]
110
+ if mode not in func:
111
+ raise Exception("Module not available in %s." % mode)
112
+ func = func[mode]
113
+
114
+ # either provide a function or a string to the module (used for cython)
115
+ if not callable(func):
116
+ module = importlib.import_module(func)
117
+ func = getattr(module, func_name)
118
+
119
+ return func
120
+
121
+
122
+ def load_function(func_name=None, _type="auto"):
123
+ return FunctionLoader.get_instance().load(func_name, mode=_type)
124
+
125
+
126
+ def is_compiled():
127
+ try:
128
+ from pymoo.functions.compiled.info import info
129
+
130
+ if info() == "yes":
131
+ return True
132
+ else:
133
+ return False
134
+ except:
135
+ return False
File without changes