pymoo 0.6.1.5.dev0__cp313-cp313-macosx_10_13_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of pymoo might be problematic. Click here for more details.

Files changed (328) hide show
  1. pymoo/__init__.py +3 -0
  2. pymoo/algorithms/__init__.py +0 -0
  3. pymoo/algorithms/base/__init__.py +0 -0
  4. pymoo/algorithms/base/bracket.py +38 -0
  5. pymoo/algorithms/base/genetic.py +109 -0
  6. pymoo/algorithms/base/line.py +62 -0
  7. pymoo/algorithms/base/local.py +39 -0
  8. pymoo/algorithms/base/meta.py +79 -0
  9. pymoo/algorithms/hyperparameters.py +89 -0
  10. pymoo/algorithms/moo/__init__.py +0 -0
  11. pymoo/algorithms/moo/age.py +310 -0
  12. pymoo/algorithms/moo/age2.py +194 -0
  13. pymoo/algorithms/moo/ctaea.py +298 -0
  14. pymoo/algorithms/moo/dnsga2.py +76 -0
  15. pymoo/algorithms/moo/kgb.py +446 -0
  16. pymoo/algorithms/moo/moead.py +183 -0
  17. pymoo/algorithms/moo/nsga2.py +113 -0
  18. pymoo/algorithms/moo/nsga3.py +358 -0
  19. pymoo/algorithms/moo/pinsga2.py +370 -0
  20. pymoo/algorithms/moo/rnsga2.py +188 -0
  21. pymoo/algorithms/moo/rnsga3.py +246 -0
  22. pymoo/algorithms/moo/rvea.py +214 -0
  23. pymoo/algorithms/moo/sms.py +195 -0
  24. pymoo/algorithms/moo/spea2.py +190 -0
  25. pymoo/algorithms/moo/unsga3.py +47 -0
  26. pymoo/algorithms/soo/__init__.py +0 -0
  27. pymoo/algorithms/soo/convex/__init__.py +0 -0
  28. pymoo/algorithms/soo/nonconvex/__init__.py +0 -0
  29. pymoo/algorithms/soo/nonconvex/brkga.py +161 -0
  30. pymoo/algorithms/soo/nonconvex/cmaes.py +554 -0
  31. pymoo/algorithms/soo/nonconvex/de.py +279 -0
  32. pymoo/algorithms/soo/nonconvex/direct.py +149 -0
  33. pymoo/algorithms/soo/nonconvex/es.py +203 -0
  34. pymoo/algorithms/soo/nonconvex/g3pcx.py +94 -0
  35. pymoo/algorithms/soo/nonconvex/ga.py +93 -0
  36. pymoo/algorithms/soo/nonconvex/ga_niching.py +223 -0
  37. pymoo/algorithms/soo/nonconvex/isres.py +74 -0
  38. pymoo/algorithms/soo/nonconvex/nelder.py +251 -0
  39. pymoo/algorithms/soo/nonconvex/optuna.py +80 -0
  40. pymoo/algorithms/soo/nonconvex/pattern.py +183 -0
  41. pymoo/algorithms/soo/nonconvex/pso.py +399 -0
  42. pymoo/algorithms/soo/nonconvex/pso_ep.py +297 -0
  43. pymoo/algorithms/soo/nonconvex/random_search.py +25 -0
  44. pymoo/algorithms/soo/nonconvex/sres.py +56 -0
  45. pymoo/algorithms/soo/univariate/__init__.py +0 -0
  46. pymoo/algorithms/soo/univariate/backtracking.py +59 -0
  47. pymoo/algorithms/soo/univariate/exp.py +46 -0
  48. pymoo/algorithms/soo/univariate/golden.py +65 -0
  49. pymoo/algorithms/soo/univariate/quadr_interp.py +81 -0
  50. pymoo/algorithms/soo/univariate/wolfe.py +163 -0
  51. pymoo/config.py +33 -0
  52. pymoo/constraints/__init__.py +3 -0
  53. pymoo/constraints/adaptive.py +62 -0
  54. pymoo/constraints/as_obj.py +56 -0
  55. pymoo/constraints/as_penalty.py +41 -0
  56. pymoo/constraints/eps.py +26 -0
  57. pymoo/constraints/from_bounds.py +36 -0
  58. pymoo/core/__init__.py +0 -0
  59. pymoo/core/algorithm.py +394 -0
  60. pymoo/core/callback.py +38 -0
  61. pymoo/core/crossover.py +77 -0
  62. pymoo/core/decision_making.py +102 -0
  63. pymoo/core/decomposition.py +76 -0
  64. pymoo/core/duplicate.py +163 -0
  65. pymoo/core/evaluator.py +116 -0
  66. pymoo/core/indicator.py +34 -0
  67. pymoo/core/individual.py +784 -0
  68. pymoo/core/infill.py +64 -0
  69. pymoo/core/initialization.py +42 -0
  70. pymoo/core/mating.py +39 -0
  71. pymoo/core/meta.py +21 -0
  72. pymoo/core/mixed.py +165 -0
  73. pymoo/core/mutation.py +44 -0
  74. pymoo/core/operator.py +40 -0
  75. pymoo/core/parameters.py +134 -0
  76. pymoo/core/plot.py +210 -0
  77. pymoo/core/population.py +180 -0
  78. pymoo/core/problem.py +460 -0
  79. pymoo/core/recorder.py +99 -0
  80. pymoo/core/repair.py +23 -0
  81. pymoo/core/replacement.py +96 -0
  82. pymoo/core/result.py +52 -0
  83. pymoo/core/sampling.py +43 -0
  84. pymoo/core/selection.py +61 -0
  85. pymoo/core/solution.py +10 -0
  86. pymoo/core/survival.py +103 -0
  87. pymoo/core/termination.py +70 -0
  88. pymoo/core/variable.py +399 -0
  89. pymoo/cython/__init__.py +0 -0
  90. pymoo/cython/calc_perpendicular_distance.cpython-313-darwin.so +0 -0
  91. pymoo/cython/calc_perpendicular_distance.pyx +67 -0
  92. pymoo/cython/decomposition.cpython-313-darwin.so +0 -0
  93. pymoo/cython/decomposition.pyx +165 -0
  94. pymoo/cython/hv.cpython-313-darwin.so +0 -0
  95. pymoo/cython/hv.pyx +18 -0
  96. pymoo/cython/info.cpython-313-darwin.so +0 -0
  97. pymoo/cython/info.pyx +5 -0
  98. pymoo/cython/mnn.cpython-313-darwin.so +0 -0
  99. pymoo/cython/mnn.pyx +273 -0
  100. pymoo/cython/non_dominated_sorting.cpython-313-darwin.so +0 -0
  101. pymoo/cython/non_dominated_sorting.pyx +645 -0
  102. pymoo/cython/pruning_cd.cpython-313-darwin.so +0 -0
  103. pymoo/cython/pruning_cd.pyx +197 -0
  104. pymoo/cython/stochastic_ranking.cpython-313-darwin.so +0 -0
  105. pymoo/cython/stochastic_ranking.pyx +49 -0
  106. pymoo/cython/utils.pxd +129 -0
  107. pymoo/cython/vendor/__init__.py +0 -0
  108. pymoo/cython/vendor/hypervolume.cpp +1621 -0
  109. pymoo/cython/vendor/hypervolume.h +63 -0
  110. pymoo/decomposition/__init__.py +0 -0
  111. pymoo/decomposition/aasf.py +24 -0
  112. pymoo/decomposition/asf.py +10 -0
  113. pymoo/decomposition/pbi.py +13 -0
  114. pymoo/decomposition/perp_dist.py +13 -0
  115. pymoo/decomposition/tchebicheff.py +11 -0
  116. pymoo/decomposition/util.py +13 -0
  117. pymoo/decomposition/weighted_sum.py +8 -0
  118. pymoo/docs.py +187 -0
  119. pymoo/experimental/__init__.py +0 -0
  120. pymoo/experimental/algorithms/__init__.py +0 -0
  121. pymoo/experimental/algorithms/gde3.py +57 -0
  122. pymoo/gradient/__init__.py +21 -0
  123. pymoo/gradient/automatic.py +57 -0
  124. pymoo/gradient/grad_autograd.py +105 -0
  125. pymoo/gradient/grad_complex.py +35 -0
