pymoo 0.6.1.5.dev0__cp311-cp311-musllinux_1_2_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of pymoo might be problematic. Click here for more details.
- pymoo/__init__.py +3 -0
- pymoo/algorithms/__init__.py +0 -0
- pymoo/algorithms/base/__init__.py +0 -0
- pymoo/algorithms/base/bracket.py +38 -0
- pymoo/algorithms/base/genetic.py +109 -0
- pymoo/algorithms/base/line.py +62 -0
- pymoo/algorithms/base/local.py +39 -0
- pymoo/algorithms/base/meta.py +79 -0
- pymoo/algorithms/hyperparameters.py +89 -0
- pymoo/algorithms/moo/__init__.py +0 -0
- pymoo/algorithms/moo/age.py +310 -0
- pymoo/algorithms/moo/age2.py +194 -0
- pymoo/algorithms/moo/ctaea.py +298 -0
- pymoo/algorithms/moo/dnsga2.py +76 -0
- pymoo/algorithms/moo/kgb.py +446 -0
- pymoo/algorithms/moo/moead.py +183 -0
- pymoo/algorithms/moo/nsga2.py +113 -0
- pymoo/algorithms/moo/nsga3.py +358 -0
- pymoo/algorithms/moo/pinsga2.py +370 -0
- pymoo/algorithms/moo/rnsga2.py +188 -0
- pymoo/algorithms/moo/rnsga3.py +246 -0
- pymoo/algorithms/moo/rvea.py +214 -0
- pymoo/algorithms/moo/sms.py +195 -0
- pymoo/algorithms/moo/spea2.py +190 -0
- pymoo/algorithms/moo/unsga3.py +47 -0
- pymoo/algorithms/soo/__init__.py +0 -0
- pymoo/algorithms/soo/convex/__init__.py +0 -0
- pymoo/algorithms/soo/nonconvex/__init__.py +0 -0
- pymoo/algorithms/soo/nonconvex/brkga.py +161 -0
- pymoo/algorithms/soo/nonconvex/cmaes.py +554 -0
- pymoo/algorithms/soo/nonconvex/de.py +279 -0
- pymoo/algorithms/soo/nonconvex/direct.py +149 -0
- pymoo/algorithms/soo/nonconvex/es.py +203 -0
- pymoo/algorithms/soo/nonconvex/g3pcx.py +94 -0
- pymoo/algorithms/soo/nonconvex/ga.py +93 -0
- pymoo/algorithms/soo/nonconvex/ga_niching.py +223 -0
- pymoo/algorithms/soo/nonconvex/isres.py +74 -0
- pymoo/algorithms/soo/nonconvex/nelder.py +251 -0
- pymoo/algorithms/soo/nonconvex/optuna.py +80 -0
- pymoo/algorithms/soo/nonconvex/pattern.py +183 -0
- pymoo/algorithms/soo/nonconvex/pso.py +399 -0
- pymoo/algorithms/soo/nonconvex/pso_ep.py +297 -0
- pymoo/algorithms/soo/nonconvex/random_search.py +25 -0
- pymoo/algorithms/soo/nonconvex/sres.py +56 -0
- pymoo/algorithms/soo/univariate/__init__.py +0 -0
- pymoo/algorithms/soo/univariate/backtracking.py +59 -0
- pymoo/algorithms/soo/univariate/exp.py +46 -0
- pymoo/algorithms/soo/univariate/golden.py +65 -0
- pymoo/algorithms/soo/univariate/quadr_interp.py +81 -0
- pymoo/algorithms/soo/univariate/wolfe.py +163 -0
- pymoo/config.py +33 -0
- pymoo/constraints/__init__.py +3 -0
- pymoo/constraints/adaptive.py +62 -0
- pymoo/constraints/as_obj.py +56 -0
- pymoo/constraints/as_penalty.py +41 -0
- pymoo/constraints/eps.py +26 -0
- pymoo/constraints/from_bounds.py +36 -0
- pymoo/core/__init__.py +0 -0
- pymoo/core/algorithm.py +394 -0
- pymoo/core/callback.py +38 -0
- pymoo/core/crossover.py +77 -0
- pymoo/core/decision_making.py +102 -0
- pymoo/core/decomposition.py +76 -0
- pymoo/core/duplicate.py +163 -0
- pymoo/core/evaluator.py +116 -0
- pymoo/core/indicator.py +34 -0
- pymoo/core/individual.py +784 -0
- pymoo/core/infill.py +64 -0
- pymoo/core/initialization.py +42 -0
- pymoo/core/mating.py +39 -0
- pymoo/core/meta.py +21 -0
- pymoo/core/mixed.py +165 -0
- pymoo/core/mutation.py +44 -0
- pymoo/core/operator.py +40 -0
- pymoo/core/parameters.py +134 -0
- pymoo/core/plot.py +210 -0
- pymoo/core/population.py +180 -0
- pymoo/core/problem.py +460 -0
- pymoo/core/recorder.py +99 -0
- pymoo/core/repair.py +23 -0
- pymoo/core/replacement.py +96 -0
- pymoo/core/result.py +52 -0
- pymoo/core/sampling.py +43 -0
- pymoo/core/selection.py +61 -0
- pymoo/core/solution.py +10 -0
- pymoo/core/survival.py +103 -0
- pymoo/core/termination.py +70 -0
- pymoo/core/variable.py +399 -0
- pymoo/cython/__init__.py +0 -0
- pymoo/cython/calc_perpendicular_distance.cpython-311-x86_64-linux-musl.so +0 -0
- pymoo/cython/calc_perpendicular_distance.pyx +67 -0
- pymoo/cython/decomposition.cpython-311-x86_64-linux-musl.so +0 -0
- pymoo/cython/decomposition.pyx +165 -0
- pymoo/cython/hv.cpython-311-x86_64-linux-musl.so +0 -0
- pymoo/cython/hv.pyx +18 -0
- pymoo/cython/info.cpython-311-x86_64-linux-musl.so +0 -0
- pymoo/cython/info.pyx +5 -0
- pymoo/cython/mnn.cpython-311-x86_64-linux-musl.so +0 -0
- pymoo/cython/mnn.pyx +273 -0
- pymoo/cython/non_dominated_sorting.cpython-311-x86_64-linux-musl.so +0 -0
- pymoo/cython/non_dominated_sorting.pyx +645 -0
- pymoo/cython/pruning_cd.cpython-311-x86_64-linux-musl.so +0 -0
- pymoo/cython/pruning_cd.pyx +197 -0
- pymoo/cython/stochastic_ranking.cpython-311-x86_64-linux-musl.so +0 -0
- pymoo/cython/stochastic_ranking.pyx +49 -0
- pymoo/cython/utils.pxd +129 -0
- pymoo/cython/vendor/__init__.py +0 -0
