pymoo 0.6.1.5.dev0__cp39-cp39-musllinux_1_2_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of pymoo might be problematic. Click here for more details.
- pymoo/__init__.py +3 -0
- pymoo/algorithms/__init__.py +0 -0
- pymoo/algorithms/base/__init__.py +0 -0
- pymoo/algorithms/base/bracket.py +38 -0
- pymoo/algorithms/base/genetic.py +109 -0
- pymoo/algorithms/base/line.py +62 -0
- pymoo/algorithms/base/local.py +39 -0
- pymoo/algorithms/base/meta.py +79 -0
- pymoo/algorithms/hyperparameters.py +89 -0
- pymoo/algorithms/moo/__init__.py +0 -0
- pymoo/algorithms/moo/age.py +310 -0
- pymoo/algorithms/moo/age2.py +194 -0
- pymoo/algorithms/moo/ctaea.py +298 -0
- pymoo/algorithms/moo/dnsga2.py +76 -0
- pymoo/algorithms/moo/kgb.py +446 -0
- pymoo/algorithms/moo/moead.py +183 -0
- pymoo/algorithms/moo/nsga2.py +113 -0
- pymoo/algorithms/moo/nsga3.py +358 -0
- pymoo/algorithms/moo/pinsga2.py +370 -0
- pymoo/algorithms/moo/rnsga2.py +188 -0
- pymoo/algorithms/moo/rnsga3.py +246 -0
- pymoo/algorithms/moo/rvea.py +214 -0
- pymoo/algorithms/moo/sms.py +195 -0
- pymoo/algorithms/moo/spea2.py +190 -0
- pymoo/algorithms/moo/unsga3.py +47 -0
- pymoo/algorithms/soo/__init__.py +0 -0
- pymoo/algorithms/soo/convex/__init__.py +0 -0
- pymoo/algorithms/soo/nonconvex/__init__.py +0 -0
- pymoo/algorithms/soo/nonconvex/brkga.py +161 -0
- pymoo/algorithms/soo/nonconvex/cmaes.py +554 -0
- pymoo/algorithms/soo/nonconvex/de.py +279 -0
- pymoo/algorithms/soo/nonconvex/direct.py +149 -0
- pymoo/algorithms/soo/nonconvex/es.py +203 -0
- pymoo/algorithms/soo/nonconvex/g3pcx.py +94 -0
- pymoo/algorithms/soo/nonconvex/ga.py +93 -0
- pymoo/algorithms/soo/nonconvex/ga_niching.py +223 -0
- pymoo/algorithms/soo/nonconvex/isres.py +74 -0
- pymoo/algorithms/soo/nonconvex/nelder.py +251 -0
- pymoo/algorithms/soo/nonconvex/optuna.py +80 -0
- pymoo/algorithms/soo/nonconvex/pattern.py +183 -0
- pymoo/algorithms/soo/nonconvex/pso.py +399 -0
- pymoo/algorithms/soo/nonconvex/pso_ep.py +297 -0
- pymoo/algorithms/soo/nonconvex/random_search.py +25 -0
- pymoo/algorithms/soo/nonconvex/sres.py +56 -0
- pymoo/algorithms/soo/univariate/__init__.py +0 -0
- pymoo/algorithms/soo/univariate/backtracking.py +59 -0
- pymoo/algorithms/soo/univariate/exp.py +46 -0
- pymoo/algorithms/soo/univariate/golden.py +65 -0
- pymoo/algorithms/soo/univariate/quadr_interp.py +81 -0
- pymoo/algorithms/soo/univariate/wolfe.py +163 -0
- pymoo/config.py +33 -0
- pymoo/constraints/__init__.py +3 -0
- pymoo/constraints/adaptive.py +62 -0
- pymoo/constraints/as_obj.py +56 -0
- pymoo/constraints/as_penalty.py +41 -0
- pymoo/constraints/eps.py +26 -0
- pymoo/constraints/from_bounds.py +36 -0
- pymoo/core/__init__.py +0 -0
- pymoo/core/algorithm.py +394 -0
- pymoo/core/callback.py +38 -0
- pymoo/core/crossover.py +77 -0
- pymoo/core/decision_making.py +102 -0
- pymoo/core/decomposition.py +76 -0
- pymoo/core/duplicate.py +163 -0
- pymoo/core/evaluator.py +116 -0
- pymoo/core/indicator.py +34 -0
- pymoo/core/individual.py +784 -0
- pymoo/core/infill.py +64 -0
- pymoo/core/initialization.py +42 -0
- pymoo/core/mating.py +39 -0
- pymoo/core/meta.py +21 -0
- pymoo/core/mixed.py +165 -0
- pymoo/core/mutation.py +44 -0
- pymoo/core/operator.py +40 -0
- pymoo/core/parameters.py +134 -0
- pymoo/core/plot.py +210 -0
- pymoo/core/population.py +180 -0
- pymoo/core/problem.py +460 -0
- pymoo/core/recorder.py +99 -0
- pymoo/core/repair.py +23 -0
- pymoo/core/replacement.py +96 -0
- pymoo/core/result.py +52 -0
- pymoo/core/sampling.py +43 -0
- pymoo/core/selection.py +61 -0
- pymoo/core/solution.py +10 -0
- pymoo/core/survival.py +103 -0
- pymoo/core/termination.py +70 -0
- pymoo/core/variable.py +399 -0
- pymoo/cython/__init__.py +0 -0
- pymoo/cython/calc_perpendicular_distance.cpython-39-x86_64-linux-gnu.so +0 -0
- pymoo/cython/calc_perpendicular_distance.pyx +67 -0
- pymoo/cython/decomposition.cpython-39-x86_64-linux-gnu.so +0 -0
- pymoo/cython/decomposition.pyx +165 -0
- pymoo/cython/hv.cpython-39-x86_64-linux-gnu.so +0 -0
- pymoo/cython/hv.pyx +18 -0
- pymoo/cython/info.cpython-39-x86_64-linux-gnu.so +0 -0
- pymoo/cython/info.pyx +5 -0
- pymoo/cython/mnn.cpython-39-x86_64-linux-gnu.so +0 -0
- pymoo/cython/mnn.pyx +273 -0
- pymoo/cython/non_dominated_sorting.cpython-39-x86_64-linux-gnu.so +0 -0
- pymoo/cython/non_dominated_sorting.pyx +645 -0
- pymoo/cython/pruning_cd.cpython-39-x86_64-linux-gnu.so +0 -0
- pymoo/cython/pruning_cd.pyx +197 -0
- pymoo/cython/stochastic_ranking.cpython-39-x86_64-linux-gnu.so +0 -0