  126. pymoo/gradient/grad_jax.py +51 -0
  127. pymoo/gradient/toolbox/__init__.py +6 -0
  128. pymoo/indicators/__init__.py +0 -0
  129. pymoo/indicators/distance_indicator.py +55 -0
  130. pymoo/indicators/gd.py +7 -0
  131. pymoo/indicators/gd_plus.py +7 -0
  132. pymoo/indicators/hv/__init__.py +63 -0
  133. pymoo/indicators/hv/exact.py +71 -0
  134. pymoo/indicators/hv/exact_2d.py +102 -0
  135. pymoo/indicators/hv/monte_carlo.py +74 -0
  136. pymoo/indicators/igd.py +7 -0
  137. pymoo/indicators/igd_plus.py +7 -0
  138. pymoo/indicators/kktpm.py +151 -0
  139. pymoo/indicators/migd.py +55 -0
  140. pymoo/indicators/rmetric.py +203 -0
  141. pymoo/indicators/spacing.py +52 -0
  142. pymoo/mcdm/__init__.py +0 -0
  143. pymoo/mcdm/compromise_programming.py +19 -0
  144. pymoo/mcdm/high_tradeoff.py +40 -0
  145. pymoo/mcdm/pseudo_weights.py +32 -0
  146. pymoo/operators/__init__.py +0 -0
  147. pymoo/operators/control.py +187 -0
  148. pymoo/operators/crossover/__init__.py +0 -0
  149. pymoo/operators/crossover/binx.py +45 -0
  150. pymoo/operators/crossover/dex.py +122 -0
  151. pymoo/operators/crossover/erx.py +162 -0
  152. pymoo/operators/crossover/expx.py +51 -0
  153. pymoo/operators/crossover/hux.py +37 -0
  154. pymoo/operators/crossover/nox.py +13 -0
  155. pymoo/operators/crossover/ox.py +84 -0
  156. pymoo/operators/crossover/pcx.py +82 -0
  157. pymoo/operators/crossover/pntx.py +49 -0
  158. pymoo/operators/crossover/sbx.py +125 -0
  159. pymoo/operators/crossover/spx.py +5 -0
  160. pymoo/operators/crossover/ux.py +20 -0
  161. pymoo/operators/mutation/__init__.py +0 -0
  162. pymoo/operators/mutation/bitflip.py +17 -0
  163. pymoo/operators/mutation/gauss.py +58 -0
  164. pymoo/operators/mutation/inversion.py +42 -0
  165. pymoo/operators/mutation/nom.py +7 -0
  166. pymoo/operators/mutation/pm.py +94 -0
  167. pymoo/operators/mutation/rm.py +23 -0
  168. pymoo/operators/repair/__init__.py +0 -0
  169. pymoo/operators/repair/bounce_back.py +32 -0
  170. pymoo/operators/repair/bounds_repair.py +95 -0
  171. pymoo/operators/repair/inverse_penalty.py +89 -0
  172. pymoo/operators/repair/rounding.py +18 -0
  173. pymoo/operators/repair/to_bound.py +31 -0
  174. pymoo/operators/repair/vtype.py +11 -0
  175. pymoo/operators/sampling/__init__.py +0 -0
  176. pymoo/operators/sampling/lhs.py +73 -0
  177. pymoo/operators/sampling/rnd.py +50 -0
  178. pymoo/operators/selection/__init__.py +0 -0
  179. pymoo/operators/selection/rnd.py +72 -0
  180. pymoo/operators/selection/tournament.py +76 -0
  181. pymoo/operators/survival/__init__.py +0 -0
  182. pymoo/operators/survival/rank_and_crowding/__init__.py +1 -0
  183. pymoo/operators/survival/rank_and_crowding/classes.py +209 -0
  184. pymoo/operators/survival/rank_and_crowding/metrics.py +208 -0
  185. pymoo/optimize.py +72 -0
  186. pymoo/problems/__init__.py +157 -0
  187. pymoo/problems/dyn.py +47 -0
  188. pymoo/problems/dynamic/__init__.py +0 -0
  189. pymoo/problems/dynamic/cec2015.py +108 -0
  190. pymoo/problems/dynamic/df.py +452 -0
  191. pymoo/problems/dynamic/misc.py +167 -0
  192. pymoo/problems/functional.py +48 -0
  193. pymoo/problems/many/__init__.py +5 -0
  194. pymoo/problems/many/cdtlz.py +159 -0
  195. pymoo/problems/many/dcdtlz.py +88 -0
  196. pymoo/problems/many/dtlz.py +264 -0
  197. pymoo/problems/many/wfg.py +550 -0
  198. pymoo/problems/multi/__init__.py +14 -0
  199. pymoo/problems/multi/bnh.py +34 -0
  200. pymoo/problems/multi/carside.py +48 -0
  201. pymoo/problems/multi/clutch.py +104 -0
  202. pymoo/problems/multi/csi.py +55 -0
  203. pymoo/problems/multi/ctp.py +198 -0
  204. pymoo/problems/multi/dascmop.py +213 -0
  205. pymoo/problems/multi/kursawe.py +25 -0
  206. pymoo/problems/multi/modact.py +68 -0
  207. pymoo/problems/multi/mw.py +400 -0
  208. pymoo/problems/multi/omnitest.py +48 -0
  209. pymoo/problems/multi/osy.py +32 -0
  210. pymoo/problems/multi/srn.py +28 -0
  211. pymoo/problems/multi/sympart.py +94 -0
  212. pymoo/problems/multi/tnk.py +24 -0
  213. pymoo/problems/multi/truss2d.py +83 -0
  214. pymoo/problems/multi/welded_beam.py +41 -0
  215. pymoo/problems/multi/wrm.py +36 -0
  216. pymoo/problems/multi/zdt.py +151 -0
  217. pymoo/problems/multi_to_single.py +22 -0
  218. pymoo/problems/single/__init__.py +12 -0
  219. pymoo/problems/single/ackley.py +24 -0
  220. pymoo/problems/single/cantilevered_beam.py +34 -0
  221. pymoo/problems/single/flowshop_scheduling.py +112 -0
  222. pymoo/problems/single/g.py +874 -0
  223. pymoo/problems/single/griewank.py +18 -0
  224. pymoo/problems/single/himmelblau.py +15 -0
  225. pymoo/problems/single/knapsack.py +48 -0
  226. pymoo/problems/single/mopta08.py +26 -0
  227. pymoo/problems/single/multimodal.py +20 -0
  228. pymoo/problems/single/pressure_vessel.py +30 -0
  229. pymoo/problems/single/rastrigin.py +20 -0
  230. pymoo/problems/single/rosenbrock.py +22 -0
  231. pymoo/problems/single/schwefel.py +18 -0
  232. pymoo/problems/single/simple.py +13 -0
  233. pymoo/problems/single/sphere.py +19 -0
  234. pymoo/problems/single/traveling_salesman.py +79 -0
  235. pymoo/problems/single/zakharov.py +19 -0
  236. pymoo/problems/static.py +14 -0
  237. pymoo/problems/util.py +42 -0
  238. pymoo/problems/zero_to_one.py +27 -0
  239. pymoo/termination/__init__.py +23 -0
  240. pymoo/termination/collection.py +12 -0
  241. pymoo/termination/cv.py +48 -0
  242. pymoo/termination/default.py +45 -0
  243. pymoo/termination/delta.py +64 -0
  244. pymoo/termination/fmin.py +16 -0
  245. pymoo/termination/ftol.py +144 -0
  246. pymoo/termination/indicator.py +49 -0
  247. pymoo/termination/max_eval.py +14 -0
  248. pymoo/termination/max_gen.py +15 -0
  249. pymoo/termination/max_time.py +20 -0
  250. pymoo/termination/robust.py +34 -0
  251. pymoo/termination/xtol.py +33 -0
