pymoo 0.6.1.3__cp39-cp39-win_amd64.whl → 0.6.1.5.dev0__cp39-cp39-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of pymoo might be problematic. Click here for more details.
- pymoo/algorithms/moo/age.py +13 -7
- pymoo/algorithms/moo/age2.py +49 -19
- pymoo/algorithms/moo/ctaea.py +2 -2
- pymoo/algorithms/moo/kgb.py +9 -9
- pymoo/algorithms/moo/nsga3.py +2 -2
- pymoo/algorithms/moo/pinsga2.py +370 -0
- pymoo/algorithms/moo/rnsga3.py +2 -2
- pymoo/algorithms/soo/nonconvex/es.py +3 -2
- pymoo/config.py +1 -1
- pymoo/core/algorithm.py +1 -1
- pymoo/core/individual.py +8 -7
- pymoo/core/replacement.py +5 -5
- pymoo/core/survival.py +1 -1
- pymoo/core/variable.py +9 -9
- pymoo/cython/calc_perpendicular_distance.cp39-win_amd64.pyd +0 -0
- pymoo/cython/calc_perpendicular_distance.cpp +27467 -0
- pymoo/cython/calc_perpendicular_distance.pyx +67 -0
- pymoo/cython/decomposition.cp39-win_amd64.pyd +0 -0
- pymoo/cython/decomposition.cpp +28877 -0
- pymoo/cython/decomposition.pyx +165 -0
- pymoo/cython/hv.cp39-win_amd64.pyd +0 -0
- pymoo/cython/hv.cpp +27559 -0
- pymoo/cython/hv.pyx +18 -0
- pymoo/cython/info.cp39-win_amd64.pyd +0 -0
- pymoo/cython/info.cpp +6653 -0
- pymoo/cython/info.pyx +5 -0
- pymoo/cython/mnn.cp39-win_amd64.pyd +0 -0
- pymoo/cython/mnn.cpp +30117 -0
- pymoo/cython/mnn.pyx +273 -0
- pymoo/cython/non_dominated_sorting.cp39-win_amd64.pyd +0 -0
- pymoo/cython/non_dominated_sorting.cpp +35256 -0
- pymoo/cython/non_dominated_sorting.pyx +645 -0
- pymoo/cython/pruning_cd.cp39-win_amd64.pyd +0 -0
- pymoo/cython/pruning_cd.cpp +29277 -0
- pymoo/cython/pruning_cd.pyx +197 -0
- pymoo/cython/stochastic_ranking.cp39-win_amd64.pyd +0 -0
- pymoo/cython/stochastic_ranking.cpp +27872 -0
- pymoo/cython/stochastic_ranking.pyx +49 -0
- pymoo/cython/vendor/hypervolume.cpp +1621 -0
- pymoo/docs.py +1 -1
- pymoo/operators/crossover/ox.py +1 -1
- pymoo/operators/selection/rnd.py +2 -2
- pymoo/operators/selection/tournament.py +5 -5
- pymoo/optimize.py +2 -2
- pymoo/problems/dynamic/df.py +4 -4
- pymoo/problems/single/traveling_salesman.py +1 -1
- pymoo/util/misc.py +2 -2
- pymoo/util/mnn.py +2 -2
- pymoo/util/nds/fast_non_dominated_sort.py +5 -3
- pymoo/util/nds/non_dominated_sorting.py +2 -2
- pymoo/util/normalization.py +5 -8
- pymoo/util/ref_dirs/energy.py +4 -2
- pymoo/util/ref_dirs/reduction.py +1 -1
- pymoo/util/reference_direction.py +3 -2
- pymoo/util/value_functions.py +719 -0
- pymoo/util/vf_dominator.py +99 -0
- pymoo/version.py +1 -1
- pymoo/visualization/heatmap.py +3 -3
- pymoo/visualization/pcp.py +1 -1
- pymoo/visualization/radar.py +1 -1
- {pymoo-0.6.1.3.dist-info → pymoo-0.6.1.5.dev0.dist-info}/METADATA +12 -15
- {pymoo-0.6.1.3.dist-info → pymoo-0.6.1.5.dev0.dist-info}/RECORD +65 -45