- pymoo/cython/stochastic_ranking.pyx +49 -0
- pymoo/cython/utils.pxd +129 -0
- pymoo/cython/vendor/__init__.py +0 -0
- pymoo/cython/vendor/hypervolume.cpp +1621 -0
- pymoo/cython/vendor/hypervolume.h +63 -0
- pymoo/decomposition/__init__.py +0 -0
- pymoo/decomposition/aasf.py +24 -0
- pymoo/decomposition/asf.py +10 -0
- pymoo/decomposition/pbi.py +13 -0
- pymoo/decomposition/perp_dist.py +13 -0
- pymoo/decomposition/tchebicheff.py +11 -0
- pymoo/decomposition/util.py +13 -0
- pymoo/decomposition/weighted_sum.py +8 -0
- pymoo/docs.py +187 -0
- pymoo/experimental/__init__.py +0 -0
- pymoo/experimental/algorithms/__init__.py +0 -0
- pymoo/experimental/algorithms/gde3.py +57 -0
- pymoo/gradient/__init__.py +21 -0
- pymoo/gradient/automatic.py +57 -0
- pymoo/gradient/grad_autograd.py +105 -0
- pymoo/gradient/grad_complex.py +35 -0
- pymoo/gradient/grad_jax.py +51 -0
- pymoo/gradient/toolbox/__init__.py +6 -0
- pymoo/indicators/__init__.py +0 -0
- pymoo/indicators/distance_indicator.py +55 -0
- pymoo/indicators/gd.py +7 -0
- pymoo/indicators/gd_plus.py +7 -0
- pymoo/indicators/hv/__init__.py +63 -0
- pymoo/indicators/hv/exact.py +71 -0
- pymoo/indicators/hv/exact_2d.py +102 -0
- pymoo/indicators/hv/monte_carlo.py +74 -0
- pymoo/indicators/igd.py +7 -0
- pymoo/indicators/igd_plus.py +7 -0
- pymoo/indicators/kktpm.py +151 -0
- pymoo/indicators/migd.py +55 -0
- pymoo/indicators/rmetric.py +203 -0
- pymoo/indicators/spacing.py +52 -0
- pymoo/mcdm/__init__.py +0 -0
- pymoo/mcdm/compromise_programming.py +19 -0
- pymoo/mcdm/high_tradeoff.py +40 -0
- pymoo/mcdm/pseudo_weights.py +32 -0
- pymoo/operators/__init__.py +0 -0
- pymoo/operators/control.py +187 -0
- pymoo/operators/crossover/__init__.py +0 -0
- pymoo/operators/crossover/binx.py +45 -0
- pymoo/operators/crossover/dex.py +122 -0
- pymoo/operators/crossover/erx.py +162 -0
- pymoo/operators/crossover/expx.py +51 -0
- pymoo/operators/crossover/hux.py +37 -0
- pymoo/operators/crossover/nox.py +13 -0
- pymoo/operators/crossover/ox.py +84 -0
- pymoo/operators/crossover/pcx.py +82 -0
- pymoo/operators/crossover/pntx.py +49 -0
- pymoo/operators/crossover/sbx.py +125 -0
- pymoo/operators/crossover/spx.py +5 -0
- pymoo/operators/crossover/ux.py +20 -0
- pymoo/operators/mutation/__init__.py +0 -0
- pymoo/operators/mutation/bitflip.py +17 -0
- pymoo/operators/mutation/gauss.py +58 -0
- pymoo/operators/mutation/inversion.py +42 -0
- pymoo/operators/mutation/nom.py +7 -0
- pymoo/operators/mutation/pm.py +94 -0
- pymoo/operators/mutation/rm.py +23 -0
- pymoo/operators/repair/__init__.py +0 -0
- pymoo/operators/repair/bounce_back.py +32 -0
- pymoo/operators/repair/bounds_repair.py +95 -0
- pymoo/operators/repair/inverse_penalty.py +89 -0
- pymoo/operators/repair/rounding.py +18 -0
- pymoo/operators/repair/to_bound.py +31 -0
- pymoo/operators/repair/vtype.py +11 -0
- pymoo/operators/sampling/__init__.py +0 -0
- pymoo/operators/sampling/lhs.py +73 -0
- pymoo/operators/sampling/rnd.py +50 -0
- pymoo/operators/selection/__init__.py +0 -0
- pymoo/operators/selection/rnd.py +72 -0
- pymoo/operators/selection/tournament.py +76 -0
- pymoo/operators/survival/__init__.py +0 -0
- pymoo/operators/survival/rank_and_crowding/__init__.py +1 -0
- pymoo/operators/survival/rank_and_crowding/classes.py +209 -0
- pymoo/operators/survival/rank_and_crowding/metrics.py +208 -0
- pymoo/optimize.py +72 -0
- pymoo/problems/__init__.py +157 -0
- pymoo/problems/dyn.py +47 -0
- pymoo/problems/dynamic/__init__.py +0 -0
- pymoo/problems/dynamic/cec2015.py +108 -0
- pymoo/problems/dynamic/df.py +452 -0
- pymoo/problems/dynamic/misc.py +167 -0
- pymoo/problems/functional.py +48 -0
- pymoo/problems/many/__init__.py +5 -0
- pymoo/problems/many/cdtlz.py +159 -0
- pymoo/problems/many/dcdtlz.py +88 -0
- pymoo/problems/many/dtlz.py +264 -0
- pymoo/problems/many/wfg.py +550 -0
- pymoo/problems/multi/__init__.py +14 -0
- pymoo/problems/multi/bnh.py +34 -0
- pymoo/problems/multi/carside.py +48 -0
- pymoo/problems/multi/clutch.py +104 -0
- pymoo/problems/multi/csi.py +55 -0
- pymoo/problems/multi/ctp.py +198 -0
- pymoo/problems/multi/dascmop.py +213 -0
- pymoo/problems/multi/kursawe.py +25 -0
- pymoo/problems/multi/modact.py +68 -0
- pymoo/problems/multi/mw.py +400 -0
- pymoo/problems/multi/omnitest.py +48 -0
- pymoo/problems/multi/osy.py +32 -0
- pymoo/problems/multi/srn.py +28 -0
- pymoo/problems/multi/sympart.py +94 -0
- pymoo/problems/multi/tnk.py +24 -0
- pymoo/problems/multi/truss2d.py +83 -0
- pymoo/problems/multi/welded_beam.py +41 -0
- pymoo/problems/multi/wrm.py +36 -0