  252. pymoo/util/__init__.py +0 -0
  253. pymoo/util/archive.py +150 -0
  254. pymoo/util/cache.py +29 -0
  255. pymoo/util/clearing.py +82 -0
  256. pymoo/util/display/__init__.py +0 -0
  257. pymoo/util/display/column.py +52 -0
  258. pymoo/util/display/display.py +34 -0
  259. pymoo/util/display/multi.py +96 -0
  260. pymoo/util/display/output.py +53 -0
  261. pymoo/util/display/progress.py +54 -0
  262. pymoo/util/display/single.py +67 -0
  263. pymoo/util/dominator.py +67 -0
  264. pymoo/util/function_loader.py +129 -0
  265. pymoo/util/hv.py +23 -0
  266. pymoo/util/matlab_engine.py +39 -0
  267. pymoo/util/misc.py +460 -0
  268. pymoo/util/mnn.py +70 -0
  269. pymoo/util/nds/__init__.py +0 -0
  270. pymoo/util/nds/dominance_degree_non_dominated_sort.py +159 -0
  271. pymoo/util/nds/efficient_non_dominated_sort.py +152 -0
  272. pymoo/util/nds/fast_non_dominated_sort.py +70 -0
  273. pymoo/util/nds/naive_non_dominated_sort.py +36 -0
  274. pymoo/util/nds/non_dominated_sorting.py +67 -0
  275. pymoo/util/nds/tree_based_non_dominated_sort.py +133 -0
  276. pymoo/util/normalization.py +312 -0
  277. pymoo/util/optimum.py +42 -0
  278. pymoo/util/plotting.py +177 -0
  279. pymoo/util/pruning_cd.py +89 -0
  280. pymoo/util/randomized_argsort.py +60 -0
  281. pymoo/util/ref_dirs/__init__.py +24 -0
  282. pymoo/util/ref_dirs/construction.py +88 -0
  283. pymoo/util/ref_dirs/das_dennis.py +52 -0
  284. pymoo/util/ref_dirs/energy.py +319 -0
  285. pymoo/util/ref_dirs/energy_layer.py +119 -0
  286. pymoo/util/ref_dirs/genetic_algorithm.py +63 -0
  287. pymoo/util/ref_dirs/incremental.py +68 -0
  288. pymoo/util/ref_dirs/misc.py +128 -0
  289. pymoo/util/ref_dirs/optimizer.py +59 -0
  290. pymoo/util/ref_dirs/performance.py +162 -0
  291. pymoo/util/ref_dirs/reduction.py +85 -0
  292. pymoo/util/ref_dirs/sample_and_map.py +24 -0
  293. pymoo/util/reference_direction.py +260 -0
  294. pymoo/util/remote.py +55 -0
  295. pymoo/util/roulette.py +27 -0
  296. pymoo/util/running_metric.py +128 -0
  297. pymoo/util/sliding_window.py +25 -0
  298. pymoo/util/stochastic_ranking.py +32 -0
  299. pymoo/util/value_functions.py +719 -0
  300. pymoo/util/vectors.py +40 -0
  301. pymoo/util/vf_dominator.py +99 -0
  302. pymoo/vendor/__init__.py +0 -0
  303. pymoo/vendor/cec2018.py +398 -0
  304. pymoo/vendor/gta.py +617 -0
  305. pymoo/vendor/hv.py +267 -0
  306. pymoo/vendor/vendor_cmaes.py +412 -0
  307. pymoo/vendor/vendor_coco.py +81 -0
  308. pymoo/vendor/vendor_scipy.py +232 -0
  309. pymoo/version.py +1 -0
  310. pymoo/visualization/__init__.py +8 -0
  311. pymoo/visualization/fitness_landscape.py +127 -0
  312. pymoo/visualization/heatmap.py +123 -0
  313. pymoo/visualization/pcp.py +120 -0
  314. pymoo/visualization/petal.py +91 -0
  315. pymoo/visualization/radar.py +108 -0
  316. pymoo/visualization/radviz.py +68 -0
  317. pymoo/visualization/scatter.py +150 -0
  318. pymoo/visualization/star_coordinate.py +75 -0
  319. pymoo/visualization/util.py +123 -0
  320. pymoo/visualization/video/__init__.py +0 -0
  321. pymoo/visualization/video/callback_video.py +82 -0
  322. pymoo/visualization/video/one_var_one_obj.py +57 -0
  323. pymoo/visualization/video/two_var_one_obj.py +62 -0
  324. pymoo-0.6.1.5.dev0.dist-info/METADATA +187 -0
  325. pymoo-0.6.1.5.dev0.dist-info/RECORD +328 -0
  326. pymoo-0.6.1.5.dev0.dist-info/WHEEL +6 -0
  327. pymoo-0.6.1.5.dev0.dist-info/licenses/LICENSE +191 -0
  328. pymoo-0.6.1.5.dev0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,874 @@
1
+ """
2
+ The G problems were originally defined at a CEC competition in 2006:
3
+ Liang, Jing J., Thomas Philip Runarsson, Efrén Mezura-Montes, Maurice Clerc, Ponnuthurai Nagaratnam Suganthan, Carlos A. Coello Coello, and Kalyanmoy Deb.
4
+ Problem Definitions and Evaluation Criteria for the CEC 2006 Special Session on Constrained Real-Parameter Optimization.
5
+ """
6
+
7
+ import math
8
+
9
+ import numpy as np
10
+
11
+ import pymoo.gradient.toolbox as anp
12
+ from pymoo.core.problem import Problem
13
+ from pymoo.util.misc import at_least_2d_array
14
+
15
+
16
+ class G(Problem):
17
+
18
+ def _calc_pareto_front(self):
19
+ ps = at_least_2d_array(self._calc_pareto_set(), extend_as="r")
20
+ return self.evaluate(ps, return_as_dictionary=True)["F"].min(axis=0)
21
+
22
+
23
+ class G1(G):
24
+ def __init__(self):
25
+ n_var = 13
26
+ xl = np.zeros(n_var, dtype=float)
27
+ xu = np.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 100, 100, 100, 1], dtype=float)
28
+ super().__init__(n_var=n_var, n_obj=1, n_ieq_constr=9, xl=xl, xu=xu, vtype=float)
29
+
30
+ def _evaluate(self, x, out, *args, **kwargs):
31
+ x1 = x[:, 0: 4]
32
+ x2 = x[:, 4: 13]
33
+
34
+ f = 5 * x1.sum(axis=1) - 5 * (x1 ** 2).sum(axis=1) - x2.sum(axis=1)
35
+
36
+ # Constraints
37
+ g1 = 2 * x[:, 0] + 2 * x[:, 1] + x[:, 9] + x[:, 10] - 10
38
+ g2 = 2 * x[:, 0] + 2 * x[:, 2] + x[:, 9] + x[:, 11] - 10
39
+ g3 = 2 * x[:, 1] + 2 * x[:, 2] + x[:, 10] + x[:, 11] - 10
40
+ g4 = -8 * x[:, 0] + x[:, 9]
41
+ g5 = -8 * x[:, 1] + x[:, 10]
42
+ g6 = -8 * x[:, 2] + x[:, 11]
43
+ g7 = -2 * x[:, 3] - x[:, 4] + x[:, 9]
44
+ g8 = -2 * x[:, 5] - x[:, 6] + x[:, 10]
45
+ g9 = -2 * x[:, 7] - x[:, 8] + x[:, 11]
46
+
47
+ out["F"] = f
48
+ out["G"] = [g1, g2, g3, g4, g5, g6, g7, g8, g9]
49
+
50
+ def _calc_pareto_front(self):
51
+ return -15.0
52
+
53
+ def _calc_pareto_set(self):
54
+ return np.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1], dtype=float)
55
+
56
+
57
+ class G2(G):
58
+ def __init__(self, n_var=20):
59
+ xl = np.full(n_var, 1e-16)
60
+ xu = 10 * np.ones(n_var)
61
+ super().__init__(n_var=n_var, n_obj=1, n_ieq_constr=2, xl=xl, xu=xu, vtype=float)
62
+
63
+ def _evaluate(self, x, out, *args, **kwargs):
64
+ a = anp.sum(anp.cos(x) ** 4, axis=1)
65
+ b = 2 * anp.prod(anp.cos(x) ** 2, axis=1)
66