- {pymoo-0.6.1.3.dist-info → pymoo-0.6.1.5.dev0.dist-info}/WHEEL +1 -1
- {pymoo-0.6.1.3.dist-info → pymoo-0.6.1.5.dev0.dist-info/licenses}/LICENSE +0 -0
- {pymoo-0.6.1.3.dist-info → pymoo-0.6.1.5.dev0.dist-info}/top_level.txt +0 -0
pymoo/cython/mnn.pyx
ADDED
|
@@ -0,0 +1,273 @@
|
|
|
1
|
+
# distutils: language = c++
|
|
2
|
+
# cython: language_level=2, boundscheck=False, wraparound=False, cdivision=True
|
|
3
|
+
|
|
4
|
+
# This was implemented using the full distances matrix
|
|
5
|
+
# Other strategies can be more efficient depending on the population size and number of objectives
|
|
6
|
+
# This approach was the most promising for N = 3
|
|
7
|
+
# I believe for a large number of objectives M, some strategy based on upper bounds for distances would be helpful
|
|
8
|
+
# Those interested in contributing please contact me at bruscalia12@gmail.com
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
import numpy as np
|
|
12
|
+
|
|
13
|
+
from pymoo.cython.utils cimport c_get_drop, c_get_argmin, c_get_argmax, c_normalize_array
|
|
14
|
+
|
|
15
|
+
from libcpp cimport bool
|
|
16
|
+
from libcpp.vector cimport vector
|
|
17
|
+
from libcpp.set cimport set as cpp_set
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
cdef extern from "math.h":
|
|
21
|
+
double HUGE_VAL
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
def calc_mnn(double[:, :] X, int n_remove=0):
|
|
25
|
+
|
|
26
|
+
cdef:
|
|
27
|
+
int N, M, n
|
|
28
|
+
cpp_set[int] extremes
|
|
29
|
+
vector[int] extremes_min, extremes_max
|
|
30
|
+
|
|
31
|
+
N = X.shape[0]
|
|
32
|
+
M = X.shape[1]
|
|
33
|
+
|
|
34
|
+
if N <= M:
|
|
35
|
+
return np.full(N, HUGE_VAL)
|
|
36
|
+
|
|
37
|
+
if n_remove <= (N - M):
|
|
38
|
+
if n_remove < 0:
|
|
39
|
+
n_remove = 0
|
|
40
|
+
else:
|
|
41
|
+
pass
|
|
42
|
+
else:
|
|
43
|
+
n_remove = N - M
|
|
44
|
+
|
|
45
|
+
extremes_min = c_get_argmin(X)
|
|
46
|
+
extremes_max = c_get_argmax(X)
|
|
47
|
+
|
|
48
|
+
extremes = cpp_set[int]()
|
|
49
|
+
|
|
50
|
+
for n in extremes_min:
|
|
51
|
+
extremes.insert(n)
|
|
52
|
+
|
|
53
|
+
for n in extremes_max:
|
|
54
|
+
extremes.insert(n)
|
|
55
|
+
|
|
56
|
+
X = c_normalize_array(X, extremes_max, extremes_min)
|
|
57
|
+
|
|
58
|
+
return c_calc_mnn(X, n_remove, N, M, extremes)
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
def calc_2nn(double[:, :] X, int n_remove=0):
|
|
62
|
+
|
|
63
|
+
cdef:
|
|
64
|
+
int N, M, n
|
|
65
|
+
cpp_set[int] extremes
|
|
66
|
+
vector[int] extremes_min, extremes_max
|
|
67
|
+
|
|
68
|
+
N = X.shape[0]
|
|
69
|
+
M = X.shape[1]
|
|
70
|
+
|
|
71
|
+
if n_remove <= (N - M):
|
|
72
|
+
if n_remove < 0:
|
|
73
|
+
n_remove = 0
|
|
74
|
+
else:
|
|
75
|
+
pass
|
|
76
|
+
else:
|
|
77
|
+
n_remove = N - M
|
|
78
|
+
|
|
79
|
+
