pymoo 0.6.1.5.dev0__cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of pymoo might be problematic. Click here for more details.
- pymoo/__init__.py +3 -0
- pymoo/algorithms/__init__.py +0 -0
- pymoo/algorithms/base/__init__.py +0 -0
- pymoo/algorithms/base/bracket.py +38 -0
- pymoo/algorithms/base/genetic.py +109 -0
- pymoo/algorithms/base/line.py +62 -0
- pymoo/algorithms/base/local.py +39 -0
- pymoo/algorithms/base/meta.py +79 -0
- pymoo/algorithms/hyperparameters.py +89 -0
- pymoo/algorithms/moo/__init__.py +0 -0
- pymoo/algorithms/moo/age.py +310 -0
- pymoo/algorithms/moo/age2.py +194 -0
- pymoo/algorithms/moo/ctaea.py +298 -0
- pymoo/algorithms/moo/dnsga2.py +76 -0
- pymoo/algorithms/moo/kgb.py +446 -0
- pymoo/algorithms/moo/moead.py +183 -0
- pymoo/algorithms/moo/nsga2.py +113 -0
- pymoo/algorithms/moo/nsga3.py +358 -0
- pymoo/algorithms/moo/pinsga2.py +370 -0
- pymoo/algorithms/moo/rnsga2.py +188 -0
- pymoo/algorithms/moo/rnsga3.py +246 -0
- pymoo/algorithms/moo/rvea.py +214 -0
- pymoo/algorithms/moo/sms.py +195 -0
- pymoo/algorithms/moo/spea2.py +190 -0
- pymoo/algorithms/moo/unsga3.py +47 -0
- pymoo/algorithms/soo/__init__.py +0 -0
- pymoo/algorithms/soo/convex/__init__.py +0 -0
- pymoo/algorithms/soo/nonconvex/__init__.py +0 -0
- pymoo/algorithms/soo/nonconvex/brkga.py +161 -0
- pymoo/algorithms/soo/nonconvex/cmaes.py +554 -0
- pymoo/algorithms/soo/nonconvex/de.py +279 -0
- pymoo/algorithms/soo/nonconvex/direct.py +149 -0
- pymoo/algorithms/soo/nonconvex/es.py +203 -0
- pymoo/algorithms/soo/nonconvex/g3pcx.py +94 -0
- pymoo/algorithms/soo/nonconvex/ga.py +93 -0
- pymoo/algorithms/soo/nonconvex/ga_niching.py +223 -0
- pymoo/algorithms/soo/nonconvex/isres.py +74 -0
- pymoo/algorithms/soo/nonconvex/nelder.py +251 -0
- pymoo/algorithms/soo/nonconvex/optuna.py +80 -0
- pymoo/algorithms/soo/nonconvex/pattern.py +183 -0
- pymoo/algorithms/soo/nonconvex/pso.py +399 -0
- pymoo/algorithms/soo/nonconvex/pso_ep.py +297 -0
- pymoo/algorithms/soo/nonconvex/random_search.py +25 -0
- pymoo/algorithms/soo/nonconvex/sres.py +56 -0
- pymoo/algorithms/soo/univariate/__init__.py +0 -0
- pymoo/algorithms/soo/univariate/backtracking.py +59 -0
- pymoo/algorithms/soo/univariate/exp.py +46 -0
- pymoo/algorithms/soo/univariate/golden.py +65 -0
- pymoo/algorithms/soo/univariate/quadr_interp.py +81 -0
- pymoo/algorithms/soo/univariate/wolfe.py +163 -0
- pymoo/config.py +33 -0
- pymoo/constraints/__init__.py +3 -0
- pymoo/constraints/adaptive.py +62 -0
- pymoo/constraints/as_obj.py +56 -0
- pymoo/constraints/as_penalty.py +41 -0
- pymoo/constraints/eps.py +26 -0
- pymoo/constraints/from_bounds.py +36 -0
- pymoo/core/__init__.py +0 -0
- pymoo/core/algorithm.py +394 -0
- pymoo/core/callback.py +38 -0
- pymoo/core/crossover.py +77 -0
- pymoo/core/decision_making.py +102 -0
- pymoo/core/decomposition.py +76 -0
- pymoo/core/duplicate.py +163 -0
- pymoo/core/evaluator.py +116 -0
- pymoo/core/indicator.py +34 -0
- pymoo/core/individual.py +784 -0
- pymoo/core/infill.py +64 -0
- pymoo/core/initialization.py +42 -0
- pymoo/core/mating.py +39 -0
- pymoo/core/meta.py +21 -0
- pymoo/core/mixed.py +165 -0
- pymoo/core/mutation.py +44 -0
- pymoo/core/operator.py +40 -0
- pymoo/core/parameters.py +134 -0
- pymoo/core/plot.py +210 -0
- pymoo/core/population.py +180 -0
- pymoo/core/problem.py +460 -0
- pymoo/core/recorder.py +99 -0
- pymoo/core/repair.py +23 -0
- pymoo/core/replacement.py +96 -0
- pymoo/core/result.py +52 -0
- pymoo/core/sampling.py +43 -0
- pymoo/core/selection.py +61 -0
- pymoo/core/solution.py +10 -0
- pymoo/core/survival.py +103 -0
- pymoo/core/termination.py +70 -0
- pymoo/core/variable.py +399 -0
- pymoo/cython/__init__.py +0 -0
- pymoo/cython/calc_perpendicular_distance.cpython-313-x86_64-linux-gnu.so +0 -0
- pymoo/cython/calc_perpendicular_distance.pyx +67 -0
- pymoo/cython/decomposition.cpython-313-x86_64-linux-gnu.so +0 -0
- pymoo/cython/decomposition.pyx +165 -0
- pymoo/cython/hv.cpython-313-x86_64-linux-gnu.so +0 -0
- pymoo/cython/hv.pyx +18 -0
- pymoo/cython/info.cpython-313-x86_64-linux-gnu.so +0 -0
- pymoo/cython/info.pyx +5 -0
- pymoo/cython/mnn.cpython-313-x86_64-linux-gnu.so +0 -0
- pymoo/cython/mnn.pyx +273 -0
- pymoo/cython/non_dominated_sorting.cpython-313-x86_64-linux-gnu.so +0 -0
- pymoo/cython/non_dominated_sorting.pyx +645 -0
- pymoo/cython/pruning_cd.cpython-313-x86_64-linux-gnu.so +0 -0
- pymoo/cython/pruning_cd.pyx +197 -0