- pymoo/problems/multi/zdt.py +151 -0
- pymoo/problems/multi_to_single.py +22 -0
- pymoo/problems/single/__init__.py +12 -0
- pymoo/problems/single/ackley.py +24 -0
- pymoo/problems/single/cantilevered_beam.py +34 -0
- pymoo/problems/single/flowshop_scheduling.py +112 -0
- pymoo/problems/single/g.py +874 -0
- pymoo/problems/single/griewank.py +18 -0
- pymoo/problems/single/himmelblau.py +15 -0
- pymoo/problems/single/knapsack.py +48 -0
- pymoo/problems/single/mopta08.py +26 -0
- pymoo/problems/single/multimodal.py +20 -0
- pymoo/problems/single/pressure_vessel.py +30 -0
- pymoo/problems/single/rastrigin.py +20 -0
- pymoo/problems/single/rosenbrock.py +22 -0
- pymoo/problems/single/schwefel.py +18 -0
- pymoo/problems/single/simple.py +13 -0
- pymoo/problems/single/sphere.py +19 -0
- pymoo/problems/single/traveling_salesman.py +79 -0
- pymoo/problems/single/zakharov.py +19 -0
- pymoo/problems/static.py +14 -0
- pymoo/problems/util.py +42 -0
- pymoo/problems/zero_to_one.py +27 -0
- pymoo/termination/__init__.py +23 -0
- pymoo/termination/collection.py +12 -0
- pymoo/termination/cv.py +48 -0
- pymoo/termination/default.py +45 -0
- pymoo/termination/delta.py +64 -0
- pymoo/termination/fmin.py +16 -0
- pymoo/termination/ftol.py +144 -0
- pymoo/termination/indicator.py +49 -0
- pymoo/termination/max_eval.py +14 -0
- pymoo/termination/max_gen.py +15 -0
- pymoo/termination/max_time.py +20 -0
- pymoo/termination/robust.py +34 -0
- pymoo/termination/xtol.py +33 -0
- pymoo/util/__init__.py +0 -0
- pymoo/util/archive.py +150 -0
- pymoo/util/cache.py +29 -0
- pymoo/util/clearing.py +82 -0
- pymoo/util/display/__init__.py +0 -0
- pymoo/util/display/column.py +52 -0
- pymoo/util/display/display.py +34 -0
- pymoo/util/display/multi.py +96 -0
- pymoo/util/display/output.py +53 -0
- pymoo/util/display/progress.py +54 -0
- pymoo/util/display/single.py +67 -0
- pymoo/util/dominator.py +67 -0
- pymoo/util/function_loader.py +129 -0
- pymoo/util/hv.py +23 -0
- pymoo/util/matlab_engine.py +39 -0
- pymoo/util/misc.py +460 -0
- pymoo/util/mnn.py +70 -0
- pymoo/util/nds/__init__.py +0 -0
- pymoo/util/nds/dominance_degree_non_dominated_sort.py +159 -0
- pymoo/util/nds/efficient_non_dominated_sort.py +152 -0
- pymoo/util/nds/fast_non_dominated_sort.py +70 -0
- pymoo/util/nds/naive_non_dominated_sort.py +36 -0
- pymoo/util/nds/non_dominated_sorting.py +67 -0
- pymoo/util/nds/tree_based_non_dominated_sort.py +133 -0
- pymoo/util/normalization.py +312 -0
- pymoo/util/optimum.py +42 -0
- pymoo/util/plotting.py +177 -0
- pymoo/util/pruning_cd.py +89 -0
- pymoo/util/randomized_argsort.py +60 -0
- pymoo/util/ref_dirs/__init__.py +24 -0
- pymoo/util/ref_dirs/construction.py +88 -0
- pymoo/util/ref_dirs/das_dennis.py +52 -0
- pymoo/util/ref_dirs/energy.py +319 -0
- pymoo/util/ref_dirs/energy_layer.py +119 -0
- pymoo/util/ref_dirs/genetic_algorithm.py +63 -0
- pymoo/util/ref_dirs/incremental.py +68 -0
- pymoo/util/ref_dirs/misc.py +128 -0
- pymoo/util/ref_dirs/optimizer.py +59 -0
- pymoo/util/ref_dirs/performance.py +162 -0
- pymoo/util/ref_dirs/reduction.py +85 -0
- pymoo/util/ref_dirs/sample_and_map.py +24 -0
- pymoo/util/reference_direction.py +260 -0
- pymoo/util/remote.py +55 -0
- pymoo/util/roulette.py +27 -0
- pymoo/util/running_metric.py +128 -0
- pymoo/util/sliding_window.py +25 -0
- pymoo/util/stochastic_ranking.py +32 -0
- pymoo/util/value_functions.py +719 -0
- pymoo/util/vectors.py +40 -0
- pymoo/util/vf_dominator.py +99 -0
- pymoo/vendor/__init__.py +0 -0
- pymoo/vendor/cec2018.py +398 -0
- pymoo/vendor/gta.py +617 -0
- pymoo/vendor/hv.py +267 -0
- pymoo/vendor/vendor_cmaes.py +412 -0
- pymoo/vendor/vendor_coco.py +81 -0
- pymoo/vendor/vendor_scipy.py +232 -0
- pymoo/version.py +1 -0
- pymoo/visualization/__init__.py +8 -0
- pymoo/visualization/fitness_landscape.py +127 -0
- pymoo/visualization/heatmap.py +123 -0
- pymoo/visualization/pcp.py +120 -0
- pymoo/visualization/petal.py +91 -0
- pymoo/visualization/radar.py +108 -0
- pymoo/visualization/radviz.py +68 -0
- pymoo/visualization/scatter.py +150 -0
- pymoo/visualization/star_coordinate.py +75 -0
- pymoo/visualization/util.py +123 -0
- pymoo/visualization/video/__init__.py +0 -0
- pymoo/visualization/video/callback_video.py +82 -0
- pymoo/visualization/video/one_var_one_obj.py +57 -0
- pymoo/visualization/video/two_var_one_obj.py +62 -0
- pymoo-0.6.1.5.dev0.dist-info/METADATA +187 -0
- pymoo-0.6.1.5.dev0.dist-info/RECORD +330 -0
- pymoo-0.6.1.5.dev0.dist-info/WHEEL +5 -0