+
67
+ sum_jx = 0.0
68
+ for j in range(self.n_var):
69
+ sum_jx = sum_jx + (j + 1) * x[:, j] ** 2
70
+
71
+ c = anp.sqrt(sum_jx) + (sum_jx == 0) * 1e-64
72
+ f = -anp.absolute((a - b) / c)
73
+
74
+ # Constraints
75
+ g1 = -anp.prod(x, 1) + 0.75
76
+ g2 = anp.sum(x, axis=1) - 7.5 * self.n_var
77
+
78
+ out["F"] = f
79
+ out["G"] = anp.column_stack([g1, g2])
80
+
81
+ def _calc_pareto_set(self):
82
+ if self.n_var == 2:
83
+ return np.array([1.600859, 0.4684985])
84
+ elif self.n_var == 10:
85
+ return np.array([3.1238477, 3.0690696, 3.0139085, 2.9572856, 1.4654789, 0.3684877, 0.3633289, 0.3592627,
86
+ 0.3547453, 0.3510025])
87
+
88
+ # the version of the paper with 20 variables
89
+ elif self.n_var == 20:
90
+ return np.array([3.16246061572185, 3.12833142812967, 3.09479212988791, 3.06145059523469, 3.02792915885555,
91
+ 2.99382606701730, 2.95866871765285, 2.92184227312450, 0.49482511456933, 0.48835711005490,
92
+ 0.48231642711865, 0.47664475092742, 0.47129550835493, 0.46623099264167, 0.46142004984199,
93
+ 0.45683664767217, 0.45245876903267, 0.44826762241853, 0.44424700958760, 0.44038285956317])
94
+
95
+
96
+ class G3(G):
97
+
98
+ def __init__(self, n_var=10):
99
+ xl = np.zeros(n_var)
100
+ xu = np.ones(n_var)
101
+ super().__init__(n_var=n_var, n_obj=1, n_eq_constr=1, xl=xl, xu=xu, vtype=float)
102
+
103
+ def _evaluate(self, x, out, *args, **kwargs):
104
+ f = - anp.sqrt(self.n_var) ** self.n_var * anp.prod(x, axis=1)
105
+ h = anp.sum(x ** 2, axis=1) - 1
106
+
107
+ out["F"] = f
108
+ out["H"] = h
109
+
110
+ def _calc_pareto_set(self):
111
+ return np.full(self.n_var, 1 / np.sqrt(self.n_var))
112
+
113
+
114
+ class G4(G):
115
+
116
+ def __init__(self):
117
+ xl = np.array([78, 33, 27, 27, 27], dtype=float)
118
+ xu = np.array([102, 45, 45, 45, 45], dtype=float)
119
+ super().__init__(n_var=5, n_obj=1, n_ieq_constr=6, xl=xl, xu=xu, vtype=float)
120
+
121
+ def _evaluate(self, x, out, *args, **kwargs):
122
+ f = 5.3578547 * x[:, 2] ** 2 + 0.8356891 * x[:, 0] * x[:, 4] + 37.293239 * x[:, 0] - 40792.141
123
+
124
+ # Constraints
125
+ u = 85.334407 + 0.0056858 * x[:, 1] * x[:, 4] + 0.0006262 * x[:, 0] * x[:, 3] - 0.0022053 * x[:, 2] * x[:, 4]
126
+ g1 = -u
127
+ g2 = u - 92
128
+ v = 80.51249 + 0.0071317 * x[:, 1] * x[:, 4] + 0.0029955 * x[:, 0] * x[:, 1] + 0.0021813 * x[:, 2] ** 2
129
+ g3 = -v + 90
130
+ g4 = v - 110
131
+ w = 9.300961 + 0.0047026 * x[:, 2] * x[:, 4] + 0.0012547 * x[:, 0] * x[:, 2] + 0.0019085 * x[:, 2] * x[:, 3]
132
+ g5 = -w + 20
133
+ g6 = w - 25
134
+
135
+ out["F"] = f
136
+ out["G"] = anp.column_stack([g1, g2, g3, g4, g5, g6])
137
+
138
+ def _calc_pareto_set(self):
139
+ return [78, 33, 29.9952560256815985, 45, 36.7758129057882073]
140
+
141
+
142
+ class G5(G):
143
+
144
+ def __init__(self):
145
+ xl = np.array([0, 0, -0.55, -0.55], dtype=float)
146
+ xu = np.array([1200, 1200, 0.55, 0.55], dtype=float)
147
+ super().__init__(n_var=4, n_obj=1, n_ieq_constr=2, n_eq_constr=3, xl=xl, xu=xu, vtype=float)
148
+
149
+ def _evaluate(self, x, out, *args, **kwargs):
150
+ f = 3 * x[:, 0] + (10 ** -6) * x[:, 0] ** 3 + 2 * x[:, 1] + (2 * 10 ** (-6)) / 3 * x[:, 1] ** 3
151
+
152
+ # Inequality Constraints
153
+ g1 = x[:, 2] - x[:, 3] - 0.55
154
+ g2 = x[:, 3] - x[:, 2] - 0.55
155
+
156
+ # Equality Constraints
157
+ h1 = 1000 * anp.sin(-x[:, 2] - 0.25) + 1000 * anp.sin(-x[:, 3] - 0.25) + 894.8 - x[:, 0]
158
+ h2 = 1000 * anp.sin(x[:, 2] - 0.25) + 1000 * anp.sin(x[:, 2] - x[:, 3] - 0.25) + 894.8 - x[:, 1]
159
+ h3 = 1000 * anp.sin(x[:, 3] - 0.25) + 1000 * anp.sin(x[:, 3] - x[:, 2] - 0.25) + 1294.8
160
+
161
+ out["F"] = f
162
+ out["G"] = anp.column_stack([g1, g2])
163
+ out["H"] = anp.column_stack([h1, h2, h3])
164
+
165
+ def _calc_pareto_set(self):
166
+ return [679.94531748791177961,
167
+ 1026.06713513571594376,
168
+ 0.11887636617838561,
169
+ -0.39623355240329272]
170
+
171
+
172
+ class G6(G):
173
+
174
+ def __init__(self):
175
+ xl = np.array([13, 0], dtype=float)
176
+ xu = np.array([100, 100], dtype=float)
177
+ super().__init__(n_var=2, n_obj=1, n_ieq_constr=2, xl=xl, xu=xu, vtype=float)
178
+
179
+ def _evaluate(self, x, out, *args, **kwargs):
180
+ f = (x[:, 0] - 10) ** 3 + (x[:, 1] - 20) ** 3
181
+
182
+ # Constraints
183
+ g1 = -(x[:, 0] - 5) ** 2 - (x[:, 1] - 5) ** 2 + 100
184
+ g2 = (x[:, 0] - 6) ** 2 + (x[:, 1] - 5) ** 2 - 82.81
185
+
186
+ out["F"] = f
187
+ out["G"] = anp.column_stack([g1, g2])
188
+
189
+ def _calc_pareto_set(self):
190
+ return np.array([14.095, 5 - np.sqrt(100 - (14.095 - 5) ** 2)])
191
+
192
+
193
+ class G7(G):
194
+
195
+ def __init__(self):
196
+ n_var = 10
197
+ xl = -10 * np.ones(n_var)
198
+ xu = 10 * np.ones(n_var)
199
+ super().__init__(n_var=n_var, n_obj=1, n_ieq_constr=8, xl=xl, xu=xu, vtype=float)
200
+
201
+ def _evaluate(self, x, out, *args, **kwargs):
202
+ f = x[:, 0] ** 2 + x[:, 1] ** 2 + x[:, 0] * x[:, 1] - 14 * x[:, 0] - 16 * x[:, 1] + (x[:, 2] - 10) ** 2 \
203
+ + 4 * (x[:, 3] - 5) ** 2 + (x[:, 4] - 3) ** 2 + 2 * (x[:, 5] - 1) ** 2 + 5 * x[:, 6] ** 2 \
204
+ + 7 * (x[:, 7] - 11) ** 2 + 2 * (x[:, 8] - 10) ** 2 + (x[:, 9] - 7) ** 2 + 45
205
+
206
+ # Constraints
207
+ g1 = 4 * x[:, 0] + 5 * x[:, 1] - 3 * x[:, 6] + 9 * x[:, 7] - 105
208
+ g2 = 10 * x[:, 0] - 8 * x[:, 1] - 17 * x[:, 6] + 2 * x[:, 7]
209
+ g3 = -8 * x[:, 0] + 2 * x[:, 1] + 5 * x[:, 8] - 2 * x[:, 9] - 12
210
+ g4 = 3 * (x[:, 0] - 2) ** 2 + 4 * (x[:, 1] - 3) ** 2 + 2 * x[:, 2] ** 2 - 7 * x[:, 3] - 120
211
+ g5 = 5 * x[:, 0] ** 2 + 8 * x[:, 1] + (x[:, 2] - 6) ** 2 - 2 * x[:, 3] - 40
212
+ g6 = x[:, 0] ** 2 + 2 * (x[:, 1] - 2) ** 2 - 2 * x[:, 0] * x[:, 1] + 14 * x[:, 4] - 6 * x[:, 5]
213
+ g7 = 0.5 * (x[:, 0] - 8) ** 2 + 2 * (x[:, 1] - 4) ** 2 + 3 * x[:, 4] ** 2 - x[:, 5] - 30
214
+ g8 = -3 * x[:, 0] + 6 * x[:, 1] + 12 * (x[:, 8] - 8) ** 2 - 7 * x[:, 9]
215
+
216
+ out["F"] = f