- pymoo/cython/stochastic_ranking.cpython-313-x86_64-linux-gnu.so +0 -0
- pymoo/cython/stochastic_ranking.pyx +49 -0
- pymoo/cython/utils.pxd +129 -0
- pymoo/cython/vendor/__init__.py +0 -0
- pymoo/cython/vendor/hypervolume.cpp +1621 -0
- pymoo/cython/vendor/hypervolume.h +63 -0
- pymoo/decomposition/__init__.py +0 -0
- pymoo/decomposition/aasf.py +24 -0
- pymoo/decomposition/asf.py +10 -0
- pymoo/decomposition/pbi.py +13 -0
- pymoo/decomposition/perp_dist.py +13 -0
- pymoo/decomposition/tchebicheff.py +11 -0
- pymoo/decomposition/util.py +13 -0
- pymoo/decomposition/weighted_sum.py +8 -0
- pymoo/docs.py +187 -0
- pymoo/experimental/__init__.py +0 -0
- pymoo/experimental/algorithms/__init__.py +0 -0
- pymoo/experimental/algorithms/gde3.py +57 -0
- pymoo/gradient/__init__.py +21 -0
- pymoo/gradient/automatic.py +57 -0
- pymoo/gradient/grad_autograd.py +105 -0
- pymoo/gradient/grad_complex.py +35 -0
- pymoo/gradient/grad_jax.py +51 -0
- pymoo/gradient/toolbox/__init__.py +6 -0
- pymoo/indicators/__init__.py +0 -0
- pymoo/indicators/distance_indicator.py +55 -0
- pymoo/indicators/gd.py +7 -0
- pymoo/indicators/gd_plus.py +7 -0
- pymoo/indicators/hv/__init__.py +63 -0
- pymoo/indicators/hv/exact.py +71 -0
- pymoo/indicators/hv/exact_2d.py +102 -0
- pymoo/indicators/hv/monte_carlo.py +74 -0
- pymoo/indicators/igd.py +7 -0
- pymoo/indicators/igd_plus.py +7 -0
- pymoo/indicators/kktpm.py +151 -0
- pymoo/indicators/migd.py +55 -0
- pymoo/indicators/rmetric.py +203 -0
- pymoo/indicators/spacing.py +52 -0
- pymoo/mcdm/__init__.py +0 -0
- pymoo/mcdm/compromise_programming.py +19 -0
- pymoo/mcdm/high_tradeoff.py +40 -0
- pymoo/mcdm/pseudo_weights.py +32 -0
- pymoo/operators/__init__.py +0 -0
- pymoo/operators/control.py +187 -0
- pymoo/operators/crossover/__init__.py +0 -0
- pymoo/operators/crossover/binx.py +45 -0
- pymoo/operators/crossover/dex.py +122 -0
- pymoo/operators/crossover/erx.py +162 -0
- pymoo/operators/crossover/expx.py +51 -0
- pymoo/operators/crossover/hux.py +37 -0
- pymoo/operators/crossover/nox.py +13 -0
- pymoo/operators/crossover/ox.py +84 -0
- pymoo/operators/crossover/pcx.py +82 -0
- pymoo/operators/crossover/pntx.py +49 -0
- pymoo/operators/crossover/sbx.py +125 -0
- pymoo/operators/crossover/spx.py +5 -0
- pymoo/operators/crossover/ux.py +20 -0
- pymoo/operators/mutation/__init__.py +0 -0
- pymoo/operators/mutation/bitflip.py +17 -0
- pymoo/operators/mutation/gauss.py +58 -0
- pymoo/operators/mutation/inversion.py +42 -0
- pymoo/operators/mutation/nom.py +7 -0
- pymoo/operators/mutation/pm.py +94 -0
- pymoo/operators/mutation/rm.py +23 -0
- pymoo/operators/repair/__init__.py +0 -0
- pymoo/operators/repair/bounce_back.py +32 -0
- pymoo/operators/repair/bounds_repair.py +95 -0
- pymoo/operators/repair/inverse_penalty.py +89 -0
- pymoo/operators/repair/rounding.py +18 -0
- pymoo/operators/repair/to_bound.py +31 -0
- pymoo/operators/repair/vtype.py +11 -0
- pymoo/operators/sampling/__init__.py +0 -0
- pymoo/operators/sampling/lhs.py +73 -0
- pymoo/operators/sampling/rnd.py +50 -0
- pymoo/operators/selection/__init__.py +0 -0
- pymoo/operators/selection/rnd.py +72 -0
- pymoo/operators/selection/tournament.py +76 -0
- pymoo/operators/survival/__init__.py +0 -0
- pymoo/operators/survival/rank_and_crowding/__init__.py +1 -0
- pymoo/operators/survival/rank_and_crowding/classes.py +209 -0
- pymoo/operators/survival/rank_and_crowding/metrics.py +208 -0
- pymoo/optimize.py +72 -0
- pymoo/problems/__init__.py +157 -0
- pymoo/problems/dyn.py +47 -0
- pymoo/problems/dynamic/__init__.py +0 -0
- pymoo/problems/dynamic/cec2015.py +108 -0
- pymoo/problems/dynamic/df.py +452 -0
- pymoo/problems/dynamic/misc.py +167 -0
- pymoo/problems/functional.py +48 -0
- pymoo/problems/many/__init__.py +5 -0
- pymoo/problems/many/cdtlz.py +159 -0
- pymoo/problems/many/dcdtlz.py +88 -0
- pymoo/problems/many/dtlz.py +264 -0
- pymoo/problems/many/wfg.py +550 -0
- pymoo/problems/multi/__init__.py +14 -0
- pymoo/problems/multi/bnh.py +34 -0
- pymoo/problems/multi/carside.py +48 -0
- pymoo/problems/multi/clutch.py +104 -0
- pymoo/problems/multi/csi.py +55 -0
- pymoo/problems/multi/ctp.py +198 -0
- pymoo/problems/multi/dascmop.py +213 -0
- pymoo/problems/multi/kursawe.py +25 -0
- pymoo/problems/multi/modact.py +68 -0
- pymoo/problems/multi/mw.py +400 -0
- pymoo/problems/multi/omnitest.py +48 -0
- pymoo/problems/multi/osy.py +32 -0