- pymoo-0.6.1.5.dev0.dist-info/licenses/LICENSE +191 -0
- pymoo-0.6.1.5.dev0.dist-info/top_level.txt +1 -0
- pymoo.libs/libgcc_s-2298274a.so.1 +0 -0
- pymoo.libs/libstdc++-08d5c7eb.so.6.0.33 +0 -0
|
@@ -0,0 +1,41 @@
|
|
|
1
|
+
from pymoo.core.individual import calc_cv
|
|
2
|
+
from pymoo.core.meta import Meta
|
|
3
|
+
from pymoo.core.problem import Problem
|
|
4
|
+
from pymoo.util.misc import from_dict
|
|
5
|
+
|
|
6
|
+
import numpy as np
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class ConstraintsAsPenalty(Meta, Problem):
|
|
10
|
+
|
|
11
|
+
def __init__(self,
|
|
12
|
+
problem,
|
|
13
|
+
penalty: float = 0.1):
|
|
14
|
+
super().__init__(problem)
|
|
15
|
+
|
|
16
|
+
# the amount of penalty to add for this type
|
|
17
|
+
self.penalty = penalty
|
|
18
|
+
|
|
19
|
+
# set ieq and eq to zero (because it became now a penalty)
|
|
20
|
+
self.n_ieq_constr = 0
|
|
21
|
+
self.n_eq_constr = 0
|
|
22
|
+
|
|
23
|
+
def do(self, X, return_values_of, *args, **kwargs):
|
|
24
|
+
out = self.__object__.do(X, return_values_of, *args, **kwargs)
|
|
25
|
+
|
|
26
|
+
# get at the values from the output
|
|
27
|
+
F, G, H = from_dict(out, "F", "G", "H")
|
|
28
|
+
|
|
29
|
+
# store a backup of the values in out
|
|
30
|
+
out["__F__"], out["__G__"], out["__H__"] = F, G, H
|
|
31
|
+
|
|
32
|
+
# calculate the total constraint violation (here normalization shall be already included)
|
|
33
|
+
CV = calc_cv(G=G, H=H)
|
|
34
|
+
|
|
35
|
+
# set the penalized objective values
|
|
36
|
+
out["F"] = F + self.penalty * np.reshape(CV, F.shape)
|
|
37
|
+
|
|
38
|
+
del out["G"]
|
|
39
|
+
del out["H"]
|
|
40
|
+
|
|
41
|
+
return out
|
pymoo/constraints/eps.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
|
|
3
|
+
from pymoo.constraints.adaptive import AdaptiveConstraintHandling
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
class AdaptiveEpsilonConstraintHandling(AdaptiveConstraintHandling):
|
|
7
|
+
|
|
8
|
+
def __init__(self, algorithm, perc_eps_until=0.5):
|
|
9
|
+
super().__init__(algorithm)
|
|
10
|
+
self.perc_eps_until = perc_eps_until
|
|
11
|
+
self.max_cv = None
|
|
12
|
+
|
|
13
|
+
def _adapt_constraint_handling(self, config, **kwargs):
|
|
14
|
+
t = self.termination.perc
|
|
15
|
+
alpha = np.maximum(0.0, 1 - 1 / self.perc_eps_until * t)
|
|
16
|
+
eps = alpha * self.max_cv
|
|
17
|
+
|
|
18
|
+
config["cv_eps"] = eps
|
|
19
|
+
|
|
20
|
+
def _initialize_advance(self, infills=None, **kwargs):
|
|
21
|
+
|
|
22
|
+
# get the average constraint violation in the current generation
|
|
23
|
+
cv = infills.get("cv")
|
|
24
|
+
self.max_cv = np.mean(cv)
|
|
25
|
+
|
|
26
|
+
return super()._initialize_advance(infills, **kwargs)
|
|
@@ -0,0 +1,36 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
|
|
3
|
+
import pymoo.gradient.toolbox as anp
|
|
4
|
+
|
|
5
|
+
from pymoo.core.meta import Meta
|
|
6
|
+
from pymoo.core.problem import Problem
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class ConstraintsFromBounds(Meta, Problem):
|
|
10
|
+
|
|
11
|
+
def __init__(self, problem, remove_bonds=False):
|
|
12
|
+
super().__init__(problem)
|
|
13
|
+
self.n_ieq_constr += 2 * self.n_var
|
|
14
|
+
|
|
15
|
+
if remove_bonds:
|
|
16
|
+
self.xl, self.xu = None, None
|
|
17
|
+
|
|
18
|
+
def do(self, X, return_values_of, *args, **kwargs):
|
|
19
|
+
|
|
20
|
+
out = self.__object__.do(X, return_values_of, *args, **kwargs)
|
|
21
|
+
|
|
22
|
+
# get the boundaries for normalization
|
|
23
|
+
xl, xu = self.bounds()
|
|
24
|
+
|
|
25
|
+
# add the boundary constraint if enabled
|
|
26
|
+
_G = anp.column_stack([xl - X, X - xu])
|
|
27
|
+
|
|
28
|
+
out["G"] = anp.column_stack([out["G"], _G])
|
|
29
|
+
|
|
30
|
+
if "dG" in out:
|
|
31
|
+
_dG = np.zeros((len(X), 2 * self.n_var, self.n_var))
|
|
32
|
+
_dG[:, :self.n_var, :] = - np.eye(self.n_var)
|
|
33
|
+
_dG[:, self.n_var:, :] = np.eye(self.n_var)
|
|
34
|
+
out["dG"] = np.column_stack([out["dG"], _dG])
|
|
35
|
+
|
|
36
|
+
return out
|
pymoo/core/__init__.py
ADDED
|
File without changes
|
pymoo/core/algorithm.py
ADDED
|
@@ -0,0 +1,394 @@
|
|
|
1
|
+
import copy
|
|
2
|
+
import time
|
|
3
|
+
|
|
4
|
+
import numpy as np
|
|
5
|
+
|
|
6
|
+
from pymoo.core.callback import Callback
|
|
7
|
+
from pymoo.core.evaluator import Evaluator
|
|
8
|
+
from pymoo.core.population import Population
|
|
9
|
+
from pymoo.core.result import Result
|
|
10
|
+
from pymoo.termination.default import DefaultMultiObjectiveTermination, DefaultSingleObjectiveTermination
|
|
11
|
+