217
+ out["G"] = anp.column_stack([g1, g2, g3, g4, g5, g6, g7, g8])
218
+
219
+ def _calc_pareto_set(self):
220
+ return [2.171997834812,
221
+ 2.363679362798,
222
+ 8.773925117415,
223
+ 5.095984215855,
224
+ 0.990655966387,
225
+ 1.430578427576,
226
+ 1.321647038816,
227
+ 9.828728107011,
228
+ 8.280094195305,
229
+ 8.375923511901]
230
+
231
+
232
+ class G8(G):
233
+
234
+ def __init__(self):
235
+ n_var = 2
236
+ xl = np.full(n_var, 0.00001)
237
+ xu = np.full(n_var, 10.0)
238
+ super().__init__(n_var=n_var, n_obj=1, n_ieq_constr=2, xl=xl, xu=xu, vtype=float)
239
+
240
+ def _evaluate(self, x, out, *args, **kwargs):
241
+ f = -(anp.sin(2 * math.pi * x[:, 0]) ** 3 * anp.sin(2 * math.pi * x[:, 1])) / (
242
+ x[:, 0] ** 3 * (x[:, 0] + x[:, 1]))
243
+
244
+ # Constraints
245
+ g1 = x[:, 0] ** 2 - x[:, 1] + 1
246
+ g2 = 1 - x[:, 0] + (x[:, 1] - 4) ** 2
247
+
248
+ out["F"] = f
249
+ out["G"] = anp.column_stack([g1, g2])
250
+
251
+ def _calc_pareto_set(self):
252
+ return [1.22797135260752599, 4.24537336612274885]
253
+
254
+
255
+ class G9(G):
256
+
257
+ def __init__(self):
258
+ n_var = 7
259
+ xl = np.full(n_var, -10.0)
260
+ xu = np.full(n_var, +10.0)
261
+ super().__init__(n_var=n_var, n_obj=1, n_ieq_constr=4, xl=xl, xu=xu, vtype=float)
262
+
263
+ def _evaluate(self, x, out, *args, **kwargs):
264
+ f = (x[:, 0] - 10) ** 2 + 5 * (x[:, 1] - 12) ** 2 + x[:, 2] ** 4 \
265
+ + 3 * (x[:, 3] - 11) ** 2 + 10 * x[:, 4] ** 6 + 7 * x[:, 5] ** 2 \
266
+ + x[:, 6] ** 4 - 4 * x[:, 5] * x[:, 6] - 10 * x[:, 5] - 8 * x[:, 6]
267
+
268
+ # Constraints
269
+ v1 = 2 * x[:, 0] ** 2
270
+ v2 = x[:, 1] ** 2
271
+ g1 = v1 + 3 * v2 ** 2 + x[:, 2] + 4 * x[:, 3] ** 2 + 5 * x[:, 4] - 127
272
+ g2 = 7 * x[:, 0] + 3 * x[:, 1] + 10 * x[:, 2] ** 2 + x[:, 3] - x[:, 4] - 282
273
+ g3 = 23 * x[:, 0] + v2 + 6 * x[:, 5] ** 2 - 8 * x[:, 6] - 196
274
+ g4 = 2 * v1 + v2 - 3 * x[:, 0] * x[:, 1] + 2 * x[:, 2] ** 2 + 5. * x[:, 5] - 11 * x[:, 6]
275
+
276
+ out["F"] = f[:, None]
277
+ out["G"] = anp.column_stack([g1, g2, g3, g4])
278
+
279
+ def _calc_pareto_set(self):
280
+ # return [2.33049935147405174, 1.95137236847114592, -0.477541399510615805, 4.36572624923625874,
281
+ # -0.624486959100388983, 1.03813099410962173, 1.5942266780671519]
282
+ return [
283
+ 2.33049949323300210,
284
+ 1.95137239646596039,
285
+ -0.47754041766198602,
286
+ 4.36572612852776931,
287
+ -0.62448707583702823,
288
+ 1.03813092302119347,
289
+ 1.59422663221959926]
290
+
291
+
292
+ class G10(G):
293
+
294
+ def __init__(self):
295
+ xl = np.array([100, 1000, 1000, 10, 10, 10, 10, 10], dtype=float)
296
+ xu = np.array([10000, 10000, 10000, 1000, 1000, 1000, 1000, 1000], dtype=float)
297
+ super().__init__(n_var=8, n_obj=1, n_ieq_constr=6, xl=xl, xu=xu, vtype=float)
298
+
299
+ def _evaluate(self, x, out, *args, **kwargs):
300
+ f = x[:, 0] + x[:, 1] + x[:, 2]
301
+
302
+ # Constraints
303
+ g1 = -1 + 0.0025 * (x[:, 3] + x[:, 5])
304
+ g2 = -1 + 0.0025 * (-x[:, 3] + x[:, 4] + x[:, 6])
305
+ g3 = -1 + 0.01 * (-x[:, 4] + x[:, 7])
306
+ g4 = 100 * x[:, 0] - x[:, 0] * x[:, 5] + 833.33252 * x[:, 3] - 83333.333
307
+ g5 = x[:, 1] * x[:, 3] - x[:, 1] * x[:, 6] - 1250 * x[:, 3] + 1250 * x[:, 4]
308
+ g6 = x[:, 2] * x[:, 4] - x[:, 2] * x[:, 7] - 2500. * x[:, 4] + 1250000
309
+
310
+ out["F"] = f
311
+ out["G"] = anp.column_stack([g1, g2, g3, g4, g5, g6])
312
+
313
+ def _calc_pareto_set(self):
314
+ return [579.29340269759155,
315
+ 1359.97691009458777,
316
+ 5109.97770901501008,
317
+ 182.01659025342749,
318
+ 295.60089166064103,
319
+ 217.98340973906758,
320
+ 286.41569858295981,
321
+ 395.60089165381908]
322
+
323
+
324
+ class G11(G):
325
+
326
+ def __init__(self):
327
+ xl = np.array([-1, -1], dtype=float)
328
+ xu = np.array([1, 1], dtype=float)
329
+ super().__init__(n_var=2, n_obj=1, n_ieq_constr=1, xl=xl, xu=xu, vtype=float)
330
+
331
+ def _evaluate(self, x, out, *args, **kwargs):
332
+ f = x[:, 0] ** 2 + (x[:, 1] - 1) ** 2
333
+ g = x[:, 1] - x[:, 0] ** 2
334
+
335
+ out["F"] = f
336
+ out["G"] = g
337
+
338
+ def _calc_pareto_set(self):
339
+ return [-np.sqrt(0.5), 0.5]
340
+
341
+
342
+ class G12(G):
343
+
344
+ def __init__(self):
345
+ xl = np.full(3, 0.0)
346
+ xu = np.full(3, 10.0)
347
+ super().__init__(n_var=3, n_obj=1, n_ieq_constr=1, xl=xl, xu=xu, vtype=float)
348
+
349
+ def _evaluate(self, x, out, *args, **kwargs):
350
+ f = -1 + 0.01 * ((x[:, 0] - 5) ** 2 + (x[:, 1] - 5) ** 2 + (x[:, 2] - 5) ** 2)
351
+
352
+ g = anp.full(len(x), anp.inf)
353
+ for i in range(1, 10):
354
+ for j in range(1, 10):
355
+ for k in range(1, 10):
356
+ g = anp.minimum(g, (x[:, 0] - i) ** 2 + (x[:, 1] - j) ** 2 + (x[:, 2] - k) ** 2 - 0.0625)
357
+
358
+ out["F"] = f
359
+ out["G"] = g
360
+
361
+ def _calc_pareto_set(self):
362
+ return [5.0, 5.0, 5.0]
363
+
364
+
365
+ class G13(G):
366
+
367
+ def __init__(self):
368
+ xl = np.array([-2.3, -2.3, -3.2, -3.2, -3.2])
369
+ xu = np.array([+2.3, +2.3, +3.2, +3.2, +3.2])
370
+ super().__init__(n_var=5, n_obj=1, n_eq_constr=3, xl=xl, xu=xu, vtype=float)
371
+
372
+ def _evaluate(self, x, out, *args, **kwargs):
373
+ f = anp.exp(x[:, 0] * x[:, 1] * x[:, 2] * x[:, 3] * x[:, 4])
374
+
375
+ h1 = x[:, 0] ** 2 + x[:, 1] ** 2 + x[:, 2] ** 2 + x[:, 3] ** 2 + x[:, 4] ** 2 - 10
376
+ h2 = x[:, 1] * x[:, 2] - 5 * x[:, 3] * x[:, 4]
377
+ h3 = x[:, 0] ** 3 + x[:, 1] ** 3 + 1
378
+
379
+ out["F"] = f
380
+ out["H"] = anp.column_stack([h1, h2, h3])
381
+
382
+ def _calc_pareto_set(self):
383
+ opt = np.array([-1.7171435947203, 1.5957097321519, 1.8272456947885, -0.7636422812896, -0.7636439027742])
384
+ ps = [opt,
385
+ np.array([opt[0], opt[1], -opt[2], -opt[3], +opt[4]]),
386
+ np.array([opt[0], opt[1], -opt[2], +opt[3], -opt[4]]),
387
+ np.array([opt[0], opt[1], +opt[2], -opt[3], -opt[4]]),
388
+ np.array([opt[0], opt[1], -opt[2], +opt[3], -opt[4]]),