extremes_min = c_get_argmin(X)
|
|
80
|
+
extremes_max = c_get_argmax(X)
|
|
81
|
+
|
|
82
|
+
extremes = cpp_set[int]()
|
|
83
|
+
|
|
84
|
+
for n in extremes_min:
|
|
85
|
+
extremes.insert(n)
|
|
86
|
+
|
|
87
|
+
for n in extremes_max:
|
|
88
|
+
extremes.insert(n)
|
|
89
|
+
|
|
90
|
+
X = c_normalize_array(X, extremes_max, extremes_min)
|
|
91
|
+
|
|
92
|
+
M = 2
|
|
93
|
+
|
|
94
|
+
return c_calc_mnn(X, n_remove, N, M, extremes)
|
|
95
|
+
|
|
96
|
+
|
|
97
|
+
cdef c_calc_mnn(double[:, :] X, int n_remove, int N, int M, cpp_set[int] extremes):
|
|
98
|
+
|
|
99
|
+
cdef:
|
|
100
|
+
int n, mm, i, j, n_removed, k, MM
|
|
101
|
+
double dij
|
|
102
|
+
cpp_set[int] calc_items
|
|
103
|
+
cpp_set[int] H
|
|
104
|
+
double[:, :] D
|
|
105
|
+
double[:] d
|
|
106
|
+
int[:, :] Mnn
|
|
107
|
+
|
|
108
|
+
# Define items to calculate distances
|
|
109
|
+
calc_items = cpp_set[int]()
|
|
110
|
+
for n in range(N):
|
|
111
|
+
calc_items.insert(n)
|
|
112
|
+
for n in extremes:
|
|
113
|
+
calc_items.erase(n)
|
|
114
|
+
|
|
115
|
+
# Define remaining items to evaluate
|
|
116
|
+
H = cpp_set[int]()
|
|
117
|
+
for n in range(N):
|
|
118
|
+
H.insert(n)
|
|
119
|
+
|
|
120
|
+
# Instantiate distances array
|
|
121
|
+
_D = np.empty((N, N), dtype=np.double)
|
|
122
|
+
D = _D[:, :]
|
|
123
|
+
|
|
124
|
+
# Shape of X
|
|
125
|
+
MM = X.shape[1]
|
|
126
|
+
|
|
127
|
+
# Fill values on D
|
|
128
|
+
for i in range(N - 1):
|
|
129
|
+
D[i, i] = 0.0
|
|
130
|
+
|
|
131
|
+
for j in range(i + 1, N):
|
|
132
|
+
|
|
133
|
+
dij = 0
|
|
134
|
+
for mm in range(MM):
|
|
135
|
+
dij = dij + (X[j, mm] - X[i, mm]) * (X[j, mm] - X[i, mm])
|
|
136
|
+
|
|
137
|
+
D[i, j] = dij
|
|
138
|
+
D[j, i] = D[i, j]
|
|
139
|
+
|
|
140
|
+
D[N-1, N-1] = 0.0
|
|
141
|
+
|
|
142
|
+
# Initialize
|
|
143
|
+
n_removed = 0
|
|
144
|
+
|
|
145
|
+
# Initialize neighbors and distances
|
|
146
|
+
# _Mnn = np.full((N, M), -1, dtype=np.intc)
|
|
147
|
+
_Mnn = np.argpartition(D, range(1, M+1), axis=1)[:, 1:M+1].astype(np.intc)
|
|
148
|
+
dd = np.full((N,), HUGE_VAL, dtype=np.double)
|
|
149
|
+
|
|
150
|
+
Mnn = _Mnn[:, :]
|
|
151
|
+
d = dd[:]
|
|
152
|
+
|
|
153
|
+
# Obtain distance metrics
|
|
154
|
+
c_calc_d(d, Mnn, D, calc_items, M)
|
|
155
|
+
|
|
156
|
+
# While n_remove not acheived (no need to recalculate if only one item should be removed)
|
|
157
|
+
while n_removed < (n_remove - 1):
|
|
158
|
+
|
|
159
|
+
# Obtain element to drop
|
|
160
|
+
k = c_get_drop(d, H)
|
|
161
|
+
H.erase(k)
|
|
162
|
+
|
|
163
|
+
# Update index
|
|
164
|
+
n_removed = n_removed + 1
|
|
165
|
+
|
|
166
|
+
# Get items to be recalculated
|
|
167
|
+
calc_items = c_get_calc_items(Mnn, H, k, M)
|
|
168
|
+
for n in extremes:
|
|
169
|
+
calc_items.erase(n)
|