from pymoo.util.display.display import Display
|
|
12
|
+
from pymoo.util.function_loader import FunctionLoader
|
|
13
|
+
from pymoo.util.misc import termination_from_tuple
|
|
14
|
+
from pymoo.util.optimum import filter_optimum
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
class Algorithm:
|
|
18
|
+
|
|
19
|
+
def __init__(self,
|
|
20
|
+
termination=None,
|
|
21
|
+
output=None,
|
|
22
|
+
display=None,
|
|
23
|
+
callback=None,
|
|
24
|
+
archive=None,
|
|
25
|
+
return_least_infeasible=False,
|
|
26
|
+
save_history=False,
|
|
27
|
+
verbose=False,
|
|
28
|
+
seed=None,
|
|
29
|
+
evaluator=None,
|
|
30
|
+
**kwargs):
|
|
31
|
+
|
|
32
|
+
super().__init__()
|
|
33
|
+
|
|
34
|
+
# prints the compile warning if enabled
|
|
35
|
+
FunctionLoader.get_instance()
|
|
36
|
+
|
|
37
|
+
# the problem to be solved (will be set later on)
|
|
38
|
+
self.problem = None
|
|
39
|
+
|
|
40
|
+
# the termination criterion to be used by the algorithm - might be specific for an algorithm
|
|
41
|
+
self.termination = termination
|
|
42
|
+
|
|
43
|
+
# the text that should be printed during the algorithm run
|
|
44
|
+
self.output = output
|
|
45
|
+
|
|
46
|
+
# an archive kept during algorithm execution (not always the same as optimum)
|
|
47
|
+
self.archive = archive
|
|
48
|
+
|
|
49
|
+
# the form of display shown during algorithm execution
|
|
50
|
+
self.display = display
|
|
51
|
+
|
|
52
|
+
# callback to be executed each generation
|
|
53
|
+
if callback is None:
|
|
54
|
+
callback = Callback()
|
|
55
|
+
self.callback = callback
|
|
56
|
+
|
|
57
|
+
# whether the algorithm should finally return the least infeasible solution if no feasible found
|
|
58
|
+
self.return_least_infeasible = return_least_infeasible
|
|
59
|
+
|
|
60
|
+
# whether the history should be saved or not
|
|
61
|
+
self.save_history = save_history
|
|
62
|
+
|
|
63
|
+
# whether the algorithm should print output in this run or not
|
|
64
|
+
self.verbose = verbose
|
|
65
|
+
|
|
66
|
+
# the random seed that was used
|
|
67
|
+
self.seed = seed
|
|
68
|
+
|
|
69
|
+
# the function evaluator object (can be used to inject code)
|
|
70
|
+
if evaluator is None:
|
|
71
|
+
evaluator = Evaluator()
|
|
72
|
+
self.evaluator = evaluator
|
|
73
|
+
|
|
74
|
+
# the history object which contains the list
|
|
75
|
+
self.history = list()
|
|
76
|
+
|
|
77
|
+
# the current solutions stored - here considered as population
|
|
78
|
+
self.pop = None
|
|
79
|
+
|
|
80
|
+
# a placeholder object for implementation to store solutions in each iteration
|
|
81
|
+
self.off = None
|
|
82
|
+
|
|
83
|
+
# the optimum found by the algorithm
|
|
84
|
+
self.opt = None
|
|
85
|
+
|
|
86
|
+
# the current number of generation or iteration
|
|
87
|
+
self.n_iter = None
|
|
88
|
+
|
|
89
|
+
# can be used to store additional data in submodules
|
|
90
|
+
self.data = {}
|
|
91
|
+
|
|
92
|
+
# if the initialized method has been called before or not
|
|
93
|
+
self.is_initialized = False
|
|
94
|
+
|
|
95
|
+
# the time when the algorithm has been setup for the first time
|
|
96
|
+
self.start_time = None
|
|
97
|
+
|
|
98
|
+
def setup(self, problem, **kwargs):
|
|
99
|
+
|
|
100
|
+
# the problem to be solved by the algorithm
|
|
101
|
+
self.problem = problem
|
|
102
|
+
|
|
103
|
+
# set all the provided options to this method
|
|
104
|
+
for key, value in kwargs.items():
|
|
105
|
+
self.__dict__[key] = value
|
|
106
|
+
|
|
107
|
+
# if seed is a boolean and true, then randomly set a seed (useful to reproduce runs)
|
|
108
|
+
seed = self.seed
|
|
109
|
+
if isinstance(seed, bool) and seed:
|
|
110
|
+
seed = np.random.randint(0, 10000000)
|
|
111
|
+
self.seed = seed
|
|
112
|
+
|
|
113
|
+
# if a seed is set, then use it to call the random number generators
|
|
114
|
+
if seed is not None:
|
|
115
|
+
import random
|
|
116
|
+
random.seed(seed)
|
|
117
|
+
np.random.seed(seed)
|
|
118
|
+
|
|
119
|
+
# make sure that some type of termination criterion is set
|
|
120
|
+
if self.termination is None:
|
|
121
|
+
self.termination = default_termination(problem)
|
|
122
|
+
else:
|
|
123
|
+
self.termination = termination_from_tuple(self.termination)
|
|
124
|
+
|
|
125
|
+
# set up the display during the algorithm execution
|
|
126
|
+
if self.display is None:
|
|
127
|
+
verbose = kwargs.get("verbose", False)
|
|
128
|
+
progress = kwargs.get("progress", False)
|
|
129
|
+
self.display = Display(self.output, verbose=verbose, progress=progress)
|
|
130
|
+
|
|
131
|
+