- pymoo/cython/vendor/hypervolume.cpp +1621 -0
- pymoo/cython/vendor/hypervolume.h +63 -0
- pymoo/decomposition/__init__.py +0 -0
- pymoo/decomposition/aasf.py +24 -0
- pymoo/decomposition/asf.py +10 -0
- pymoo/decomposition/pbi.py +13 -0
- pymoo/decomposition/perp_dist.py +13 -0
- pymoo/decomposition/tchebicheff.py +11 -0
- pymoo/decomposition/util.py +13 -0
- pymoo/decomposition/weighted_sum.py +8 -0
- pymoo/docs.py +187 -0
- pymoo/experimental/__init__.py +0 -0
- pymoo/experimental/algorithms/__init__.py +0 -0
- pymoo/experimental/algorithms/gde3.py +57 -0
- pymoo/gradient/__init__.py +21 -0
- pymoo/gradient/automatic.py +57 -0
- pymoo/gradient/grad_autograd.py +105 -0
- pymoo/gradient/grad_complex.py +35 -0
- pymoo/gradient/grad_jax.py +51 -0
- pymoo/gradient/toolbox/__init__.py +6 -0
- pymoo/indicators/__init__.py +0 -0
- pymoo/indicators/distance_indicator.py +55 -0
- pymoo/indicators/gd.py +7 -0
- pymoo/indicators/gd_plus.py +7 -0
- pymoo/indicators/hv/__init__.py +63 -0
- pymoo/indicators/hv/exact.py +71 -0
- pymoo/indicators/hv/exact_2d.py +102 -0
- pymoo/indicators/hv/monte_carlo.py +74 -0
- pymoo/indicators/igd.py +7 -0
- pymoo/indicators/igd_plus.py +7 -0
- pymoo/indicators/kktpm.py +151 -0
- pymoo/indicators/migd.py +55 -0
- pymoo/indicators/rmetric.py +203 -0
- pymoo/indicators/spacing.py +52 -0
- pymoo/mcdm/__init__.py +0 -0
- pymoo/mcdm/compromise_programming.py +19 -0
- pymoo/mcdm/high_tradeoff.py +40 -0
- pymoo/mcdm/pseudo_weights.py +32 -0
- pymoo/operators/__init__.py +0 -0
- pymoo/operators/control.py +187 -0
- pymoo/operators/crossover/__init__.py +0 -0
- pymoo/operators/crossover/binx.py +45 -0
- pymoo/operators/crossover/dex.py +122 -0
- pymoo/operators/crossover/erx.py +162 -0
- pymoo/operators/crossover/expx.py +51 -0
- pymoo/operators/crossover/hux.py +37 -0
- pymoo/operators/crossover/nox.py +13 -0
- pymoo/operators/crossover/ox.py +84 -0
- pymoo/operators/crossover/pcx.py +82 -0
- pymoo/operators/crossover/pntx.py +49 -0
- pymoo/operators/crossover/sbx.py +125 -0
- pymoo/operators/crossover/spx.py +5 -0
- pymoo/operators/crossover/ux.py +20 -0
- pymoo/operators/mutation/__init__.py +0 -0
- pymoo/operators/mutation/bitflip.py +17 -0
- pymoo/operators/mutation/gauss.py +58 -0
- pymoo/operators/mutation/inversion.py +42 -0
- pymoo/operators/mutation/nom.py +7 -0
- pymoo/operators/mutation/pm.py +94 -0
- pymoo/operators/mutation/rm.py +23 -0
- pymoo/operators/repair/__init__.py +0 -0
- pymoo/operators/repair/bounce_back.py +32 -0
- pymoo/operators/repair/bounds_repair.py +95 -0
- pymoo/operators/repair/inverse_penalty.py +89 -0
- pymoo/operators/repair/rounding.py +18 -0
- pymoo/operators/repair/to_bound.py +31 -0
- pymoo/operators/repair/vtype.py +11 -0
- pymoo/operators/sampling/__init__.py +0 -0
- pymoo/operators/sampling/lhs.py +73 -0
- pymoo/operators/sampling/rnd.py +50 -0
- pymoo/operators/selection/__init__.py +0 -0
- pymoo/operators/selection/rnd.py +72 -0
- pymoo/operators/selection/tournament.py +76 -0
- pymoo/operators/survival/__init__.py +0 -0
- pymoo/operators/survival/rank_and_crowding/__init__.py +1 -0
- pymoo/operators/survival/rank_and_crowding/classes.py +209 -0
- pymoo/operators/survival/rank_and_crowding/metrics.py +208 -0
- pymoo/optimize.py +72 -0
- pymoo/problems/__init__.py +157 -0
- pymoo/problems/dyn.py +47 -0
- pymoo/problems/dynamic/__init__.py +0 -0
- pymoo/problems/dynamic/cec2015.py +108 -0
- pymoo/problems/dynamic/df.py +452 -0
- pymoo/problems/dynamic/misc.py +167 -0
- pymoo/problems/functional.py +48 -0
- pymoo/problems/many/__init__.py +5 -0
- pymoo/problems/many/cdtlz.py +159 -0
- pymoo/problems/many/dcdtlz.py +88 -0
- pymoo/problems/many/dtlz.py +264 -0
- pymoo/problems/many/wfg.py +550 -0
- pymoo/problems/multi/__init__.py +14 -0
- pymoo/problems/multi/bnh.py +34 -0
- pymoo/problems/multi/carside.py +48 -0
- pymoo/problems/multi/clutch.py +104 -0
- pymoo/problems/multi/csi.py +55 -0
- pymoo/problems/multi/ctp.py +198 -0
- pymoo/problems/multi/dascmop.py +213 -0
- pymoo/problems/multi/kursawe.py +25 -0
- pymoo/problems/multi/modact.py +68 -0
- pymoo/problems/multi/mw.py +400 -0
- pymoo/problems/multi/omnitest.py +48 -0
- pymoo/problems/multi/osy.py +32 -0
- pymoo/problems/multi/srn.py +28 -0
- pymoo/problems/multi/sympart.py +94 -0
- pymoo/problems/multi/tnk.py +24 -0
- pymoo/problems/multi/truss2d.py +83 -0
- pymoo/problems/multi/welded_beam.py +41 -0
- pymoo/problems/multi/wrm.py +36 -0
- pymoo/problems/multi/zdt.py +151 -0
- pymoo/problems/multi_to_single.py +22 -0
- pymoo/problems/single/__init__.py +12 -0
- pymoo/problems/single/ackley.py +24 -0
- pymoo/problems/single/cantilevered_beam.py +34 -0