389
+ np.array([opt[0], opt[1], -opt[2], -opt[3], +opt[4]])
390
+ ]
391
+ return np.row_stack(ps)
392
+
393
+
394
+ class G14(G):
395
+
396
+ def __init__(self):
397
+ xl = np.full(10, 1e-06)
398
+ xu = np.full(10, 10.0)
399
+ super().__init__(n_var=10, n_obj=1, n_eq_constr=3, xl=xl, xu=xu, vtype=float)
400
+
401
+ def _evaluate(self, x, out, *args, **kwargs):
402
+ v = anp.array([-6.089, -17.164, -34.054, -5.914, -24.721, -14.986, -24.1, -10.708, -26.662, -22.179])
403
+ y = anp.log(x / anp.sum(x, axis=1, keepdims=True))
404
+ f = anp.sum(x * (v + y), axis=1)
405
+
406
+ h1 = x[:, 0] + 2 * x[:, 1] + 2 * x[:, 2] + x[:, 5] + x[:, 9] - 2
407
+ h2 = x[:, 3] + 2 * x[:, 4] + x[:, 5] + x[:, 6] - 1
408
+ h3 = x[:, 2] + x[:, 6] + x[:, 7] + 2 * x[:, 8] + x[:, 9] - 1
409
+
410
+ out["F"] = f
411
+ out["H"] = anp.column_stack([h1, h2, h3])
412
+
413
+ def _calc_pareto_set(self):
414
+ return [0.0406684113216282, 0.147721240492452, 0.783205732104114, 0.00141433931889084, 0.485293636780388,
415
+ 0.000693183051556082, 0.0274052040687766, 0.0179509660214818, 0.0373268186859717, 0.0968844604336845]
416
+
417
+
418
+ class G15(G):
419
+
420
+ def __init__(self):
421
+ n_var = 3
422
+ xl = np.full(n_var, 0.0)
423
+ xu = np.full(n_var, 10.0)
424
+ super().__init__(n_var=n_var, n_obj=1, n_eq_constr=2, xl=xl, xu=xu, vtype=float)
425
+
426
+ def _evaluate(self, x, out, *args, **kwargs):
427
+ f = 1000 - (x[:, 0] ** 2) - 2 * x[:, 1] ** 2 - x[:, 2] ** 2 - x[:, 0] * x[:, 1] - x[:, 0] * x[:, 2]
428
+
429
+ h1 = x[:, 0] ** 2 + x[:, 1] ** 2 + x[:, 2] ** 2 - 25
430
+ h2 = 8 * x[:, 0] + 14 * x[:, 1] + 7 * x[:, 2] - 56
431
+
432
+ out["F"] = f
433
+ out["H"] = anp.column_stack([h1, h2])
434
+
435
+ def _calc_pareto_set(self):
436
+ return [3.51212812611795133, 0.216987510429556135, 3.55217854929179921]
437
+
438
+
439
+ class G16(G):
440
+
441
+ def __init__(self):
442
+ xl = np.array([704.4148, 68.6, 0, 193, 25], dtype=float)
443
+ xu = np.array([906.3855, 288.88, 134.75, 287.0966, 84.1988], dtype=float)
444
+ super().__init__(n_var=5, n_obj=1, n_ieq_constr=38, xl=xl, xu=xu, vtype=float)
445
+
446
+ def _evaluate(self, x, out, *args, **kwargs):
447
+ y1 = x[:, 1] + x[:, 2] + 41.6
448
+ c1 = 0.024 * x[:, 3] - 4.62
449
+ y2 = (12.5 / c1) + 12
450
+ c2 = 0.0003535 * (x[:, 0] ** 2) + 0.5311 * x[:, 0] + 0.08705 * y2 * x[:, 0]
451
+ c3 = 0.052 * x[:, 0] + 78 + 0.002377 * y2 * x[:, 0]
452
+ y3 = c2 / c3
453
+ y4 = 19 * y3
454
+ c4 = 0.04782 * (x[:, 0] - y3) + (0.1956 * (x[:, 0] - y3) ** 2) / x[:, 1] + 0.6376 * y4 + 1.594 * y3
455
+ c5 = 100 * x[:, 1]
456
+ c6 = x[:, 0] - y3 - y4
457
+ c7 = 0.950 - (c4 / c5)
458
+ y5 = c6 * c7
459
+ y6 = x[:, 0] - y5 - y4 - y3
460
+ c8 = (y5 + y4) * 0.995
461
+ y7 = c8 / y1
462
+ y8 = c8 / 3798
463
+ c9 = y7 - (0.0663 * (y7 / y8)) - 0.3153
464
+ y9 = (96.82 / c9) + 0.321 * y1
465
+ y10 = 1.29 * y5 + 1.258 * y4 + 2.29 * y3 + 1.71 * y6
466
+ y11 = 1.71 * x[:, 0] - 0.452 * y4 + 0.580 * y3
467
+ c10 = 12.3 / 752.3
468
+ c11 = (1.75 * y2) * (0.995 * x[:, 0])
469
+ c12 = (0.995 * y10) + 1998
470
+ y12 = c10 * x[:, 0] + (c11 / c12)
471
+ y13 = c12 - 1.75 * y2
472
+ y14 = 3623 + 64.4 * x[:, 1] + 58.4 * x[:, 2] + 146312 / (y9 + x[:, 4])
473
+ c13 = 0.995 * y10 + 60.8 * x[:, 1] + 48 * x[:, 3] - 0.1121 * y14 - 5095
474
+ y15 = y13 / c13
475
+ y16 = 148000 - 331000 * y15 + 40 * y13 - 61 * y15 * y13
476
+ c14 = 2324 * y10 - 28740000 * y2
477
+ y17 = 14130000 - (1328 * y10) - (531 * y11) + (c14 / c12)
478
+ c15 = (y13 / y15) - (y13 / 0.52)
479
+ c16 = 1.104 - 0.72 * y15
480
+ c17 = y9 + x[:, 4]
481
+
482
+ f = (0.000117 * y14) + 0.1365 + (0.00002358 * y13) + (0.000001502 * y16) + (0.0321 * y12) + (0.004324 * y5) + (
483
+ 0.0001 * c15 / c16) + (37.48 * (y2 / c12)) - (0.0000005843 * y17)
484
+
485
+ g1 = (0.28 / 0.72) * y5 - y4
486
+ g2 = x[:, 2] - 1.5 * x[:, 1]
487
+ g3 = 3496 * (y2 / c12) - 21
488
+ g4 = 110.6 + y1 - (62212 / c17)
489
+ g5 = 213.1 - y1
490
+ g6 = y1 - 405.23
491
+ g7 = 17.505 - y2
492
+ g8 = y2 - 1053.6667
493
+ g9 = 11.275 - y3
494
+ g10 = y3 - 35.03
495
+ g11 = 214.228 - y4
496
+ g12 = y4 - 665.585
497
+ g13 = 7.458 - y5
498
+ g14 = y5 - 584.463
499
+ g15 = 0.961 - y6
500
+ g16 = y6 - 265.916
501
+ g17 = 1.612 - y7
502
+ g18 = y7 - 7.046
503
+ g19 = 0.146 - y8
504
+ g20 = y8 - 0.222
505
+ g21 = 107.99 - y9
506
+ g22 = y9 - 273.366
507
+ g23 = 922.693 - y10
508
+ g24 = y10 - 1286.105
509
+ g25 = 926.832 - y11
510
+ g26 = y11 - 1444.046
511
+ g27 = 18.766 - y12
512
+ g28 = y12 - 537.141
513
+ g29 = 1072.163 - y13
514
+ g30 = y13 - 3247.039
515
+ g31 = 8961.448 - y14
516
+ g32 = y14 - 26844.086
517
+ g33 = 0.063 - y15
518
+ g34 = y15 - 0.386
519
+ g35 = 71084.33 - y16
520
+ g36 = -140000 + y16
521
+ g37 = 2802713 - y17
522
+ g38 = y17 - 12146108
523
+
524
+ out["F"] = f
525
+ out["G"] = anp.column_stack([g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, g12, g13, g14, g15, g16, g17, g18,
526
+ g19, g20, g21, g22, g23, g24, g25, g26, g27, g28, g29, g30, g31, g32, g33, g34,
527
+ g35, g36, g37, g38])
528
+
529
+ def _calc_pareto_set(self):
530
+ return [705.17454, 68.60000, 102.90000, 282.32493, 37.58412]
531
+
532
+
533
+ class G17(G):
534
+
535
+ def __init__(self):
536
+ xl = np.array([0, 0, 340, 340, -1000, 0], dtype=float)
537
+ xu = np.array([400, 1000, 420, 420, 1000, 0.5236], dtype=float)
538
+ super().__init__(n_var=6, n_obj=1, n_eq_constr=4, xl=xl, xu=xu, vtype=float)
539
+
540
+ def _evaluate(self, x, out, *args, **kwargs):
541
+ f = anp.zeros(len(x))
542
+
543
+ x1_less_than_300 = x[:, 0] < 300
544
+ f = f + x1_less_than_300 * 30 * x[:, 0]
545
+ f = f + (~x1_less_than_300) * 31 * x[:, 0]
546
+
547
+ x2_less_than_100 = x[:, 1] < 100
548
+ x2_greater_equal_200 = x[:, 1] >= 200
549
+
550
+ f = f + x2_less_than_100 * 28 * x[:, 1]
551
+ f = f + x2_greater_equal_200 * 30 * x[:, 1]
552
+
553