- pymoo/problems/multi/srn.py +28 -0
- pymoo/problems/multi/sympart.py +94 -0
- pymoo/problems/multi/tnk.py +24 -0
- pymoo/problems/multi/truss2d.py +83 -0
- pymoo/problems/multi/welded_beam.py +41 -0
- pymoo/problems/multi/wrm.py +36 -0
- pymoo/problems/multi/zdt.py +151 -0
- pymoo/problems/multi_to_single.py +22 -0
- pymoo/problems/single/__init__.py +12 -0
- pymoo/problems/single/ackley.py +24 -0
- pymoo/problems/single/cantilevered_beam.py +34 -0
- pymoo/problems/single/flowshop_scheduling.py +112 -0
- pymoo/problems/single/g.py +874 -0
- pymoo/problems/single/griewank.py +18 -0
- pymoo/problems/single/himmelblau.py +15 -0
- pymoo/problems/single/knapsack.py +48 -0
- pymoo/problems/single/mopta08.py +26 -0
- pymoo/problems/single/multimodal.py +20 -0
- pymoo/problems/single/pressure_vessel.py +30 -0
- pymoo/problems/single/rastrigin.py +20 -0
- pymoo/problems/single/rosenbrock.py +22 -0
- pymoo/problems/single/schwefel.py +18 -0
- pymoo/problems/single/simple.py +13 -0
- pymoo/problems/single/sphere.py +19 -0
- pymoo/problems/single/traveling_salesman.py +79 -0
- pymoo/problems/single/zakharov.py +19 -0
- pymoo/problems/static.py +14 -0
- pymoo/problems/util.py +42 -0
- pymoo/problems/zero_to_one.py +27 -0
- pymoo/termination/__init__.py +23 -0
- pymoo/termination/collection.py +12 -0
- pymoo/termination/cv.py +48 -0
- pymoo/termination/default.py +45 -0
- pymoo/termination/delta.py +64 -0
- pymoo/termination/fmin.py +16 -0
- pymoo/termination/ftol.py +144 -0
- pymoo/termination/indicator.py +49 -0
- pymoo/termination/max_eval.py +14 -0
- pymoo/termination/max_gen.py +15 -0
- pymoo/termination/max_time.py +20 -0
- pymoo/termination/robust.py +34 -0
- pymoo/termination/xtol.py +33 -0
- pymoo/util/__init__.py +0 -0
- pymoo/util/archive.py +150 -0
- pymoo/util/cache.py +29 -0
- pymoo/util/clearing.py +82 -0
- pymoo/util/display/__init__.py +0 -0
- pymoo/util/display/column.py +52 -0
- pymoo/util/display/display.py +34 -0
- pymoo/util/display/multi.py +96 -0
- pymoo/util/display/output.py +53 -0
- pymoo/util/display/progress.py +54 -0
- pymoo/util/display/single.py +67 -0
- pymoo/util/dominator.py +67 -0
- pymoo/util/function_loader.py +129 -0
- pymoo/util/hv.py +23 -0
- pymoo/util/matlab_engine.py +39 -0
- pymoo/util/misc.py +460 -0
- pymoo/util/mnn.py +70 -0
- pymoo/util/nds/__init__.py +0 -0
- pymoo/util/nds/dominance_degree_non_dominated_sort.py +159 -0
- pymoo/util/nds/efficient_non_dominated_sort.py +152 -0
- pymoo/util/nds/fast_non_dominated_sort.py +70 -0
- pymoo/util/nds/naive_non_dominated_sort.py +36 -0
- pymoo/util/nds/non_dominated_sorting.py +67 -0
- pymoo/util/nds/tree_based_non_dominated_sort.py +133 -0
- pymoo/util/normalization.py +312 -0
- pymoo/util/optimum.py +42 -0
- pymoo/util/plotting.py +177 -0
- pymoo/util/pruning_cd.py +89 -0
- pymoo/util/randomized_argsort.py +60 -0
- pymoo/util/ref_dirs/__init__.py +24 -0
- pymoo/util/ref_dirs/construction.py +88 -0
- pymoo/util/ref_dirs/das_dennis.py +52 -0
- pymoo/util/ref_dirs/energy.py +319 -0
- pymoo/util/ref_dirs/energy_layer.py +119 -0
- pymoo/util/ref_dirs/genetic_algorithm.py +63 -0
- pymoo/util/ref_dirs/incremental.py +68 -0
- pymoo/util/ref_dirs/misc.py +128 -0
- pymoo/util/ref_dirs/optimizer.py +59 -0
- pymoo/util/ref_dirs/performance.py +162 -0
- pymoo/util/ref_dirs/reduction.py +85 -0
- pymoo/util/ref_dirs/sample_and_map.py +24 -0
- pymoo/util/reference_direction.py +260 -0
- pymoo/util/remote.py +55 -0
- pymoo/util/roulette.py +27 -0
- pymoo/util/running_metric.py +128 -0
- pymoo/util/sliding_window.py +25 -0
- pymoo/util/stochastic_ranking.py +32 -0
- pymoo/util/value_functions.py +719 -0
- pymoo/util/vectors.py +40 -0
- pymoo/util/vf_dominator.py +99 -0
- pymoo/vendor/__init__.py +0 -0
- pymoo/vendor/cec2018.py +398 -0
- pymoo/vendor/gta.py +617 -0
- pymoo/vendor/hv.py +267 -0
- pymoo/vendor/vendor_cmaes.py +412 -0
- pymoo/vendor/vendor_coco.py +81 -0
- pymoo/vendor/vendor_scipy.py +232 -0
- pymoo/version.py +1 -0
- pymoo/visualization/__init__.py +8 -0
- pymoo/visualization/fitness_landscape.py +127 -0
- pymoo/visualization/heatmap.py +123 -0
- pymoo/visualization/pcp.py +120 -0
- pymoo/visualization/petal.py +91 -0
- pymoo/visualization/radar.py +108 -0
- pymoo/visualization/radviz.py +68 -0
- pymoo/visualization/scatter.py +150 -0
- pymoo/visualization/star_coordinate.py +75 -0
- pymoo/visualization/util.py +123 -0
- pymoo/visualization/video/__init__.py +0 -0