- pymoo/problems/single/flowshop_scheduling.py +112 -0
- pymoo/problems/single/g.py +874 -0
- pymoo/problems/single/griewank.py +18 -0
- pymoo/problems/single/himmelblau.py +15 -0
- pymoo/problems/single/knapsack.py +48 -0
- pymoo/problems/single/mopta08.py +26 -0
- pymoo/problems/single/multimodal.py +20 -0
- pymoo/problems/single/pressure_vessel.py +30 -0
- pymoo/problems/single/rastrigin.py +20 -0
- pymoo/problems/single/rosenbrock.py +22 -0
- pymoo/problems/single/schwefel.py +18 -0
- pymoo/problems/single/simple.py +13 -0
- pymoo/problems/single/sphere.py +19 -0
- pymoo/problems/single/traveling_salesman.py +79 -0
- pymoo/problems/single/zakharov.py +19 -0
- pymoo/problems/static.py +14 -0
- pymoo/problems/util.py +42 -0
- pymoo/problems/zero_to_one.py +27 -0
- pymoo/termination/__init__.py +23 -0
- pymoo/termination/collection.py +12 -0
- pymoo/termination/cv.py +48 -0
- pymoo/termination/default.py +45 -0
- pymoo/termination/delta.py +64 -0
- pymoo/termination/fmin.py +16 -0
- pymoo/termination/ftol.py +144 -0
- pymoo/termination/indicator.py +49 -0
- pymoo/termination/max_eval.py +14 -0
- pymoo/termination/max_gen.py +15 -0
- pymoo/termination/max_time.py +20 -0
- pymoo/termination/robust.py +34 -0
- pymoo/termination/xtol.py +33 -0
- pymoo/util/__init__.py +0 -0
- pymoo/util/archive.py +150 -0
- pymoo/util/cache.py +29 -0
- pymoo/util/clearing.py +82 -0
- pymoo/util/display/__init__.py +0 -0
- pymoo/util/display/column.py +52 -0
- pymoo/util/display/display.py +34 -0
- pymoo/util/display/multi.py +96 -0
- pymoo/util/display/output.py +53 -0
- pymoo/util/display/progress.py +54 -0
- pymoo/util/display/single.py +67 -0
- pymoo/util/dominator.py +67 -0
- pymoo/util/function_loader.py +129 -0
- pymoo/util/hv.py +23 -0
- pymoo/util/matlab_engine.py +39 -0
- pymoo/util/misc.py +460 -0
- pymoo/util/mnn.py +70 -0
- pymoo/util/nds/__init__.py +0 -0
- pymoo/util/nds/dominance_degree_non_dominated_sort.py +159 -0
- pymoo/util/nds/efficient_non_dominated_sort.py +152 -0
- pymoo/util/nds/fast_non_dominated_sort.py +70 -0
- pymoo/util/nds/naive_non_dominated_sort.py +36 -0
- pymoo/util/nds/non_dominated_sorting.py +67 -0
- pymoo/util/nds/tree_based_non_dominated_sort.py +133 -0
- pymoo/util/normalization.py +312 -0
- pymoo/util/optimum.py +42 -0
- pymoo/util/plotting.py +177 -0
- pymoo/util/pruning_cd.py +89 -0
- pymoo/util/randomized_argsort.py +60 -0
- pymoo/util/ref_dirs/__init__.py +24 -0
- pymoo/util/ref_dirs/construction.py +88 -0
- pymoo/util/ref_dirs/das_dennis.py +52 -0
- pymoo/util/ref_dirs/energy.py +319 -0
- pymoo/util/ref_dirs/energy_layer.py +119 -0
- pymoo/util/ref_dirs/genetic_algorithm.py +63 -0
- pymoo/util/ref_dirs/incremental.py +68 -0
- pymoo/util/ref_dirs/misc.py +128 -0
- pymoo/util/ref_dirs/optimizer.py +59 -0
- pymoo/util/ref_dirs/performance.py +162 -0
- pymoo/util/ref_dirs/reduction.py +85 -0
- pymoo/util/ref_dirs/sample_and_map.py +24 -0
- pymoo/util/reference_direction.py +260 -0
- pymoo/util/remote.py +55 -0
- pymoo/util/roulette.py +27 -0
- pymoo/util/running_metric.py +128 -0
- pymoo/util/sliding_window.py +25 -0
- pymoo/util/stochastic_ranking.py +32 -0
- pymoo/util/value_functions.py +719 -0
- pymoo/util/vectors.py +40 -0
- pymoo/util/vf_dominator.py +99 -0
- pymoo/vendor/__init__.py +0 -0
- pymoo/vendor/cec2018.py +398 -0
- pymoo/vendor/gta.py +617 -0
- pymoo/vendor/hv.py +267 -0
- pymoo/vendor/vendor_cmaes.py +412 -0
- pymoo/vendor/vendor_coco.py +81 -0
- pymoo/vendor/vendor_scipy.py +232 -0
- pymoo/version.py +1 -0
- pymoo/visualization/__init__.py +8 -0
- pymoo/visualization/fitness_landscape.py +127 -0
- pymoo/visualization/heatmap.py +123 -0
- pymoo/visualization/pcp.py +120 -0
- pymoo/visualization/petal.py +91 -0
- pymoo/visualization/radar.py +108 -0
- pymoo/visualization/radviz.py +68 -0
- pymoo/visualization/scatter.py +150 -0
- pymoo/visualization/star_coordinate.py +75 -0
- pymoo/visualization/util.py +123 -0
- pymoo/visualization/video/__init__.py +0 -0
- pymoo/visualization/video/callback_video.py +82 -0
- pymoo/visualization/video/one_var_one_obj.py +57 -0
- pymoo/visualization/video/two_var_one_obj.py +62 -0
- pymoo-0.6.1.5.dev0.dist-info/METADATA +187 -0
- pymoo-0.6.1.5.dev0.dist-info/RECORD +330 -0
- pymoo-0.6.1.5.dev0.dist-info/WHEEL +5 -0
- pymoo-0.6.1.5.dev0.dist-info/licenses/LICENSE +191 -0
- pymoo-0.6.1.5.dev0.dist-info/top_level.txt +1 -0
- pymoo.libs/libgcc_s-2298274a.so.1 +0 -0
- pymoo.libs/libstdc++-08d5c7eb.so.6.0.33 +0 -0
pymoo/core/variable.py
ADDED
|
@@ -0,0 +1,399 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Module containing infrastructure for representing decision variable classes.