+ x2_between_100_and_200 = anp.logical_and(~x2_less_than_100, ~x2_greater_equal_200)
554
+ f = f + x2_between_100_and_200 * 29 * x[:, 1]
555
+
556
+ h1 = -x[:, 0] + 300 - ((x[:, 2] * x[:, 3]) / 131.078) * anp.cos(1.48477 - x[:, 5]) + (
557
+ (0.90798 * x[:, 2] ** 2) / 131.078) * anp.cos(1.47588)
558
+ h2 = -x[:, 1] - ((x[:, 2] * x[:, 3]) / 131.078) * anp.cos(1.48477 + x[:, 5]) + (
559
+ (0.90798 * x[:, 3] ** 2) / 131.078) * anp.cos(1.47588)
560
+ h3 = -x[:, 4] - ((x[:, 2] * x[:, 3]) / 131.078) * anp.sin(1.48477 + x[:, 5]) + (
561
+ (0.90798 * x[:, 3] ** 2) / 131.078) * anp.sin(1.47588)
562
+ h4 = 200 - ((x[:, 2] * x[:, 3]) / 131.078) * anp.sin(1.48477 - x[:, 5]) + (
563
+ (0.90798 * x[:, 2] ** 2) / 131.078) * anp.sin(1.47588)
564
+
565
+ out["F"] = f
566
+ out["H"] = anp.column_stack([h1, h2, h3, h4])
567
+
568
+ def _calc_pareto_set(self):
569
+ return [201.784467214523659, 99.9999999999999005, 383.071034852773266, 420, -10.9076584514292652,
570
+ 0.0731482312084287128]
571
+
572
+
573
+ class G18(G):
574
+
575
+ def __init__(self):
576
+ xl = np.array([-10, -10, -10, -10, -10, -10, -10, -10, 0], dtype=float)
577
+ xu = np.array([+10, +10, +10, +10, +10, +10, +10, +10, 20], dtype=float)
578
+ super().__init__(n_var=9, n_obj=1, n_ieq_constr=13, xl=xl, xu=xu, vtype=float)
579
+
580
+ def _evaluate(self, x, out, *args, **kwargs):
581
+ f = -0.5 * (x[:, 0] * x[:, 3] - x[:, 1] * x[:, 2] + x[:, 2] * x[:, 8] - x[:, 4] * x[:, 8] + x[:, 4]
582
+ * x[:, 7] - x[:, 5] * x[:, 6])
583
+
584
+ g1 = x[:, 2] ** 2 + x[:, 3] ** 2 - 1
585
+ g2 = x[:, 8] ** 2 - 1
586
+ g3 = x[:, 4] ** 2 + x[:, 5] ** 2 - 1
587
+ g4 = x[:, 0] ** 2 + (x[:, 1] - x[:, 8]) ** 2 - 1
588
+ g5 = (x[:, 0] - x[:, 4]) ** 2 + (x[:, 1] - x[:, 5]) ** 2 - 1
589
+ g6 = (x[:, 0] - x[:, 6]) ** 2 + (x[:, 1] - x[:, 7]) ** 2 - 1
590
+ g7 = (x[:, 2] - x[:, 4]) ** 2 + (x[:, 3] - x[:, 5]) ** 2 - 1
591
+ g8 = (x[:, 2] - x[:, 6]) ** 2 + (x[:, 3] - x[:, 7]) ** 2 - 1
592
+ g9 = x[:, 6] ** 2 + (x[:, 7] - x[:, 8]) ** 2 - 1
593
+ g10 = x[:, 1] * x[:, 2] - x[:, 0] * x[:, 3]
594
+ g11 = -x[:, 2] * x[:, 8]
595
+ g12 = x[:, 4] * x[:, 8]
596
+ g13 = x[:, 5] * x[:, 6] - x[:, 4] * x[:, 7]
597
+
598
+ out["F"] = f
599
+ out["G"] = anp.column_stack([g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, g12, g13])
600
+
601
+ def _calc_pareto_set(self):
602
+ return [
603
+ -0.9890005492667746, 0.1479118418638228, -0.6242897641574451, -0.7811841737429015, -0.9876159387318453,
604
+ 0.1504778305249072, -0.6225959783340022, -0.782543417629948, 0.0
605
+ ]
606
+
607
+
608
+ class G19(G):
609
+
610
+ def __init__(self):
611
+ super().__init__(n_var=15, n_obj=1, n_ieq_constr=5, xl=np.full(15, 0.0), xu=np.full(15, 10.0), vtype=float)
612
+
613
+ def _evaluate(self, x, out, *args, **kwargs):
614
+ aMat19 = anp.array([-16, 2, 0, 1, 0,
615
+ +0, -2, 0, 0.4, 2,
616
+ -3.5, 0, 2, 0, 0,
617
+ +0, -2, 0, -4, -1,
618
+ +0, -9, -2, 1, -2.8,
619
+ +2, 0, -4, 0, 0,
620
+ -1, -1, -1, -1, -1,
621
+ -1, -2, -3, -2, -1,
622
+ +1, 2, 3, 4, 5,
623
+ +1, 1, 1, 1, 1]).reshape((10, 5))
624
+
625
+ bVec19 = anp.array([-40, -2, -0.25, -4, -4, -1, -40, -60, 5, 1])
626
+
627
+ cMat19 = anp.array([+30, -20, -10, 32, -10,
628
+ -20, 39, -6, -31, 32,
629
+ -10, -6, 10, -6, -10,
630
+ +32, -31, -6, 39, -20,
631
+ -10, 32, -10, -20, 30]).reshape((5, 5))
632
+
633
+ dVec19 = anp.array([4, 8, 10, 6, 2])
634
+ eVec19 = anp.array([-15, -27, -36, -18, -12])
635
+
636
+ f = - anp.sum(bVec19 * x[:, :10], axis=1) + 2 * anp.sum(dVec19 * x[:, 10:] * x[:, 10:] * x[:, 10:], axis=1)
637
+
638
+ for i in range(5):
639
+ f = f + x[:, 10 + i] * anp.sum(cMat19[i] * x[:, 10:], axis=1)
640
+
641
+ g = []
642
+ for j in range(5):
643
+ _g = -2 * anp.sum(cMat19[j] * x[:, 10:], axis=1) - 3 * dVec19[j] * x[:, 10 + j] * x[:, 10 + j] \
644
+ - eVec19[j] + anp.sum(aMat19[:, j] * x[:, :10], axis=1)
645
+ g.append(_g)
646
+
647
+ out["F"] = f
648
+ out["G"] = anp.column_stack(g)
649
+
650
+ def _calc_pareto_set(self):
651
+ return [
652
+ 0, 0, 3.94600628013917, 0, 3.28318162727873, 10, 0, 0, 0, 0, 0.370762125835098, 0.278454209512692,
653
+ 0.523838440499861, 0.388621589976956, 0.29815843730292
654
+ ]
655
+
656
+
657
+ class G20(G):
658
+
659
+ def __init__(self):
660
+ n_var = 24
661
+ xl = np.full(n_var, 0.0)
662
+ xu = np.full(n_var, 10.0)
663
+ super().__init__(n_var=n_var, n_obj=1, n_ieq_constr=6, n_eq_constr=14, xl=xl, xu=xu, vtype=float)
664
+
665
+ def _evaluate(self, x, out, *args, **kwargs):
666
+ a = anp.array([0.0693, 0.0577, 0.05, 0.2,
667
+ 0.26, 0.55, 0.06, 0.1, 0.12,
668
+ 0.18, 0.1, 0.09, 0.0693, 0.0577,
669
+ 0.05, 0.2, 0.26, 0.55, 0.06,
670
+ 0.1, 0.12, 0.18, 0.1, 0.09])
671
+
672
+ f = anp.sum(a * x, axis=1)
673
+
674
+ e = anp.array([0.1, 0.3, 0.4, 0.3, 0.6, 0.3])
675
+
676
+ b = anp.array([44.094, 58.12, 58.12, 137.4, 120.9, 170.9, 62.501, 84.94,
677
+ 133.425, 82.507, 46.07, 60.097, 44.094, 58.12, 58.12,
678
+ 137.4, 120.9, 170.9, 62.501, 84.94, 133.425, 82.507, 46.07, 60.097])
679
+
680
+ cVec = anp.array([123.7, 31.7, 45.7, 14.7, 84.7, 27.7, 49.7, 7.1, 2.1, 17.7, 0.85, 0.64])
681
+ d = anp.array([31.244, 36.12, 34.784, 92.7, 82.7, 91.6, 56.708, 82.7, 80.8, 64.517, 49.4, 49.1])
682
+ k = 0.7302 * 530 * (14.7 / 40)
683
+ sumX = anp.sum(x, axis=1)
684
+
685
+ g123 = [(x[:, i] + x[:, i + 12]) / (sumX + e[i]) for i in range(3)]
686
+ g456 = [(x[:, i + 3] + x[:, i + 15]) / (sumX + e[i]) for i in range(3, 6)]
687
+
688
+ h = []
689
+ for i in range(12):
690
+ h1 = x[:, i + 12] / (b[i + 12] * anp.sum((x / b)[:, 12:], axis=1))
691
+ h2 = cVec[i] * x[:, i] / (40 * b[i] * anp.sum((x / b)[:, :12], axis=1))
692
+ h.append(h1 - h2)
693
+
694
+ h13 = sumX - 1
695
+ h14 = anp.sum((x[:, :12] / d), axis=1) + k * anp.sum((x / b)[:, 12:], axis=1) - 1.671
696
+
697
+ out["F"] = f
698
+ out["G"] = anp.column_stack(g123 + g456)
699
+ out["H"] = anp.column_stack(h + [h13, h14])