- pymoo/visualization/video/callback_video.py +82 -0
- pymoo/visualization/video/one_var_one_obj.py +57 -0
- pymoo/visualization/video/two_var_one_obj.py +62 -0
- pymoo-0.6.1.5.dev0.dist-info/METADATA +187 -0
- pymoo-0.6.1.5.dev0.dist-info/RECORD +328 -0
- pymoo-0.6.1.5.dev0.dist-info/WHEEL +6 -0
- pymoo-0.6.1.5.dev0.dist-info/licenses/LICENSE +191 -0
- pymoo-0.6.1.5.dev0.dist-info/top_level.txt +1 -0
pymoo/util/vectors.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
|
|
3
|
+
|
|
4
|
+
def max_alpha(point, direction, xl, xu, mode="one_hits_bound"):
|
|
5
|
+
bounds = []
|
|
6
|
+
|
|
7
|
+
if xl is not None:
|
|
8
|
+
bounds.append(xl)
|
|
9
|
+
|
|
10
|
+
if xu is not None:
|
|
11
|
+
bounds.append(xu)
|
|
12
|
+
|
|
13
|
+
if len(bounds) == 0:
|
|
14
|
+
return np.inf
|
|
15
|
+
|
|
16
|
+
# the bounds in one array
|
|
17
|
+
bounds = np.column_stack(bounds)
|
|
18
|
+
|
|
19
|
+
# if the direction is too small we can not divide by 0 - nan will make it being ignored
|
|
20
|
+
dir = direction.copy()
|
|
21
|
+
dir[dir == 0] = np.nan
|
|
22
|
+
|
|
23
|
+
# calculate the max factor to be not out of bounds
|
|
24
|
+
val = (bounds - point[:, None]) / dir[:, None]
|
|
25
|
+
|
|
26
|
+
# remove nan values by setting them to a negative number
|
|
27
|
+
val[np.isnan(val)] = - np.inf
|
|
28
|
+
|
|
29
|
+
# if no value there - no bound exist
|
|
30
|
+
if len(val) == 0:
|
|
31
|
+
return np.inf
|
|
32
|
+
# otherwise return the minimum of values considered
|
|
33
|
+
else:
|
|
34
|
+
if mode == "one_hits_bound":
|
|
35
|
+
if not np.any(val >= 0):
|
|
36
|
+
return 0.0
|
|
37
|
+
else:
|
|
38
|
+
return val[val >= 0].min()
|
|
39
|
+
else:
|
|
40
|
+
return val.max()
|
|
@@ -0,0 +1,99 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
|
|
3
|
+
def get_relation(ind_a, ind_b):
|
|
4
|
+
return Dominator.get_relation(ind_a.F, ind_b.F, ind_a.CV[0], ind_b.CV[0])
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
class VFDominator:
|
|
8
|
+
|
|
9
|
+
def __init__(self, algorithm):
|
|
10
|
+
|
|
11
|
+
self.algorithm = algorithm
|
|
12
|
+
|
|
13
|
+
@staticmethod
|
|
14
|
+
def get_relation(a, b, cva=None, cvb=None):
|
|
15
|
+
|
|
16
|
+
if cva is not None and cvb is not None:
|
|
17
|
+
if cva < cvb:
|
|
18
|
+
return 1
|
|
19
|
+
elif cvb < cva:
|
|
20
|
+
return -1
|
|
21
|
+
|
|
22
|
+
val = 0
|
|
23
|
+
for i in range(len(a)):
|
|
24
|
+
if a[i] < b[i]:
|
|
25
|
+
# indifferent because once better and once worse
|
|
26
|
+
if val == -1:
|
|
27
|
+
return 0
|
|
28
|
+
val = 1
|
|
29
|
+
elif b[i] < a[i]:
|
|
30
|
+
# indifferent because once better and once worse
|
|
31
|
+
if val == 1:
|
|
32
|
+
return 0
|
|
33
|
+
val = -1
|
|
34
|
+
return val
|
|
35
|
+
|
|
36
|
+
@staticmethod
|
|
37
|
+
def calc_domination_matrix_loop(F, G):
|
|
38
|
+
|
|
39
|
+
n = F.shape[0]
|
|
40
|
+
CV = np.sum(G * (G > 0).astype(float), axis=1)
|
|
41
|
+
M = np.zeros((n, n))
|
|
42
|
+
for i in range(n):
|
|
43
|
+
for j in range(i + 1, n):
|
|
44
|
+
M[i, j] = Dominator.get_relation(F[i, :], F[j, :], CV[i], CV[j])
|
|
45
|
+
M[j, i] = -M[i, j]
|
|
46
|
+
|
|
47
|
+
return M
|
|
48
|
+
|
|
49
|
+
def calc_domination_matrix(self, F, _F=None, epsilon=0.0):
|
|
50
|
+
|
|
51
|
+
if _F is None:
|
|
52
|
+
_F = F
|
|
53
|
+
|
|
54
|
+
# look at the obj for dom
|
|
55
|
+
n = F.shape[0]
|
|
56
|
+
m = _F.shape[0]
|
|
57
|
+
|
|
58
|
+
L = np.repeat(F, m, axis=0)
|
|
59
|
+
R = np.tile(_F, (n, 1))
|
|
60
|
+
|
|
61
|
+
smaller = np.reshape(np.any(L + epsilon < R, axis=1), (n, m))
|
|
62
|
+
larger = np.reshape(np.any(L > R + epsilon, axis=1), (n, m))
|
|
63
|
+
|
|
64
|
+
non_dom = np.logical_and(smaller, np.logical_not(larger))
|
|
65
|
+
dom = np.logical_and(larger, np.logical_not(smaller))
|
|
66
|
+
|
|
67
|
+
if self.algorithm.vf_res is not None:
|
|
68
|
+
|
|
69
|
+
# Figure out what the v2 value is
|
|
70
|
+
v2 = self.algorithm.v2
|
|
71
|
+
|
|
72
|
+
# Get the value function
|
|
73
|
+
vf = self.algorithm.vf_res.vf
|
|
74
|
+
|
|
75
|
+
# How much does the DM value each solution?
|
|
76
|
+
F_vf = vf(F * -1)[:,np.newaxis]
|
|
77
|
+
_F_vf = vf(_F * -1)[:,np.newaxis]
|
|
78
|
+
|
|
79
|
+
# We want to compare each solution to the others
|
|
80
|
+
Lv = np.repeat(F_vf, m, axis=0)
|
|
81
|
+
Rv = np.tile(_F_vf, (n, 1))
|
|
82
|
+
|
|
83
|
+
# Which values are greater than (better) V2?
|
|
84
|
+
gtv2 = np.reshape(Lv < v2, (n, m))