# finally call the function that can be overwritten by the actual algorithm
|
|
132
|
+
self._setup(problem, **kwargs)
|
|
133
|
+
|
|
134
|
+
return self
|
|
135
|
+
|
|
136
|
+
def run(self):
|
|
137
|
+
while self.has_next():
|
|
138
|
+
self.next()
|
|
139
|
+
return self.result()
|
|
140
|
+
|
|
141
|
+
def has_next(self):
|
|
142
|
+
return not self.termination.has_terminated()
|
|
143
|
+
|
|
144
|
+
def finalize(self):
|
|
145
|
+
|
|
146
|
+
# finalize the display output in the end of the run
|
|
147
|
+
self.display.finalize()
|
|
148
|
+
|
|
149
|
+
return self._finalize()
|
|
150
|
+
|
|
151
|
+
def next(self):
|
|
152
|
+
|
|
153
|
+
# get the infill solutions
|
|
154
|
+
infills = self.infill()
|
|
155
|
+
|
|
156
|
+
# call the advance with them after evaluation
|
|
157
|
+
if infills is not None:
|
|
158
|
+
self.evaluator.eval(self.problem, infills, algorithm=self)
|
|
159
|
+
self.advance(infills=infills)
|
|
160
|
+
|
|
161
|
+
# if the algorithm does not follow the infill-advance scheme just call advance
|
|
162
|
+
else:
|
|
163
|
+
self.advance()
|
|
164
|
+
|
|
165
|
+
def _initialize(self):
|
|
166
|
+
|
|
167
|
+
# the time starts whenever this method is called
|
|
168
|
+
self.start_time = time.time()
|
|
169
|
+
|
|
170
|
+
# set the attribute for the optimization method to start
|
|
171
|
+
self.n_iter = 1
|
|
172
|
+
self.pop = Population.empty()
|
|
173
|
+
self.opt = None
|
|
174
|
+
|
|
175
|
+
def infill(self):
|
|
176
|
+
if self.problem is None:
|
|
177
|
+
raise Exception("Please call `setup(problem)` before calling next().")
|
|
178
|
+
|
|
179
|
+
# the first time next is called simply initial the algorithm - makes the interface cleaner
|
|
180
|
+
if not self.is_initialized:
|
|
181
|
+
|
|
182
|
+
# hook mostly used by the class to happen before even to initialize
|
|
183
|
+
self._initialize()
|
|
184
|
+
|
|
185
|
+
# execute the initialization infill of the algorithm
|
|
186
|
+
infills = self._initialize_infill()
|
|
187
|
+
|
|
188
|
+
else:
|
|
189
|
+
# request the infill solutions if the algorithm has implemented it
|
|
190
|
+
infills = self._infill()
|
|
191
|
+
|
|
192
|
+
# set the current generation to the offsprings
|
|
193
|
+
if infills is not None:
|
|
194
|
+
infills.set("n_gen", self.n_iter)
|
|
195
|
+
infills.set("n_iter", self.n_iter)
|
|
196
|
+
|
|
197
|
+
return infills
|
|
198
|
+
|
|
199
|
+
def advance(self, infills=None, **kwargs):
|
|
200
|
+
|
|
201
|
+
# if infills have been provided set them as offsprings and feed them into advance
|
|
202
|
+
self.off = infills
|
|
203
|
+
|
|
204
|
+
# if the algorithm has not been already initialized
|
|
205
|
+
if not self.is_initialized:
|
|
206
|
+
|
|
207
|
+
# set the generation counter to 1
|
|
208
|
+
self.n_iter = 1
|
|
209
|
+
|
|
210
|
+
# assign the population to the algorithm
|
|
211
|
+
self.pop = infills
|
|
212
|
+
|
|
213
|
+
# do what is necessary after the initialization
|
|
214
|
+
self._initialize_advance(infills=infills, **kwargs)
|
|
215
|
+
|
|
216
|
+
# set this algorithm to be initialized
|
|
217
|
+
self.is_initialized = True
|
|
218
|
+
|
|
219
|
+
# always advance to the next iteration after initialization
|
|
220
|
+
self._post_advance()
|
|
221
|
+
|
|
222
|
+
else:
|
|
223
|
+
|
|
224
|
+
# call the implementation of the advance method - if the infill is not None
|
|
225
|
+
val = self._advance(infills=infills, **kwargs)
|
|
226
|
+
|
|
227
|
+
# always advance to the next iteration - except if the algorithm returns False
|
|
228
|
+
if val is None or val:
|
|
229
|
+
self._post_advance()
|
|
230
|
+
|
|
231
|
+
# if the algorithm has terminated, then do the finalization steps and return the result
|
|
232
|
+
if self.termination.has_terminated():
|
|
233
|
+
self.finalize()
|
|
234
|
+
ret = self.result()
|
|
235
|
+
|
|
236
|
+
# otherwise just increase the iteration counter for the next step and return the current optimum
|
|
237
|
+
else:
|
|
238
|
+
ret = self.opt
|
|
239
|
+
|
|
240
|
+
# add the infill solutions to an archive
|
|
241
|
+
if self.archive is not None and infills is not None:
|
|
242
|
+
self.archive = self.archive.add(infills)
|
|
243
|
+
|
|
244
|
+
return ret
|
|
245
|
+
|
|
246
|
+
def result(self):
|
|
247
|
+
res = Result()
|
|
248
|
+
|
|
249
|
+
# store the time when the algorithm as finished
|
|
250
|
+
res.start_time = self.start_time
|
|
251
|
+
res.end_time = time.time()
|
|
252
|
+
res.exec_time = res.end_time - res.start_time
|
|
253
|
+
|
|
254
|
+
res.pop = self.pop
|
|
255
|
+