700
+
701
+ def _calc_pareto_set(self):
702
+ return [
703
+ 9.53E-7,
704
+ 0,
705
+ 4.21E-3,
706
+ 1.039E-4,
707
+ 0,
708
+ 0,
709
+ 2.072E-1,
710
+ 5.979E-1,
711
+ 1.298E-1,
712
+ 3.35E-2,
713
+ 1.711E-2,
714
+ 8.827E-3,
715
+ 4.657E-10,
716
+ 0,
717
+ 0,
718
+ 0,
719
+ 0,
720
+ 0,
721
+ 2.868E-4,
722
+ 1.193E-3,
723
+ 8.332E-5,
724
+ 1.239E-4,
725
+ 2.07E-5,
726
+ 1.829E-5
727
+ ]
728
+
729
+
730
+ class G21(G):
731
+
732
+ def __init__(self):
733
+ xl = np.array([0, 0, 0, 100, 6.3, 5.9, 4.5], dtype=float)
734
+ xu = np.array([1000, 40, 40, 300, 6.7, 6.4, 6.25], dtype=float)
735
+ super().__init__(n_var=7, n_obj=1, n_ieq_constr=1, n_eq_constr=5, xl=xl, xu=xu, vtype=float)
736
+
737
+ def _evaluate(self, x, out, *args, **kwargs):
738
+ f = x[:, 0]
739
+ g = -x[:, 0] + 35 * (x[:, 1] ** (0.6)) + 35 * (x[:, 2] ** 0.6)
740
+ h1 = -300 * x[:, 2] + 7500 * x[:, 4] - 7500 * x[:, 5] - 25 * x[:, 3] * x[:, 4] + 25 * x[:, 3] * x[:, 5] + x[:,
741
+ 2] * x[
742
+ :,
743
+ 3]
744
+ h2 = 100 * x[:, 1] + 155.365 * x[:, 3] + 2500 * x[:, 6] - x[:, 1] * x[:, 3] - 25 * x[:, 3] * x[:, 6] - 15536.5
745
+ h3 = -x[:, 4] + anp.log(-x[:, 3] + 900)
746
+ h4 = -x[:, 5] + anp.log(x[:, 3] + 300)
747
+ h5 = -x[:, 6] + anp.log(-2 * x[:, 3] + 700)
748
+
749
+ out["F"] = f
750
+ out["G"] = g
751
+ out["H"] = anp.column_stack([h1, h2, h3, h4, h5])
752
+
753
+ def _calc_pareto_set(self):
754
+ return [
755
+ 193.724510070034967,
756
+ 5.56944131553368433 * (10 ** -27),
757
+ 17.3191887294084914,
758
+ 100.047897801386839,
759
+ 6.68445185362377892,
760
+ 5.99168428444264833,
761
+ 6.21451648886070451
762
+ ]
763
+
764
+
765
+ class G22(G):
766
+
767
+ def __init__(self):
768
+ xl = np.array([0, 0, 0, 0, 0, 0, 0, 100, 100, 100.01, 100, 100, 0, 0, 0, 0.01, 0.01, -4.7, -4.7, -4.7,
769
+ -4.7, -4.7], dtype=float)
770
+
771
+ xu = np.array([20000, 10 ** 6, 10 ** 6, 10 ** 6, 4 * (10 ** 7), 4 * (10 ** 7), 4 * (10 ** 7), 299.99, 399.99,
772
+ 300, 400, 600, 500, 500, 500, 300, 400, 6.25, 6.25, 6.25, 6.25, 6.25], dtype=float)
773
+ super().__init__(n_var=22, n_obj=1, n_ieq_constr=1, n_eq_constr=19, xl=xl, xu=xu, vtype=float)
774
+
775
+ def _evaluate(self, x, out, *args, **kwargs):
776
+ f = x[:, 0]
777
+
778
+ g = -x[:, 0] + x[:, 1] ** 0.6 + x[:, 2] ** 0.6 + x[:, 3] ** 0.6
779
+
780
+ h1 = x[:, 4] - 100000 * x[:, 7] + 10 ** 7
781
+ h2 = x[:, 5] + 100000 * x[:, 7] - 100000 * x[:, 8]
782
+ h3 = x[:, 6] + 100000 * x[:, 8] - 5 * 10 ** 7
783
+ h4 = x[:, 4] + 100000 * x[:, 9] - 3.3 * 10 ** 7
784
+ h5 = x[:, 5] + 100000 * x[:, 10] - 4.4 * 10 ** 7
785
+ h6 = x[:, 6] + 100000 * x[:, 11] - 6.6 * 10 ** 7
786
+ h7 = x[:, 4] - 120 * x[:, 1] * x[:, 12]
787
+ h8 = x[:, 5] - 80 * x[:, 2] * x[:, 13]
788
+ h9 = x[:, 6] - 40 * x[:, 3] * x[:, 14]
789
+ h10 = x[:, 7] - x[:, 10] + x[:, 15]
790
+ h11 = x[:, 8] - x[:, 11] + x[:, 16]
791
+ h12 = -x[:, 17] + anp.log(x[:, 9] - 100)
792
+ h13 = -x[:, 18] + anp.log(-x[:, 7] + 300)
793
+ h14 = -x[:, 19] + anp.log(x[:, 15])
794
+ h15 = -x[:, 20] + anp.log(-x[:, 8] + 400)
795
+ h16 = -x[:, 21] + anp.log(x[:, 16])
796
+ h17 = -x[:, 7] - x[:, 9] + x[:, 12] * x[:, 17] - x[:, 12] * x[:, 18] + 400
797
+ h18 = x[:, 7] - x[:, 8] - x[:, 10] + x[:, 13] * x[:, 19] - x[:, 13] * x[:, 20] + 400
798
+ h19 = x[:, 8] - x[:, 11] - 4.60517 * x[:, 14] + x[:, 14] * x[:, 21] + 100
799
+
800
+ out["F"] = f
801
+ out["G"] = g
802
+ out["H"] = anp.column_stack(
803
+ [h1, h2, h3, h4, h5, h6, h7, h8, h9, h10, h11, h12, h13, h14, h15, h16, h17, h18, h19])
804
+
805
+ def _calc_pareto_set(self):
806
+ return [
807
+ 236.430975504001054,
808
+ 135.82847151732463,
809
+ 204.818152544824585,
810
+ 6446.54654059436416,
811
+ 3007540.83940215595,
812
+ 4074188.65771341929,
813
+ 32918270.5028952882,
814
+ 130.075408394314167,
815
+ 170.817294970528621,
816
+ 299.924591605478554,
817
+ 399.258113423595205,
818
+ 330.817294971142758,
819
+ 184.51831230897065,
820
+ 248.64670239647424,
821
+ 127.658546694545862,
822
+ 269.182627528746707,
823
+ 160.000016724090955,
824
+ 5.29788288102680571,
825
+ 5.13529735903945728,
826
+ 5.59531526444068827,
827
+ 5.43444479314453499,
828
+ 5.07517453535834395
829
+ ]
830
+
831
+
832
+ class G23(G):
833
+
834
+ def __init__(self):
835
+ xl = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0.01], dtype=float)
836
+ xu = np.array([300, 300, 100, 200, 100, 300, 100, 200, 0.03], dtype=float)
837
+ super().__init__(n_var=9, n_obj=1, n_ieq_constr=2, n_eq_constr=4, xl=xl, xu=xu, vtype=float)
838
+
839
+ def _evaluate(self, x, out, *args, **kwargs):
840
+ f = -9 * x[:, 4] - 15 * x[:, 7] + 6 * x[:, 0] + 16 * x[:, 1] + 10 * (x[:, 5] + x[:, 6])
841
+
842
+ g1 = x[:, 8] * x[:, 2] + 0.02 * x[:, 5] - 0.025 * x[:, 4]
843
+ g2 = x[:, 8] * x[:, 3] + 0.02 * x[:, 6] - 0.015 * x[:, 7]
844
+
845
+ h1 = x[:, 0] + x[:, 1] - x[:, 2] - x[:, 3]
846
+ h2 = 0.03 * x[:, 0] + 0.01 * x[:, 1] - x[:, 8] * (x[:, 2] + x[:, 3])
847
+ h3 = x[:, 2] + x[:, 5] - x[:, 4]
848
+ h4 = x[:, 3] + x[:, 6] - x[:, 7]
849
+
850
+ out["F"] = f
851
+ out["G"] = anp.column_stack([g1, g2])
852
+ out["H"] = anp.column_stack([h1, h2, h3, h4])
853
+
854
+ def _calc_pareto_set(self):
855
+ return [0, 100, 0, 100, 0, 0, 100, 200, 0.01]
856
+
857
+
858
+ class G24(G):
859
+
860
+ def __init__(self):
861
+ xl = np.array([0, 0], dtype=float)
862
+ xu = np.array([3, 4], dtype=float)
863
+ super().__init__(n_var=2, n_obj=1, n_ieq_constr=2, xl=xl, xu=xu, vtype=float)
864
+
865
+ def _evaluate(self, x, out, *args, **kwargs):
866
+ f = -x[:, 0] - x[:, 1]
867
+ g1 = -2 * x[:, 0] ** 4 + 8 * x[:, 0] ** 3 - 8 * x[:, 0] ** 2 + x[:, 1] - 2
868
+ g2 = -4 * x[:, 0] ** 4 + 32 * x[:, 0] ** 3 - 88 * x[:, 0] ** 2 + 96 * x[:, 0] + x[:, 1] - 36
869
+
870
+ out["F"] = f
871
+ out["G"] = anp.column_stack([g1, g2])
872
+
873
+ def _calc_pareto_set(self):
874
+ return [2.329520197477607, 3.17849307411768]