|
|
85
|
+
# Which values are less than (worst) V2?
|
|
86
|
+
ltv2 = np.reshape(Rv > v2, (n, m))
|
|
87
|
+
|
|
88
|
+
# If you are greater than V2, you dominate all those who are smaller than V2
|
|
89
|
+
split_by_v2 = np.logical_and(gtv2, ltv2)
|
|
90
|
+
|
|
91
|
+
dom = np.logical_or(dom, split_by_v2)
|
|
92
|
+
|
|
93
|
+
M = non_dom * 1 \
|
|
94
|
+
+ dom * -1
|
|
95
|
+
|
|
96
|
+
return M
|
|
97
|
+
|
|
98
|
+
|
|
99
|
+
|
pymoo/vendor/__init__.py
ADDED
|
File without changes
|
pymoo/vendor/cec2018.py
ADDED
|
@@ -0,0 +1,398 @@
|
|
|
1
|
+
# The code is translated from Matlab by ahcheriet@gmail.com
|
|
2
|
+
# ========================================================|#
|
|
3
|
+
# The 14 test functions are for cec2018 competition on |
|
|
4
|
+
# dynamic multiobjective optimisation. This document is |
|
|
5
|
+
# free to disseminate for academic use. |
|
|
6
|
+
# --------------------------------------------------------|#
|
|
7
|
+
# The "time" term in the test suite is defined as: |
|
|
8
|
+
# t=1/nt*floor(tau/taut) |
|
|
9
|
+
# where - nt: severity of change |
|
|
10
|
+
# - taut: frequency of change |
|
|
11
|
+
# - tau: current generation counter |
|
|
12
|
+
# --------------------------------------------------------|#
|
|
13
|
+
# Any questions can be directed to |
|
|
14
|
+
# Dr. Shouyong Jiang at math4neu@gmail.com. |
|
|
15
|
+
# |
|
|
16
|
+
# ========================================================|#
|
|
17
|
+
|
|
18
|
+
# cec2018_DF(probID, x, tau, taut, nt)
|
|
19
|
+
# INPUT:
|
|
20
|
+
# probID: test problem identifier (i.e. 'DF1')
|
|
21
|
+
# x: variable vector
|
|
22
|
+
# tau: current generation counter
|
|
23
|
+
# taut: frequency of change
|
|
24
|
+
# nt: severity of change
|
|
25
|
+
#
|
|
26
|
+
# OUTPUT:
|
|
27
|
+
# f: objective vector
|
|
28
|
+
#
|
|
29
|
+
from numpy import power, setdiff1d, exp, prod
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
def get_bounds(problem_id='DF1', n_vars=10):
|
|
33
|
+
lx = np.zeros(n_vars)
|
|
34
|
+
ux = np.ones(n_vars)
|
|
35
|
+
if problem_id == 'DF3':
|
|
36
|
+
lx = -1 * np.ones(n_vars)
|
|
37
|
+
ux = 2 * np.ones(n_vars)
|
|
38
|
+
lx[0] = 0.0
|
|
39
|
+
ux[0] = 1.0
|
|
40
|
+
if problem_id == 'DF4':
|
|
41
|
+
lx = -2 * np.ones(n_vars)
|
|
42
|
+
ux = -2 * np.ones(n_vars)
|
|
43
|
+
if problem_id == 'DF5':
|
|
44
|
+
lx = -1 * np.ones(n_vars)
|
|
45
|
+
ux = -1 * np.ones(n_vars)
|
|
46
|
+
lx[0] = 0.0
|
|
47
|
+
ux[0] = 1.0
|
|
48
|
+
if problem_id == 'DF6':
|
|
49
|
+
lx = -1 * np.ones(n_vars)
|
|
50
|
+
ux = -1 * np.ones(n_vars)
|
|
51
|
+
lx[0] = 0.0
|
|
52
|
+
ux[0] = 1.0
|
|
53
|
+
if problem_id == 'DF7':
|
|
54
|
+
lx = 0 * np.ones(n_vars)
|
|
55
|
+
ux = 1 * np.ones(n_vars)
|
|
56
|
+
lx[0] = 1.0
|
|
57
|
+
ux[0] = 4.0
|
|
58
|
+
if problem_id == 'DF8':
|
|
59
|
+
lx = -1 * np.ones(n_vars)
|
|
60
|
+
ux = -1 * np.ones(n_vars)
|
|
61
|
+
lx[0] = 0.0
|
|
62
|
+
ux[0] = 1.0
|
|
63
|
+
if problem_id == 'DF9':
|
|
64
|
+
lx = -1 * np.ones(n_vars)
|
|
65
|
+
ux = -1 * np.ones(n_vars)
|
|
66
|
+
lx[0] = 0.0
|
|
67
|
+
ux[0] = 1.0
|
|
68
|
+
if problem_id == 'DF10':
|
|
69
|
+
lx = -1 * np.ones(n_vars)
|
|
70
|
+
ux = -1 * np.ones(n_vars)
|
|
71
|
+
lx[0] = 0.0
|
|
72
|
+
lx[1] = 0.0
|
|
73
|
+
ux[0] = 1.0
|
|
74
|
+
ux[1] = 1.0
|
|
75
|
+
if problem_id == 'DF12':
|
|
76
|
+
lx = -1 * np.ones(n_vars)
|
|
77
|
+
ux = -1 * np.ones(n_vars)
|
|
78
|
+
lx[0] = 0.0
|
|
79
|
+
lx[1] = 0.0
|
|
80
|
+
ux[0] = 1.0
|
|
81
|
+
ux[1] = 1.0
|
|
82
|
+
if problem_id == 'DF13':
|
|
83
|
+
lx = -1 * np.ones(n_vars)
|
|
84
|
+
ux = -1 * np.ones(n_vars)
|
|
85
|
+
lx[0] = 0.0
|
|
86
|
+
lx[1] = 0.0
|
|
87
|
+
ux[0] = 1.0
|
|
88
|
+
ux[1] = 1.0
|
|
89
|
+
if problem_id == 'DF14':
|
|
90
|
+
lx = -1 * np.ones(n_vars)
|
|
91
|
+
ux = -1 * np.ones(n_vars)
|
|
92
|
+
lx[0] = 0.0
|
|
93
|
+
lx[1] = 0.0
|
|
94
|
+
ux[0] = 1.0
|
|
95
|
+
ux[1] = 1.0
|
|
96
|
+
return lx, ux
|
|
97
|
+
|
|
98
|
+
|
|
99
|
+
def cec2018_DF(problemID='DF1', x=None, t=None):