|
|
3
|
+
"""
|
|
4
|
+
|
|
5
|
+
# public API for when using ``from pymoo.core.variable import *``
|
|
6
|
+
__all__ = [
|
|
7
|
+
"Variable",
|
|
8
|
+
"BoundedVariable",
|
|
9
|
+
"Real",
|
|
10
|
+
"Integer",
|
|
11
|
+
"Binary",
|
|
12
|
+
"Choice",
|
|
13
|
+
"get",
|
|
14
|
+
]
|
|
15
|
+
|
|
16
|
+
from typing import Any, Optional, Tuple
|
|
17
|
+
from typing import Union
|
|
18
|
+
import numpy as np
|
|
19
|
+
from numpy.typing import ArrayLike
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
class Variable(object):
|
|
23
|
+
"""
|
|
24
|
+
Semi-abstract base class for the representation of a decision variable.
|
|
25
|
+
"""
|
|
26
|
+
|
|
27
|
+
def __init__(
|
|
28
|
+
self,
|
|
29
|
+
value: Optional[object] = None,
|
|
30
|
+
active: bool = True,
|
|
31
|
+
flag: str = "default",
|
|
32
|
+
) -> None:
|
|
33
|
+
"""
|
|
34
|
+
Constructor for the ``Variable`` class.
|
|
35
|
+
|
|
36
|
+
Parameters
|
|
37
|
+
----------
|
|
38
|
+
value : object, None
|
|
39
|
+
Value the decision variable is to take.
|
|
40
|
+
active : bool
|
|
41
|
+
Whether the variable is active (``True``) or inactive (``False``).
|
|
42
|
+
flag : str
|
|
43
|
+
Flag to bind to the decision variable.
|
|
44
|
+
"""
|
|
45
|
+
super().__init__()
|
|
46
|
+
self.value = value
|
|
47
|
+
self.flag = flag
|
|
48
|
+
self.active = active
|
|
49
|
+
|
|
50
|
+
def sample(
|
|
51
|
+
self,
|
|
52
|
+
n: Optional[int] = None,
|
|
53
|
+
) -> Union[object,np.ndarray]:
|
|
54
|
+
"""
|
|
55
|
+
Randomly sample ``n`` instances of a decision variable.
|
|
56
|
+
|
|
57
|
+
Parameters
|
|
58
|
+
----------
|
|
59
|
+
n : int, None
|
|
60
|
+
Number of decision variable samples which to draw.
|
|
61
|
+
If ``int``, sample ``n`` decision variables.
|
|
62
|
+
If ``None``, sample a single decision variables.
|
|
63
|
+
|
|
64
|
+
Returns
|
|
65
|
+
-------
|
|
66
|
+
out : object, np.ndarray
|
|
67
|
+
If ``n`` is ``int``, return a ``np.ndarray`` of shape ``(n,)``
|
|
68
|
+
containing sampled decision variables.
|
|
69
|
+
If ``n`` is ``None``, return an ``object`` of a sampled decision
|
|
70
|
+
variable.
|
|
71
|
+
"""
|
|
72
|
+
if n is None:
|
|
73
|
+
return self._sample(1)[0]
|
|
74
|
+
else:
|
|
75
|
+
return self._sample(n)
|
|
76
|
+
|
|
77
|
+
def _sample(
|
|
78
|
+
self,
|
|
79
|
+
n: int,
|
|
80
|
+
) -> np.ndarray:
|
|
81
|
+
"""
|
|
82
|
+
Randomly sample ``n`` instances of a decision variable.
|
|
83
|
+
This is an abstract private method governing the behavior of the
|
|
84
|
+
``sample`` method.
|
|
85
|
+
|
|
86
|
+
Parameters
|
|
87
|
+
----------
|
|
88
|
+
n : int
|
|
89
|
+
Number of decision variable samples which to draw.
|
|
90
|
+
|
|
91
|
+
Returns
|
|
92
|
+
-------
|
|
93
|
+
out : np.ndarray
|
|
94
|
+
An array of shape ``(n,)`` containing sampled decision variables.
|
|
95
|
+
"""
|
|
96
|
+
pass
|
|
97
|
+
|
|
98
|
+
def set(
|
|
99
|
+
self,
|
|
100
|
+
value: object,
|
|
101
|
+
) -> None:
|
|
102
|
+
"""
|
|
103
|
+
Set the value of a decision variable.
|
|
104
|
+
|
|
105
|
+
Parameters
|
|
106
|
+
----------
|
|
107
|
+
value : object
|
|
108
|
+
Value to assign to the decision variable.