res.archive = self.archive
|
|
256
|
+
res.data = self.data
|
|
257
|
+
|
|
258
|
+
# get the optimal solution found
|
|
259
|
+
opt = self.opt
|
|
260
|
+
if opt is None or len(opt) == 0:
|
|
261
|
+
opt = None
|
|
262
|
+
|
|
263
|
+
# if no feasible solution has been found
|
|
264
|
+
elif not np.any(opt.get("FEAS")):
|
|
265
|
+
if self.return_least_infeasible:
|
|
266
|
+
opt = filter_optimum(opt, least_infeasible=True)
|
|
267
|
+
else:
|
|
268
|
+
opt = None
|
|
269
|
+
res.opt = opt
|
|
270
|
+
|
|
271
|
+
# if optimum is set to none to not report anything
|
|
272
|
+
if res.opt is None:
|
|
273
|
+
X, F, CV, G, H = None, None, None, None, None
|
|
274
|
+
|
|
275
|
+
# otherwise get the values from the population
|
|
276
|
+
else:
|
|
277
|
+
X, F, CV, G, H = self.opt.get("X", "F", "CV", "G", "H")
|
|
278
|
+
|
|
279
|
+
# if single-objective problem and only one solution was found - create a 1d array
|
|
280
|
+
if self.problem.n_obj == 1 and len(X) == 1:
|
|
281
|
+
X, F, CV, G, H = X[0], F[0], CV[0], G[0], H[0]
|
|
282
|
+
|
|
283
|
+
# set all the individual values
|
|
284
|
+
res.X, res.F, res.CV, res.G, res.H = X, F, CV, G, H
|
|
285
|
+
|
|
286
|
+
# create the result object
|
|
287
|
+
res.problem = self.problem
|
|
288
|
+
res.history = self.history
|
|
289
|
+
|
|
290
|
+
return res
|
|
291
|
+
|
|
292
|
+
def ask(self):
|
|
293
|
+
return self.infill()
|
|
294
|
+
|
|
295
|
+
def tell(self, *args, **kwargs):
|
|
296
|
+
return self.advance(*args, **kwargs)
|
|
297
|
+
|
|
298
|
+
def _set_optimum(self):
|
|
299
|
+
self.opt = filter_optimum(self.pop, least_infeasible=True)
|
|
300
|
+
|
|
301
|
+
def _post_advance(self):
|
|
302
|
+
|
|
303
|
+
# update the current optimum of the algorithm
|
|
304
|
+
self._set_optimum()
|
|
305
|
+
|
|
306
|
+
# update the current termination condition of the algorithm
|
|
307
|
+
self.termination.update(self)
|
|
308
|
+
|
|
309
|
+
# display the output if defined by the algorithm
|
|
310
|
+
self.display(self)
|
|
311
|
+
|
|
312
|
+
# if a callback function is provided it is called after each iteration
|
|
313
|
+
self.callback(self)
|
|
314
|
+
|
|
315
|
+
if self.save_history:
|
|
316
|
+
_hist, _callback, _display = self.history, self.callback, self.display
|
|
317
|
+
|
|
318
|
+
self.history, self.callback, self.display = None, None, None
|
|
319
|
+
obj = copy.deepcopy(self)
|
|
320
|
+
|
|
321
|
+
self.history, self.callback, self.display = _hist, _callback, _display
|
|
322
|
+
self.history.append(obj)
|
|
323
|
+
|
|
324
|
+
self.n_iter += 1
|
|
325
|
+
|
|
326
|
+
# =========================================================================================================
|
|
327
|
+
# TO BE OVERWRITTEN
|
|
328
|
+
# =========================================================================================================
|
|
329
|
+
|
|
330
|
+
def _setup(self, problem, **kwargs):
|
|
331
|
+
pass
|
|
332
|
+
|
|
333
|
+
def _initialize_infill(self):
|
|
334
|
+
pass
|
|
335
|
+
|
|
336
|
+
def _initialize_advance(self, infills=None, **kwargs):
|
|
337
|
+
pass
|
|
338
|
+
|
|
339
|
+
def _infill(self):
|
|
340
|
+
pass
|
|
341
|
+
|
|
342
|
+
def _advance(self, infills=None, **kwargs):
|
|
343
|
+
pass
|
|
344
|
+
|
|
345
|
+
def _finalize(self):
|
|
346
|
+
pass
|
|
347
|
+
|
|
348
|
+
# =========================================================================================================
|
|
349
|
+
# CONVENIENCE
|
|
350
|
+
# =========================================================================================================
|
|
351
|
+
|
|
352
|
+
@property
|
|
353
|
+
def n_gen(self):
|
|
354
|
+
return self.n_iter
|
|
355
|
+
|
|
356
|
+
@n_gen.setter
|
|
357
|
+
def n_gen(self, value):
|
|
358
|
+
self.n_iter = value
|
|
359
|
+
|
|
360
|
+
|
|
361
|
+
class LoopwiseAlgorithm(Algorithm):
|
|
362
|
+
|
|
363
|
+
def __init__(self, **kwargs):
|
|
364
|
+
super().__init__(**kwargs)
|
|
365
|
+
self.generator = None
|
|
366
|
+
self.state = None
|
|
367
|
+
|
|
368
|
+
def _next(self):
|
|
369
|
+
pass
|
|
370
|
+
|
|
371
|
+
def _infill(self):
|
|
372
|
+
if self.state is None:
|
|
373
|
+
self._advance()
|
|
374
|
+
return self.state
|
|
375
|
+
|
|
376
|
+
def _advance(self, infills=None, **kwargs):
|
|
377
|
+
if self.generator is None:
|
|
378
|
+
self.generator = self._next()
|
|
379
|
+
try:
|
|
380
|
+
self.state = self.generator.send(infills)
|
|
381
|
+
except StopIteration:
|
|
382
|
+
self.generator = None
|
|
383
|
+
self.state = None
|
|
384
|
+
return True