|
|
100
|
+
# INPUT:
|
|
101
|
+
# probID: test problem identifier (i.e. 'DF1')
|
|
102
|
+
# x: variable vector
|
|
103
|
+
# tau: current generation counter
|
|
104
|
+
# taut: frequency of change
|
|
105
|
+
# nt: severity of change
|
|
106
|
+
|
|
107
|
+
# OUTPUT:
|
|
108
|
+
# f: objective vector
|
|
109
|
+
|
|
110
|
+
# the first change occurs after T0 generations, that is, the
|
|
111
|
+
# generation at which a change occurs is (T0+1), (T0+taut+1), etc.
|
|
112
|
+
|
|
113
|
+
T0 = 50
|
|
114
|
+
# calculate time instant
|
|
115
|
+
n = len(x)
|
|
116
|
+
f = {}
|
|
117
|
+
if problemID == 'DF1':
|
|
118
|
+
G = abs(sin(0.5 * pi * t))
|
|
119
|
+
H = 0.75 * sin(0.5 * pi * t) + 1.25
|
|
120
|
+
g = 1 + sum((x[1:] - G) ** 2)
|
|
121
|
+
f[0] = x[0]
|
|
122
|
+
f[1] = g * power(1 - (x[0] / g), H)
|
|
123
|
+
if problemID == 'DF2':
|
|
124
|
+
G = abs(sin(0.5 * pi * t))
|
|
125
|
+
r = 1 + floor((n - 1) * G)
|
|
126
|
+
tmp = setdiff1d(range(0, n), [int(r)])
|
|
127
|
+
g = 1 + sum([(x[int(index)] - G) ** 2 for index in tmp])
|
|
128
|
+
f[0] = x[int(r - 1)]
|
|
129
|
+
f[1] = g * (power(1 - (x[int(r - 1)] / g), 0.5))
|
|
130
|
+
if problemID == 'DF3':
|
|
131
|
+
G = sin(0.5 * pi * t)
|
|
132
|
+
H = G + 1.5
|
|
133
|
+
g = 1 + sum(power(x[1:] - G - x[0], H) ** 2)
|
|
134
|
+
f[0] = x[0]
|
|
135
|
+
f[1] = g * power(1 - (x[0] / g), H)
|
|
136
|
+
if problemID == 'DF4':
|
|
137
|
+
a = sin(0.5 * pi * t)
|
|
138
|
+
b = 1 + abs(cos(0.5 * pi * t))
|
|
139
|
+
H = 1.5 + a
|
|
140
|
+
g = 1 + sum((x[1:] - a * x[0] ** 2 / x[1:]) ** 2)
|
|
141
|
+
f[0] = g * power(abs(x[0] - a), H)
|
|
142
|
+
f[1] = g * power(abs(x[0] - a - b), H)
|
|
143
|
+
if problemID == 'DF5':
|
|
144
|
+
G = sin(0.5 * pi * t)
|
|
145
|
+
w = floor(10 * G)
|
|
146
|
+
g = 1 + sum((x[1:] - G) ** 2)
|
|
147
|
+
f[0] = g * (x[0] + 0.02 * sin(w * pi * x[0]))
|
|
148
|
+
f[1] = g * (1 - x[0] + 0.02 * sin(w * pi * x[0]))
|
|
149
|
+
if problemID == 'DF6':
|
|
150
|
+
G = sin(0.5 * pi * t)
|
|
151
|
+
a = 0.2 + 2.8 * abs(G)
|
|
152
|
+
y = x[1:] - G
|
|
153
|
+
g = 1 + sum((abs(G) * y ** 2 - 10 * cos(2 * pi * y) + 10))
|
|
154
|
+
f[0] = g * power(x[0] + 0.1 * sin(3 * pi * x[0]), a)
|
|
155
|
+
f[1] = g * power(1 - x[0] + 0.1 * sin(3 * pi * x[0]), a)
|
|
156
|
+
if problemID == 'DF7':
|
|
157
|
+
a = 5 * cos(0.5 * pi * t)
|
|
158
|
+
tmp = 1 / (1 + exp(a * (x[0] - 2.5)))
|
|
159
|
+
g = 1 + sum(power(x[1:] - tmp, 2))
|
|
160
|
+
f[0] = g * (1 + t) / x[0]
|
|
161
|
+
f[1] = g * x[0] / (1 + t)
|
|
162
|
+
if problemID == 'DF8':
|
|
163
|
+
G = sin(0.5 * pi * t)
|
|
164
|
+
a = 2.25 + 2 * cos(2 * pi * t)
|
|
165
|
+
b = 100 * G ** 2
|
|
166
|
+
tmp = G * sin(power(4 * pi * x[0], b)) / (1 + abs(G))
|
|
167
|
+
g = 1 + sum((x[1:] - tmp) ** 2)
|
|
168
|
+
f[0] = g * (x[0] + 0.1 * sin(3 * pi * x[0]))
|
|
169
|
+
f[1] = g * power(1 - x[1] + 0.1 * sin(3 * pi * x[1]), a)
|
|
170
|
+
if problemID == 'DF9':
|
|
171
|
+
N = 1 + floor(10 * abs(sin(0.5 * pi * t)))
|
|
172
|
+
g = 1
|
|
173
|
+
for i in range(1, n):
|
|
174
|
+
tmp = x[i] - cos(4 * t + x[0] + x[i - 1])
|
|
175
|
+
g = g + tmp ** 2
|
|
176
|
+
f[0] = g * (x[0] + max(0, (0.1 + 0.5 / N) * sin(2 * N * pi * x[0])))
|
|
177
|
+
f[1] = g * (1 - x[0] + max(0, (0.1 + 0.5 / N) * sin(2 * N * pi * x[0])))
|
|
178
|
+
if problemID == 'DF10':
|
|
179
|
+
G = sin(0.5 * pi * t)
|
|
180
|
+
H = 2.25 + 2 * cos(0.5 * pi * t)
|
|
181
|
+
tmp = sin(2 * pi * (x[0] + x[1])) / (1 + abs(G))
|
|
182
|
+
g = 1 + sum((x[2:] - tmp) ** 2)
|
|
183
|
+
f[0] = g * power(sin(0.5 * pi * x[0]), H)
|
|
184
|
+
f[1] = g * power(sin(0.5 * pi * x[1]), H) * power(cos(0.5 * pi * x[0]), H)
|
|
185
|
+
f[2] = g * power(cos(0.5 * pi * x[1]), H) * power(cos(0.5 * pi * x[0]), H)
|
|
186
|
+
if problemID == 'DF11':
|
|
187
|
+
G = abs(sin(0.5 * pi * t))
|
|
188
|
+
g = 1 + G + sum((x[2:] - 0.5 * G * x[0]) ** 2)
|
|
189
|
+
y = [pi * G / 6.0 + (pi / 2 - pi * G / 3.0) * x[i] for i in [0, 1]]
|
|
190
|
+
f[0] = g * sin(y[0])
|
|
191
|
+
f[1] = g * sin(y[1]) * cos(y[0])
|
|
192
|
+
f[2] = g * cos(y[1]) * cos(y[0])
|
|
193
|
+
if problemID == 'DF12':
|
|
194
|
+
k = 10 * sin(pi * t)
|
|
195
|
+
tmp1 = x[2:] - sin(t * x[0])
|
|
196
|
+
tmp2 = [sin(floor(k * (2 * x[0] - 1)) * pi / 2)]
|
|
197
|
+
g = 1 + sum(tmp1 ** 2) + prod(tmp2)
|
|
198
|
+
f[0] = g * cos(0.5 * pi * x[1]) * cos(0.5 * pi * x[0])
|
|
199
|
+
f[1] = g * sin(0.5 * pi * x[1]) * cos(0.5 * pi * x[0])
|
|
200
|
+
f[2] = g * sin(0.5 * pi * x[1])
|
|
201
|
+
if problemID == 'DF13':
|
|
202
|
+