|
|
109
|
+
"""
|
|
110
|
+
self.value = value
|
|
111
|
+
|
|
112
|
+
def get(
|
|
113
|
+
self,
|
|
114
|
+
**kwargs: Any
|
|
115
|
+
) -> object:
|
|
116
|
+
"""
|
|
117
|
+
Get the value of a decision variable.
|
|
118
|
+
|
|
119
|
+
Parameters
|
|
120
|
+
----------
|
|
121
|
+
kwargs : Any
|
|
122
|
+
Additional keyword arguments.
|
|
123
|
+
|
|
124
|
+
Returns
|
|
125
|
+
-------
|
|
126
|
+
out : object
|
|
127
|
+
The value of the decision variable.
|
|
128
|
+
"""
|
|
129
|
+
return self.value
|
|
130
|
+
|
|
131
|
+
|
|
132
|
+
class BoundedVariable(Variable):
|
|
133
|
+
"""
|
|
134
|
+
Semi-abstract class for the representation of a bounded decision variable.
|
|
135
|
+
"""
|
|
136
|
+
|
|
137
|
+
def __init__(
|
|
138
|
+
self,
|
|
139
|
+
value: Optional[object] = None,
|
|
140
|
+
bounds: Tuple[Optional[object],Optional[object]] = (None, None),
|
|
141
|
+
strict: Optional[Tuple[Optional[object],Optional[object]]] = None,
|
|
142
|
+
**kwargs: Any,
|
|
143
|
+
) -> None:
|
|
144
|
+
"""
|
|
145
|
+
Constructor for the ``BoundedVariable`` class.
|
|
146
|
+
|
|
147
|
+
Parameters
|
|
148
|
+
----------
|
|
149
|
+
value : object
|
|
150
|
+
Value the decision variable is to take.
|
|
151
|
+
bounds : tuple
|
|
152
|
+
A tuple of length 2 containing upper and lower limits for the
|
|
153
|
+
decision variable.
|
|
154
|
+
strict : tuple, None
|
|
155
|
+
Strict boundaries for the decision variable.
|
|
156
|
+
If ``None``, the value of ``bounds`` is copied to ``strict``.
|
|
157
|
+
kwargs : Any
|
|
158
|
+
Additional keyword arguments for ``active`` and ``flag``.
|
|
159
|
+
"""
|
|
160
|
+
# call the Variable constructor
|
|
161
|
+
super().__init__(value=value, **kwargs)
|
|
162
|
+
self.bounds = bounds
|
|
163
|
+
|
|
164
|
+
# if no strict boundaries were provided, consider ``bounds`` as
|
|
165
|
+
# strict boundaries
|
|
166
|
+
if strict is None:
|
|
167
|
+
strict = bounds
|
|
168
|
+
self.strict = strict
|
|
169
|
+
|
|
170
|
+
@property
|
|
171
|
+
def lb(self) -> object:
|
|
172
|
+
"""
|
|
173
|
+
Lower bound of the decision variable.
|
|
174
|
+
|
|
175
|
+
Returns
|
|
176
|
+
-------
|
|
177
|
+
out : object
|
|
178
|
+
The decision variable lower bound.
|
|
179
|
+
"""
|
|
180
|
+
return self.bounds[0]
|
|
181
|
+
|
|
182
|
+
@property
|
|
183
|
+
def ub(self) -> object:
|
|
184
|
+
"""
|
|
185
|
+
Upper bound of the decision variable.
|
|
186
|
+
|
|
187
|
+
Returns
|
|
188
|
+
-------
|
|
189
|
+
out : object
|
|
190
|
+
The decision variable upper bound.
|
|
191
|
+
"""
|
|
192
|
+
return self.bounds[1]
|
|
193
|
+
|
|
194
|
+
|
|
195
|
+
class Real(BoundedVariable):
|
|
196
|
+
"""
|
|
197
|
+
Class for the representation of bounded, real decision variables.
|
|
198
|
+
"""
|
|
199
|
+
# variable type represented by this object class
|
|
200
|
+
vtype = float
|
|
201
|
+
|
|
202
|
+
def _sample(
|
|
203
|
+
self,
|
|
204
|
+
n: int,
|
|
205
|
+
) -> np.ndarray:
|
|
206
|
+
"""
|
|
207
|
+
Randomly sample ``n`` instances of a real, bounded decision variable.
|
|
208
|
+
Decision variables are sampled from a uniform distribution.
|
|
209
|
+
|
|
210
|
+
This is a private method governing the behavior of the ``sample``
|
|
211
|
+
method.
|
|
212
|
+
|
|
213
|
+
Parameters
|
|
214
|
+
----------
|
|
215
|
+
n : int
|
|
216
|
+
Number of decision variable samples which to draw.
|
|
217
|
+
|
|
218
|
+
Returns
|
|
219
|
+
-------
|
|
220
|
+
out : np.ndarray
|
|
221
|
+
An array of shape ``(n,)`` containing sampled real, bounded
|
|
222
|
+
decision variables.
|
|
223
|
+
"""
|
|
224
|
+
low, high = self.bounds
|
|
225
|
+
return np.random.uniform(low=low, high=high, size=n)
|
|
226
|
+
|
|
227
|
+
|
|
228
|
+
class Integer(BoundedVariable):
|
|
229
|
+
"""
|
|
230
|
+
Class for the representation of bounded, integer decision variables.
|
|
231
|
+
"""
|
|
232
|
+
# variable type represented by this object class
|
|
233
|
+
vtype = int
|
|
234
|
+
|
|
235
|
+
def _sample(
|
|
236
|
+
self,
|
|
237
|
+
n: int,
|
|
238
|
+
) -> np.ndarray:
|
|
239
|
+
"""
|
|
240
|
+
Randomly sample ``n`` instances of a bounded, integer decision variable.
|
|
241
|
+
Decision variables are sampled from a uniform distribution.
|
|
242
|
+
|
|
243
|
+
This is a private method governing the behavior of the ``sample``
|
|
244
|
+
method.
|
|
245
|
+
|
|
246
|
+
Parameters
|
|
247
|
+
----------
|
|
248
|
+
n : int
|
|
249
|
+
Number of decision variable samples which to draw.