|
|
385
|
+
|
|
386
|
+
return False
|
|
387
|
+
|
|
388
|
+
|
|
389
|
+
def default_termination(problem):
|
|
390
|
+
if problem.n_obj > 1:
|
|
391
|
+
termination = DefaultMultiObjectiveTermination()
|
|
392
|
+
else:
|
|
393
|
+
termination = DefaultSingleObjectiveTermination()
|
|
394
|
+
return termination
|
pymoo/core/callback.py
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
1
|
+
class Callback:
|
|
2
|
+
|
|
3
|
+
def __init__(self) -> None:
|
|
4
|
+
super().__init__()
|
|
5
|
+
self.data = {}
|
|
6
|
+
self.is_initialized = False
|
|
7
|
+
|
|
8
|
+
def initialize(self, algorithm):
|
|
9
|
+
pass
|
|
10
|
+
|
|
11
|
+
def notify(self, algorithm):
|
|
12
|
+
pass
|
|
13
|
+
|
|
14
|
+
def update(self, algorithm):
|
|
15
|
+
return self._update(algorithm)
|
|
16
|
+
|
|
17
|
+
def _update(self, algorithm):
|
|
18
|
+
pass
|
|
19
|
+
|
|
20
|
+
def __call__(self, algorithm):
|
|
21
|
+
|
|
22
|
+
if not self.is_initialized:
|
|
23
|
+
self.initialize(algorithm)
|
|
24
|
+
self.is_initialized = True
|
|
25
|
+
|
|
26
|
+
self.notify(algorithm)
|
|
27
|
+
self.update(algorithm)
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
class CallbackCollection(Callback):
|
|
31
|
+
|
|
32
|
+
def __init__(self, *args) -> None:
|
|
33
|
+
super().__init__()
|
|
34
|
+
self.callbacks = args
|
|
35
|
+
|
|
36
|
+
def update(self, algorithm):
|
|
37
|
+
[callback.update(algorithm) for callback in self.callbacks]
|
|
38
|
+
|
pymoo/core/crossover.py
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
|
|
3
|
+
from pymoo.core.operator import Operator
|
|
4
|
+
from pymoo.core.population import Population
|
|
5
|
+
from pymoo.core.variable import Real, get
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
class Crossover(Operator):
|
|
9
|
+
|
|
10
|
+
def __init__(self,
|
|
11
|
+
n_parents,
|
|
12
|
+
n_offsprings,
|
|
13
|
+
prob=0.9,
|
|
14
|
+
**kwargs):
|
|
15
|
+
super().__init__(**kwargs)
|
|
16
|
+
self.n_parents = n_parents
|
|
17
|
+
self.n_offsprings = n_offsprings
|
|
18
|
+
self.prob = Real(prob, bounds=(0.5, 1.0), strict=(0.0, 1.0))
|
|
19
|
+
|
|
20
|
+
def do(self, problem, pop, parents=None, **kwargs):
|
|
21
|
+
|
|
22
|
+
# if a parents with array with mating indices is provided -> transform the input first
|
|
23
|
+
if parents is not None:
|
|
24
|
+
pop = [pop[mating] for mating in parents]
|
|
25
|
+
|
|
26
|
+
# get the dimensions necessary to create in and output
|
|
27
|
+
n_parents, n_offsprings = self.n_parents, self.n_offsprings
|
|
28
|
+
n_matings, n_var = len(pop), problem.n_var
|
|
29
|
+
|
|
30
|
+
# get the actual values from each of the parents
|
|
31
|
+
X = np.swapaxes(np.array([[parent.get("X") for parent in mating] for mating in pop]), 0, 1)
|
|
32
|
+
if self.vtype is not None:
|
|
33
|
+
X = X.astype(self.vtype)
|
|
34
|
+
|
|
35
|
+
# the array where the offsprings will be stored to
|
|
36
|
+
Xp = np.empty(shape=(n_offsprings, n_matings, n_var), dtype=X.dtype)
|
|
37
|
+
|
|
38
|
+
# the probability of executing the crossover
|
|
39
|
+
prob = get(self.prob, size=n_matings)
|
|
40
|
+
|
|
41
|
+
# a boolean mask when crossover is actually executed
|
|
42
|
+
cross = np.random.random(n_matings) < prob
|
|
43
|
+
|
|
44
|
+
# the design space from the parents used for the crossover
|
|
45
|
+
if np.any(cross):
|
|
46
|
+
|
|
47
|
+
# we can not prefilter for cross first, because there might be other variables using the same shape as X
|
|
48
|
+
Q = self._do(problem, X, **kwargs)
|
|
49
|
+
assert Q.shape == (n_offsprings, n_matings, problem.n_var), "Shape is incorrect of crossover impl."
|
|
50
|
+
Xp[:, cross] = Q[:, cross]
|
|
51
|
+
|
|
52
|
+
# now set the parents whenever NO crossover has been applied
|
|
53
|
+
for k in np.flatnonzero(~cross):
|
|
54
|
+
if n_offsprings < n_parents:
|
|
55
|
+
s = np.random.choice(np.arange(self.n_parents), size=n_offsprings, replace=False)
|
|
56
|
+
elif n_offsprings == n_parents:
|
|
57
|
+
s = np.arange(n_parents)
|
|
58
|
+
else:
|
|
59
|
+
s = []
|
|
60
|
+
while len(s) < n_offsprings:
|
|
61
|
+
s.extend(np.random.permutation(n_parents))
|
|
62
|
+
s = s[:n_offsprings]
|
|
63
|
+
|
|
64
|
+
Xp[:, k] = np.copy(X[s, k])
|
|
65
|
+
|
|
66
|
+
# flatten the array to become a 2d-array
|
|
67
|
+
Xp = Xp.reshape(-1, X.shape[-1])
|
|
68
|
+
|
|
69
|
+
# create a population object
|
|
70
|
+
off = Population.new("X", Xp)
|
|
71
|
+
|
|
72
|
+
return off
|
|
73
|
+
|
|
74
|
+
def _do(self, problem, X, **kwargs):
|
|
75
|
+
pass
|
|
76
|
+
|
|
77
|
+
|