G = sin(0.5 * pi * t);
|
|
203
|
+
p = floor(6 * G);
|
|
204
|
+
g = 1 + sum((x[2:] - G) ** 2)
|
|
205
|
+
f[0] = g * cos(0.5 * pi * x[0]) ** 2
|
|
206
|
+
f[1] = g * cos(0.5 * pi * x[1]) ** 2
|
|
207
|
+
f[2] = g * sin(0.5 * pi * x[0]) ** 2 + sin(0.5 * pi * x[0]) * cos(p * pi * x[0]) ** 2 + sin(
|
|
208
|
+
0.5 * pi * x[1]) ** 2 + sin(0.5 * pi * x[1]) * cos(p * pi * x[1]) ** 2
|
|
209
|
+
if problemID == 'DF14':
|
|
210
|
+
G = sin(0.5 * pi * t)
|
|
211
|
+
g = 1 + sum((x[2:] - G) ** 2)
|
|
212
|
+
y = 0.5 + G * (x[0] - 0.5)
|
|
213
|
+
f[0] = g * (1 - y + 0.05 * sin(6 * pi * y))
|
|
214
|
+
f[1] = g * (1 - x[1] + 0.05 * sin(6 * pi * x[1])) * (y + 0.05 * sin(6 * pi * y))
|
|
215
|
+
f[2] = g * (x[1] + 0.05 * sin(6 * pi * x[1])) * (y + 0.05 * sin(6 * pi * y))
|
|
216
|
+
return f
|
|
217
|
+
|
|
218
|
+
|
|
219
|
+
import numpy as np
|
|
220
|
+
from numpy import pi, dot, floor, sin, cos, multiply, arange
|
|
221
|
+
from copy import copy
|
|
222
|
+
|
|
223
|
+
false = False
|
|
224
|
+
true = True
|
|
225
|
+
|
|
226
|
+
|
|
227
|
+
# cec2018_pf.m
|
|
228
|
+
|
|
229
|
+
# ========================================================|#
|
|
230
|
+
# PF calculation for 14 cec2018 test functions on |
|
|
231
|
+
# dynamic multiobjective optimisation. This document is |
|
|
232
|
+
# free to disseminate for academic use. |
|
|
233
|
+
# --------------------------------------------------------|#
|
|
234
|
+
# The "time" term in the test suite is defined as: |
|
|
235
|
+
# t=1/nt*floor(tau/taut) |
|
|
236
|
+
# where - nt: severity of change |
|
|
237
|
+
# - taut: frequency of change |
|
|
238
|
+
# - tau: current generation counter |
|
|
239
|
+
# --------------------------------------------------------|#
|
|
240
|
+
# Any questions can be directed to |
|
|
241
|
+
# Dr. Shouyong Jiang at math4neu@gmail.com. |
|
|
242
|
+
# |
|
|
243
|
+
# ========================================================|#
|
|
244
|
+
|
|
245
|
+
|
|
246
|
+
def cec2018_DF_PF(probID=None, t=1, n_points=100, *args, **kwargs):
|
|
247
|
+
# INPUT:
|
|
248
|
+
# probID: test problem identifier (i.e. 'DF1')
|
|
249
|
+
# tau: current generation counter
|
|
250
|
+
# taut: frequency of change
|
|
251
|
+
# nt: severity of change
|
|
252
|
+
|
|
253
|
+
# OUTPUT:
|
|
254
|
+
# h: nondominated solutions
|
|
255
|
+
|
|
256
|
+
T0 = 50
|
|
257
|
+
g = 1
|
|
258
|
+
H = 50
|
|
259
|
+
|
|
260
|
+
if 'DF1' == (probID):
|
|
261
|
+
x = np.linspace(0, 1, n_points)
|
|
262
|
+
H = dot(0.75, sin(dot(dot(0.5, pi), t))) + 1.25
|
|
263
|
+
f1 = copy(x)
|
|
264
|
+
f2 = dot(g, (1 - (x / g) ** H))
|
|
265
|
+
h = get_PF(np.array([f1, f2]), false)
|
|
266
|
+
if 'DF2' == (probID):
|
|
267
|
+
x = np.linspace(0, 1, n_points)
|
|
268
|
+
G = abs(sin(dot(dot(0.5, pi), t)))
|
|
269
|
+
f1 = copy(x)
|
|
270
|
+
f2 = dot(g, (1 - (x / g) ** 0.5)) # To be sure
|
|
271
|
+
h = get_PF(np.array([f1, f2]), false)
|
|
272
|
+
if 'DF3' == (probID):
|
|
273
|
+
x = np.linspace(0, 1, n_points)
|
|
274
|
+
G = sin(dot(dot(0.5, pi), t))
|
|
275
|
+
H = G + 1.5
|
|
276
|
+
f1 = copy(x)
|
|
277
|
+
f2 = dot(g, (1 - (x / g) ** H))
|
|
278
|
+
h = get_PF(np.array([f1, f2]), false)
|
|
279
|
+
if 'DF4' == (probID):
|
|
280
|
+
a = sin(dot(dot(0.5, pi), t))
|
|
281
|
+
b = 1 + abs(cos(dot(dot(0.5, pi), t)))
|
|
282
|
+
x = np.linspace(a, a + b)
|
|
283
|
+
H = 1.5 + a
|
|
284
|
+
f1 = dot(g, abs(x - a) ** H)
|
|
285
|
+
f2 = dot(g, abs(x - a - b) ** H) # Maybe
|
|
286
|
+
h = get_PF(np.array([f1, f2]), false)
|
|
287
|
+
if 'DF5' == (probID):
|
|
288
|
+
x = np.linspace(0, 1, n_points)
|
|
289
|
+
G = sin(dot(dot(0.5, pi), t))
|
|
290
|
+
w = floor(dot(10, G))
|
|
291
|
+
f1 = dot(g, (x + dot(0.02, sin(dot(dot(w, pi), x)))))
|
|
292
|
+
f2 = dot(g, (1 - x + dot(0.02, sin(dot(dot(w, pi), x)))))
|
|
293
|
+
h = get_PF(np.array([f1, f2]), false)
|
|
294
|
+
if 'DF6' == (probID):
|
|
295
|
+
x = np.linspace(0, 1, n_points)
|
|
296
|
+
G = sin(dot(dot(0.5, pi), t))
|
|
297
|
+
a = 0.2 + dot(2.8, abs(G))
|
|
298
|
+
f1 = dot(g, (x + dot(0.1, sin(dot(dot(3, pi), x)))) ** a)
|
|
299
|
+
f2 = dot(g, (1 - x + dot(0.1, sin(dot(dot(3, pi), x)))) ** a)
|
|
300
|
+
h = get_PF(np.array([f1, f2]), false)
|
|
301
|
+
if 'DF7' == (probID):
|
|
302
|
+
x = np.linspace(1, 4, n_points)
|
|
303
|
+
f1 = dot(g, (1 + t)) / x
|
|
304
|
+
f2 = dot(g, x) / (1 + t)
|
|
305
|
+
h = get_PF(np.array([f1, f2]), false)
|
|
306
|
+
if 'DF8' == (probID):
|
|
307
|
+
x = np.linspace(0, 1, n_points)
|
|
308
|
+
a = 2.25 + dot(2, cos(dot(dot(2, pi), t)))