|
|
250
|
+
|
|
251
|
+
Returns
|
|
252
|
+
-------
|
|
253
|
+
out : np.ndarray
|
|
254
|
+
An array of shape ``(n,)`` containing sampled bounded, integer
|
|
255
|
+
decision variables.
|
|
256
|
+
"""
|
|
257
|
+
low, high = self.bounds
|
|
258
|
+
return np.random.randint(low, high=high + 1, size=n)
|
|
259
|
+
|
|
260
|
+
|
|
261
|
+
class Binary(BoundedVariable):
|
|
262
|
+
"""
|
|
263
|
+
Class for the representation of a binary, bounded decision variable.
|
|
264
|
+
"""
|
|
265
|
+
# variable type represented by this object class
|
|
266
|
+
vtype = bool
|
|
267
|
+
|
|
268
|
+
def _sample(
|
|
269
|
+
self,
|
|
270
|
+
n: int,
|
|
271
|
+
) -> np.ndarray:
|
|
272
|
+
"""
|
|
273
|
+
Randomly sample ``n`` instances of a bounded, binary decision variable.
|
|
274
|
+
Decision variables are sampled from a uniform distribution.
|
|
275
|
+
|
|
276
|
+
This is a private method governing the behavior of the ``sample``
|
|
277
|
+
method.
|
|
278
|
+
|
|
279
|
+
Parameters
|
|
280
|
+
----------
|
|
281
|
+
n : int
|
|
282
|
+
Number of decision variable samples which to draw.
|
|
283
|
+
|
|
284
|
+
Returns
|
|
285
|
+
-------
|
|
286
|
+
out : np.ndarray
|
|
287
|
+
An array of shape ``(n,)`` containing sampled bounded, binary
|
|
288
|
+
decision variables.
|
|
289
|
+
"""
|
|
290
|
+
return np.random.random(size=n) < 0.5
|
|
291
|
+
|
|
292
|
+
|
|
293
|
+
class Choice(Variable):
|
|
294
|
+
"""
|
|
295
|
+
Class for the representation of a discrete, subset decision variable.
|
|
296
|
+
"""
|
|
297
|
+
# variable type represented by this object class
|
|
298
|
+
vtype = object
|
|
299
|
+
|
|
300
|
+
def __init__(
|
|
301
|
+
self,
|
|
302
|
+
value: Optional[object] = None,
|
|
303
|
+
options: Optional[ArrayLike] = None,
|
|
304
|
+
all: Optional[ArrayLike] = None,
|
|
305
|
+
**kwargs: Any,
|
|
306
|
+
) -> None:
|
|
307
|
+
"""
|
|
308
|
+
Constructor for the ``Choice`` class.
|
|
309
|
+
|
|
310
|
+
Parameters
|
|
311
|
+
----------
|
|
312
|
+
value : object
|
|
313
|
+
Value the decision variable is to take.
|
|
314
|
+
options : ArrayLike, None
|
|
315
|
+
A list of decision variable options from which to choose.
|
|
316
|
+
all : ArrayLike, None
|
|
317
|
+
A strict list of decision variable options from which to choose.
|
|
318
|
+
If ``None``, the value of ``options`` is copied to ``all``.
|
|
319
|
+
kwargs : Any
|
|
320
|
+
Additional keyword arguments for ``active`` and ``flag``.
|
|
321
|
+
"""
|
|
322
|
+
# all super constructor
|
|
323
|
+
super().__init__(value=value, **kwargs)
|
|
324
|
+
self.options = options
|
|
325
|
+
|
|
326
|
+
# if strict list not provided, set to ``options``
|
|
327
|
+
if all is None:
|
|
328
|
+
all = options
|
|
329
|
+
self.all = all
|
|
330
|
+
|
|
331
|
+
def _sample(
|
|
332
|
+
self,
|
|
333
|
+
n: int,
|
|
334
|
+
) -> np.ndarray:
|
|
335
|
+
"""
|
|
336
|
+
Randomly sample ``n`` instances of a discrete, subset decision variable.
|
|
337
|
+
Decision variables are sampled with replacement from a uniform
|
|
338
|
+
distribution.
|
|
339
|
+
|
|
340
|
+
This is a private method governing the behavior of the ``sample``
|
|
341
|
+
method.
|
|
342
|
+
|
|
343
|
+
Parameters
|
|
344
|
+
----------
|
|
345
|
+
n : int
|
|
346
|
+
Number of decision variable samples which to draw.
|
|
347
|
+
|
|
348
|
+
Returns
|
|
349
|
+
-------
|
|
350
|
+
out : np.ndarray
|
|
351
|
+
An array of shape ``(n,)`` containing sampled bounded, integer
|
|
352
|
+
decision variables.
|
|
353
|
+
"""
|
|
354
|
+
return np.random.choice(self.options, size=n)
|
|
355
|
+
|
|
356
|
+
|
|
357
|
+
def get(
|
|
358
|
+
*args: Tuple[Union[Variable,object],...],
|
|
359
|
+
size: Optional[Union[tuple,int]] = None,
|
|
360
|
+
**kwargs: Any
|
|
361
|
+
) -> Union[tuple,object,None]:
|
|
362
|
+
"""
|
|
363
|
+
Get decision variable values from a tuple of ``Variable`` objects.
|
|
364
|
+
|
|
365
|
+
Parameters
|
|
366
|
+
----------
|
|
367
|
+
args : tuple
|
|
368
|
+
A tuple of ``Variable`` or ``object``s.
|
|
369
|
+
size : tuple, int, None
|
|
370
|
+
Size to reshape decision variables.
|
|
371
|
+
kwargs : Any
|
|
372
|
+
Additional keyword arguments to pass to the ``get`` method of the
|
|
373
|
+
``Variable`` class when getting decision variable values.
|
|
374
|
+
|
|
375
|
+
Returns
|
|
376
|
+
-------
|
|
377
|
+
out : tuple, object, None
|
|
378
|
+
Decision variable value(s).