|
170
|
+
|
|
171
|
+
# Fill in neighbors and distance matrix
|
|
172
|
+
c_calc_mnn_iter(
|
|
173
|
+
X,
|
|
174
|
+
Mnn,
|
|
175
|
+
D,
|
|
176
|
+
N, M,
|
|
177
|
+
calc_items,
|
|
178
|
+
H
|
|
179
|
+
)
|
|
180
|
+
|
|
181
|
+
# Obtain distance metrics
|
|
182
|
+
c_calc_d(d, Mnn, D, calc_items, M)
|
|
183
|
+
|
|
184
|
+
return dd
|
|
185
|
+
|
|
186
|
+
|
|
187
|
+
cdef c_calc_mnn_iter(
|
|
188
|
+
double[:, :] X,
|
|
189
|
+
int[:, :] Mnn,
|
|
190
|
+
double[:, :] D,
|
|
191
|
+
int N, int M,
|
|
192
|
+
cpp_set[int] calc_items,
|
|
193
|
+
cpp_set[int] H
|
|
194
|
+
):
|
|
195
|
+
|
|
196
|
+
cdef:
|
|
197
|
+
int i, j, m
|
|
198
|
+
|
|
199
|
+
# Iterate over items to calculate
|
|
200
|
+
for i in calc_items:
|
|
201
|
+
|
|
202
|
+
# Iterate over elements in X
|
|
203
|
+
for j in H:
|
|
204
|
+
|
|
205
|
+
# Go to next if same element
|
|
206
|
+
if (j == i):
|
|
207
|
+
continue
|
|
208
|
+
|
|
209
|
+
# Replace at least the last neighbor
|
|
210
|
+
elif (D[i, j] <= D[i, Mnn[i, M-1]]) or (Mnn[i, M-1] == -1):
|
|
211
|
+
|
|
212
|
+
# Iterate over current values
|
|
213
|
+
for m in range(M):
|
|
214
|
+
|
|
215
|
+
# Set to current if unassigned
|
|
216
|
+
if (Mnn[i, m] == -1):
|
|
217
|
+
|
|
218
|
+
# Set last neighbor to index
|
|
219
|
+
Mnn[i, m] = j
|
|
220
|
+
break
|
|
221
|
+
|
|
222
|
+
# Break if checking already corresponding index
|
|
223
|
+
elif (j == Mnn[i, m]):
|
|
224
|
+
break
|
|
225
|
+
|
|
226
|
+
# Distance satisfies condition
|
|
227
|
+
elif (D[i, j] <= D[i, Mnn[i, m]]):
|
|
228
|
+
|
|
229
|
+
# Replace higher values
|
|
230
|
+
Mnn[i, m + 1:] = Mnn[i, m:-1]
|
|
231
|
+
|
|
232
|
+
# Replace current value
|
|
233
|
+
Mnn[i, m] = j
|
|
234
|
+
break
|
|
235
|
+
|
|
236
|
+
|
|
237
|
+
# Calculate crowding metric
|
|
238
|
+
cdef c_calc_d(double[:] d, int[:, :] Mnn, double[:, :] D, cpp_set[int] calc_items, int M):
|
|
239
|
+
|
|
240
|
+
cdef:
|
|
241
|
+
int i, m
|
|
242
|
+
|
|
243
|
+
for i in calc_items:
|
|
244
|
+
|
|
245
|
+
d[i] = 1
|
|
246
|
+
for m in range(M):
|
|
247
|
+
d[i] = d[i] * D[i, Mnn[i, m]]
|
|
248
|
+
|
|
249
|
+
|
|
250
|
+
# Returns indexes of items to be recalculated after removal
|
|
251
|
+
cdef cpp_set[int] c_get_calc_items(
|
|
252
|
+
int[:, :] Mnn,
|
|
253
|
+
cpp_set[int] H,
|
|
254
|
+
int k, int M):
|
|
255
|
+
|
|
256
|
+
cdef:
|
|
257
|
+
int i, m
|
|
258
|
+
cpp_set[int] calc_items
|
|
259
|
+
|
|
260
|
+
calc_items = cpp_set[int]()
|
|
261
|
+
|
|
262
|
+
for i in H:
|
|
263
|
+
|
|
264
|
+
for m in range(M):
|
|
265
|
+
|
|
266
|
+
if Mnn[i, m] == k:
|
|
267
|
+
|
|
268
|
+
Mnn[i, m:-1] = Mnn[i, m + 1:]
|
|
269
|
+
Mnn[i, M-1] = -1
|
|
270
|
+
|
|
271
|
+
calc_items.insert(i)
|
|
272
|
+
|
|
273
|
+
return calc_items
|
|
Binary file
|