|
|
309
|
+
f1 = dot(g, (x + dot(0.1, sin(dot(dot(3, pi), x)))))
|
|
310
|
+
f2 = dot(g, (1 - x + dot(0.1, sin(dot(dot(3, pi), x)))) ** a)
|
|
311
|
+
h = get_PF(np.array([f1, f2]), false)
|
|
312
|
+
if 'DF9' == (probID):
|
|
313
|
+
x = np.linspace(0, 1, n_points)
|
|
314
|
+
# N = 1 + floor(dot(10, abs(sin(dot(dot(0.5, pi), t)))))
|
|
315
|
+
|
|
316
|
+
N = 1 + floor(10 * abs(sin(0.5 * pi * t)))
|
|
317
|
+
print(max(0, max((0.1 + 0.5 / N) * sin(2 * N * pi * x))))
|
|
318
|
+
f1 = g * (x + max(0, max((0.1 + 0.5 / N) * sin(2 * N * pi * x))))
|
|
319
|
+
f2 = g * (1 - x + max(0, max((0.1 + 0.5 / N) * sin(2 * N * pi * x))))
|
|
320
|
+
|
|
321
|
+
# f1 = dot(g, (x + max(0, dot((0.1 + 0.5 / N), sin(dot(dot(dot(2, N), pi), x))))))
|
|
322
|
+
# f2 = dot(g, (1 - x + max(0, dot((0.1 + 0.5 / N), sin(dot(dot(dot(2, N), pi), x))))))
|
|
323
|
+
h = get_PF(np.array([f1, f2]), true)
|
|
324
|
+
if 'DF10' == (probID):
|
|
325
|
+
x1, x2 = np.meshgrid(np.linspace(0, 1, H), np.linspace(0, 1, H), indexing='xy')
|
|
326
|
+
H = 2.25 + dot(2, cos(dot(dot(0.5, pi), t)))
|
|
327
|
+
f1 = dot(g, sin(dot(dot(0.5, pi), x1)) ** H)
|
|
328
|
+
f2 = multiply(dot(g, sin(dot(dot(0.5, pi), x2)) ** H),
|
|
329
|
+
cos(dot(dot(0.5, pi), x1)) ** H)
|
|
330
|
+
f3 = multiply(dot(g, cos(dot(dot(0.5, pi), x2)) ** H),
|
|
331
|
+
cos(dot(dot(0.5, pi), x1)) ** H)
|
|
332
|
+
h = get_PF(np.array([f1, f2, f3]), false)
|
|
333
|
+
if 'DF11' == (probID):
|
|
334
|
+
x1, x2 = np.meshgrid(np.linspace(0, 1, H), np.linspace(0, 1, H), indexing='xy')
|
|
335
|
+
G = abs(sin(dot(dot(0.5, pi), t)))
|
|
336
|
+
y1 = dot(pi, G) / 6 + dot((pi / 2 - dot(pi, G) / 3), x1)
|
|
337
|
+
y2 = dot(pi, G) / 6 + dot((pi / 2 - dot(pi, G) / 3), x2)
|
|
338
|
+
f1 = multiply(g, sin(y1))
|
|
339
|
+
f2 = dot(multiply(g, sin(y2)), cos(y1))
|
|
340
|
+
f3 = dot(multiply(g, cos(y2)), cos(y1))
|
|
341
|
+
h = get_PF(np.array([f1, f2, f3]), false)
|
|
342
|
+
if 'DF12' == (probID):
|
|
343
|
+
x1, x2 = np.meshgrid(np.linspace(0, 1, H), np.linspace(0, 1, H), indexing='xy')
|
|
344
|
+
k = dot(10, sin(dot(pi, t)))
|
|
345
|
+
tmp2 = abs(
|
|
346
|
+
multiply(sin(dot(floor(dot(k, (dot(2, x1) - 1))), pi) / 2),
|
|
347
|
+
sin(dot(floor(dot(k, (dot(2, x2) - 1))), pi) / 2)))
|
|
348
|
+
g = 1 + tmp2
|
|
349
|
+
f1 = multiply(multiply(g, cos(dot(dot(0.5, pi), x2))),
|
|
350
|
+
cos(dot(dot(0.5, pi), x1)))
|
|
351
|
+
f2 = multiply(multiply(g, sin(dot(dot(0.5, pi), x2))),
|
|
352
|
+
cos(dot(dot(0.5, pi), x1)))
|
|
353
|
+
f3 = multiply(g, sin(dot(dot(0.5, pi), x1)))
|
|
354
|
+
h = get_PF(np.array([f1, f2, f3]), true)
|
|
355
|
+
if 'DF13' == (probID):
|
|
356
|
+
x1, x2 = np.meshgrid(np.linspace(0, 1, H), np.linspace(0, 1, H), indexing='xy')
|
|
357
|
+
G = sin(dot(dot(0.5, pi), t))
|
|
358
|
+
p = floor(dot(6, G))
|
|
359
|
+
f1 = multiply(g, cos(dot(dot(0.5, pi), x1)) ** 2)
|
|
360
|
+
f2 = multiply(g, cos(dot(dot(0.5, pi), x2)) ** 2)
|
|
361
|
+
f3 = multiply(g, sin(dot(dot(0.5, pi), x1)) ** 2) + multiply(
|
|
362
|
+
sin(dot(dot(0.5, pi), x1)),
|
|
363
|
+
cos(dot(dot(p, pi), x1)) ** 2) + sin(
|
|
364
|
+
dot(dot(0.5, pi), x2)) ** 2 + multiply(
|
|
365
|
+
sin(dot(dot(0.5, pi), x2)), cos(dot(dot(p, pi), x2)) ** 2)
|
|
366
|
+
h = get_PF(np.array([f1, f2, f3]), true)
|
|
367
|
+
if 'DF14' == (probID):
|
|
368
|
+
x1, x2 = np.meshgrid(np.linspace(0, 1, H), np.linspace(0, 1, H), indexing='xy')
|
|
369
|
+
G = sin(dot(dot(0.5, pi), t))
|
|
370
|
+
y = 0.5 + dot(G, (x1 - 0.5))
|
|
371
|
+
f1 = multiply(g, (1 - y + dot(0.05, sin(dot(dot(6, pi), y)))))
|
|
372
|
+
f2 = multiply(multiply(g, (
|
|
373
|
+
1 - x2 + dot(0.05, sin(dot(dot(6, pi), x2))))),
|
|
374
|
+
(y + dot(0.05, sin(dot(dot(6, pi), y)))))
|
|
375
|
+
f3 = multiply(
|
|
376
|
+
multiply(g, (x2 + dot(0.05, sin(dot(dot(6, pi), x2))))),
|
|
377
|
+
(y + dot(0.05, sin(dot(dot(6, pi), y)))))
|
|
378
|
+
h = get_PF(np.array([f1, f2, f3]), false)
|
|
379
|
+
return h
|
|
380
|
+
|
|
381
|
+
|
|
382
|
+
def get_PF(f=None, nondominate=None, *args, **kwargs):
|
|
383
|
+
ncell = len(f)
|
|
384
|
+
s = np.size(f[1])
|
|
385
|
+
h = []
|
|
386
|
+
for i in arange(ncell):
|
|
387
|
+
fi = np.reshape(f[i], s, order='F')
|
|
388
|
+
h.append(fi)
|
|
389
|
+
h = np.array(h).T
|
|
390
|
+
h = np.reshape(h, (s, ncell))
|
|
391
|
+
|
|
392
|
+
if nondominate:
|
|
393
|
+
print("Run Non dominating Sorting")
|
|
394
|
+
h = []
|
|
395
|
+
pass
|
|
396
|
+
# in_ = get_skyline(h)
|
|
397
|
+
# h = h(in_, arange())
|
|
398
|
+
return h
|