|
|
379
|
+
"""
|
|
380
|
+
if len(args) == 0:
|
|
381
|
+
return
|
|
382
|
+
|
|
383
|
+
ret = []
|
|
384
|
+
for arg in args:
|
|
385
|
+
v = arg.get(**kwargs) if isinstance(arg, Variable) else arg
|
|
386
|
+
|
|
387
|
+
if size is not None:
|
|
388
|
+
|
|
389
|
+
if isinstance(v, np.ndarray):
|
|
390
|
+
v = np.reshape(v, size)
|
|
391
|
+
else:
|
|
392
|
+
v = np.full(size, v)
|
|
393
|
+
|
|
394
|
+
ret.append(v)
|
|
395
|
+
|
|
396
|
+
if len(ret) == 1:
|
|
397
|
+
return ret[0]
|
|
398
|
+
else:
|
|
399
|
+
return tuple(ret)
|
pymoo/cython/__init__.py
ADDED
|
File without changes
|
|
@@ -0,0 +1,67 @@
|
|
|
1
|
+
# distutils: language = c++
|
|
2
|
+
# cython: language_level=2, boundscheck=False, wraparound=False, cdivision=True
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
import numpy as np
|
|
6
|
+
from libcpp.vector cimport vector
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
def calc_perpendicular_distance(double[:,:] P, double[:,:] L):
|
|
11
|
+
return np.array(c_calc_perpendicular_distance(P, L))
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
cdef extern from "math.h":
|
|
15
|
+
double sqrt(double m)
|
|
16
|
+
double pow(double base, double exponent)
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
cdef double c_norm(double[:] v):
|
|
20
|
+
cdef:
|
|
21
|
+
double val
|
|
22
|
+
int i
|
|
23
|
+
val = 0
|
|
24
|
+
for i in range(v.shape[0]):
|
|
25
|
+
val += pow(v[i], 2)
|
|
26
|
+
val = sqrt(val)
|
|
27
|
+
return val
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
cdef double[:,:] c_calc_perpendicular_distance(double[:,:] P, double[:,:] L):
|
|
31
|
+
cdef :
|
|
32
|
+
int s_L, s_P, n_dim, i, j, k
|
|
33
|
+
double[:,:] M
|
|
34
|
+
vector[double] N
|
|
35
|
+
double norm, dot, perp_dist, norm_scalar_proj
|
|
36
|
+
|
|
37
|
+
s_L = L.shape[0]
|
|
38
|
+
s_P = P.shape[0]
|
|
39
|
+
n_dim = L.shape[1]
|
|
40
|
+
|
|
41
|
+
M = np.zeros((s_P, s_L), dtype=np.float64)
|
|
42
|
+
|
|
43
|
+
for i in range(s_L):
|
|
44
|
+
|
|
45
|
+
norm = c_norm(L[i, :])
|
|
46
|
+
|
|
47
|
+
N = vector[double](n_dim)
|
|
48
|
+
for k in range(n_dim):
|
|
49
|
+
N[k] = L[i, k] / norm
|
|
50
|
+
|
|
51
|
+
for j in range(s_P):
|
|
52
|
+
|
|
53
|
+
dot = 0
|
|
54
|
+
for k in range(n_dim):
|
|
55
|
+
dot += L[i, k] * P[j, k]
|
|
56
|
+
norm_scalar_proj = dot / norm
|
|
57
|
+
|
|
58
|
+
perp_dist = 0
|
|
59
|
+
for k in range(n_dim):
|
|
60
|
+
perp_dist += pow(norm_scalar_proj * N[k] - P[j, k], 2)
|
|
61
|
+
perp_dist = sqrt(perp_dist)
|
|
62
|
+
|
|
63
|
+
M[j, i] = perp_dist
|
|
64
|
+
|
|
65
|
+
return M
|
|
66
|
+
|
|
67
|
+
|
|
Binary file
|
|
@@ -0,0 +1,165 @@
|
|
|
1
|
+
# distutils: language = c++
|
|
2
|
+
# cython: language_level=2, boundscheck=False, wraparound=False, cdivision=True
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
import numpy as np
|
|
6
|
+
from libcpp.vector cimport vector
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
# -----------------------------------------------------------
|
|
10
|
+
# INTERFACE
|
|
11
|
+
# -----------------------------------------------------------
|
|
12
|
+
|
|
13
|
+
def calc_perpendicular_distance(double[:,:] P, double[:,:] L):
|
|
14
|
+
return np.array(c_calc_perpendicular_distance(P, L))
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
def pbi(double[:,:] F, double[:,:] weights, double[:] ideal_point, double theta, double eps=1e-10):
|
|
18
|
+
return np.array(c_pbi(F, weights, ideal_point, theta, eps), dtype=np.float64)
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
def calc_distance_to_weights(F, weights, utopian_point=None):
|
|
22
|
+
|
|
23
|
+
if utopian_point is None:
|
|
24
|
+
utopian_point = np.zeros(F.shape[1])
|
|
25
|
+
|
|
26
|
+
norm = np.linalg.norm(weights, axis=1)
|
|
27
|
+
|
|
28
|
+
d1, d2 = np.zeros(F.shape[0]), np.zeros(F.shape[0])
|
|
29
|
+
|
|
30
|
+
F = F - utopian_point
|
|
31
|
+
c_d1(d1, F, weights, norm)
|
|
32
|
+
c_d2(d2, F, weights, d1, norm)
|
|
33
|
+
|
|
34
|
+
return d1, d2
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
# -----------------------------------------------------------
|
|
38
|
+
# IMPLEMENTATION
|
|
39
|
+
# -----------------------------------------------------------
|
|
40
|
+
|
|
41
|
+
cdef extern from "math.h":
|
|
42
|
+
double sqrt(double m)
|
|
43
|
+
double pow(double base, double exponent)
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
cdef double c_norm(double[:] v):
|
|
49
|
+
cdef:
|
|
50
|
+
double val
|
|
51
|
+
int i
|
|
52
|
+
|
|
53
|
+
val = 0
|
|
54
|
+
for i in range(v.shape[0]):
|
|
55
|
+
val += pow(v[i], 2)
|
|
56
|
+
val = sqrt(val)
|
|
57
|
+
return val
|
|
58
|
+
|
|
59
|
+
|
|
60
|
+
cdef double[:,:] c_calc_perpendicular_distance(double[:,:] P, double[:,:] L):
|
|
61
|
+
cdef :
|
|
62
|
+
int s_L, s_P, n_dim, i, j, k
|
|
63
|
+
double[:,:] M
|
|
64
|
+
vector[double] N
|
|
65
|
+
double norm, dot, perp_dist, norm_scalar_proj
|
|
66
|
+
|
|
67
|
+
s_L = L.shape[0]
|
|
68
|
+
s_P = P.shape[0]
|
|
69
|
+
n_dim = L.shape[1]
|
|
70
|
+
|
|
71
|
+
M = np.zeros((s_P, s_L), dtype=np.float64)
|
|
72
|
+
|
|
73
|
+
for i in range(s_L):
|
|
74
|
+
|
|
75
|
+
norm = c_norm(L[i, :])
|
|
76
|
+
|
|
77
|
+
N = vector[double](n_dim)
|
|
78
|
+
for k in range(n_dim):
|
|
79
|
+
N[k] = L[i, k] / norm
|
|
80
|
+
|
|
81
|
+
for j in range(s_P):
|
|
82
|
+
|
|
83
|
+
dot = 0
|
|
84
|
+
for k in range(n_dim):
|
|
85
|
+
dot += L[i, k] * P[j, k]
|
|
86
|
+
norm_scalar_proj = dot / norm
|
|
87
|
+
|
|
88
|
+
perp_dist = 0
|
|
89
|
+
for k in range(n_dim):
|
|
90
|
+
perp_dist += pow(norm_scalar_proj * N[k] - P[j, k], 2)
|
|
91
|
+
perp_dist = sqrt(perp_dist)
|
|
92
|
+
|
|
93
|
+
M[j, i] = perp_dist
|
|
94
|
+
|
|
95
|
+
return M
|
|
96
|
+
|
|
97
|
+
|
|
98
|
+
|
|
99
|
+
cdef vector[double] c_pbi(double[:,:] F, double[:,:] weights, double[:] ideal_point, double theta, double eps):
|
|
100
|
+
cdef:
|
|
101
|
+
double d1, d2, f_max, norm
|
|
102
|
+
int i, j, n_dim
|
|
103
|
+
vector[double] pbi
|
|
104
|
+
|
|
105
|
+
n_points = F.shape[0]
|
|
106
|
+
n_obj = F.shape[1]
|
|
107
|
+
pbi = vector[double](n_points)
|
|
108
|
+
|
|
109
|
+
for i in range(n_points):
|
|
110
|
+
|
|
111
|
+
norm = c_norm(weights[i,:])
|
|
112
|
+
|
|
113
|
+
d1 = 0
|
|
114
|
+
for j in range(n_obj):
|
|
115
|
+
d1 += (F[i,j] - ideal_point[j] + eps) * weights[i,j]
|
|
116
|
+
d1 = d1 / norm
|
|
117
|
+
|
|
118
|
+
d2 = 0
|
|
119
|
+
for j in range(n_obj):
|
|
120
|
+
d2 += pow(F[i,j] - ideal_point[j] + eps - (d1 * weights[i,j] / norm), 2.0)
|
|
121
|
+
d2 = sqrt(d2)
|
|
122
|
+
|
|
123
|
+
pbi[i] = d1 + theta * d2
|
|
124
|
+
|
|
125
|
+
return pbi
|
|
126
|
+
|
|
127
|
+
|
|
128
|
+
|
|
129
|
+
|
|
130
|
+
cdef void c_d1(double[:] d1, double[:,:] F, double[:,:] weights, double[:] norm):
|
|
131
|
+
cdef:
|
|
132
|
+
double val
|
|
133
|
+
int i, j
|
|
134
|
+
|
|
135
|
+
n_points = F.shape[0]
|
|
136
|
+
n_obj = F.shape[1]
|
|
137
|
+
|
|
138
|
+
for i in range(n_points):
|
|
139
|
+
|
|
140
|
+
val = 0
|
|
141
|
+
for j in range(n_obj):
|
|
142
|
+
val += F[i,j] * weights[i,j]
|
|
143
|
+
d1[i] = val / norm[i]
|
|
144
|
+
|
|
145
|
+
|
|
146
|
+
|
|
147
|
+
|
|
148
|
+
cdef void c_d2(double[:] d2, double[:,:] F, double[:,:] weights, double[:] d1, double[:] norm):
|
|
149
|
+
cdef:
|
|
150
|
+
double val
|
|
151
|
+
int i, j
|
|
152
|
+
|
|
153
|
+
n_points = F.shape[0]
|
|
154
|
+
n_obj = F.shape[1]
|
|
155
|
+
|
|
156
|
+
for i in range(n_points):
|
|
157
|
+
|
|
158
|
+
val = 0
|
|
159
|
+
for j in range(n_obj):
|
|
160
|
+
val += pow(F[i,j] - (d1[i] * weights[i,j] / norm[i]), 2.0)
|
|
161
|
+
d2[i] = sqrt(val)
|
|
162
|
+
|
|
163
|
+
|
|
164
|
+
|
|
165
|
+
|
|
Binary file
|
pymoo/cython/hv.pyx
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
1
|
+
# distutils: language = c++
|
|
2
|
+
# cython: language_level=2, boundscheck=False, wraparound=False, cdivision=True
|
|
3
|
+
|
|
4
|
+
import numpy as np
|
|
5
|
+
|
|
6
|
+
cdef extern from "vendor/hypervolume.cpp":
|
|
7
|
+
double overmars_yap(double * points, double * referencePoint, unsigned noObjectives, unsigned noPoints);
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
def hv(ref_point, F):
|
|
11
|
+
F = F[np.argsort(F[:, -1])]
|
|
12
|
+
n, m = F.shape
|
|
13
|
+
return c_hv(F, ref_point, m, n)
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
def c_hv(double[:,:] F, double[:] ref_point, m, n):
|
|
17
|
+
return overmars_yap(&F[0, 0], &ref_point[0], m, n)
|
|
18
|
+
# return fpli_hv(&F[0,0], m, n, &ref_point[0])
|
|
Binary file
|
pymoo/cython/info.pyx
ADDED
|
Binary file
|