pymoo 0.6.1.3__cp310-cp310-win_amd64.whl → 0.6.1.5.dev0__cp310-cp310-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of pymoo might be problematic. Click here for more details.
- pymoo/algorithms/moo/age.py +13 -7
- pymoo/algorithms/moo/age2.py +49 -19
- pymoo/algorithms/moo/ctaea.py +2 -2
- pymoo/algorithms/moo/kgb.py +9 -9
- pymoo/algorithms/moo/nsga3.py +2 -2
- pymoo/algorithms/moo/pinsga2.py +370 -0
- pymoo/algorithms/moo/rnsga3.py +2 -2
- pymoo/algorithms/soo/nonconvex/es.py +3 -2
- pymoo/config.py +1 -1
- pymoo/core/algorithm.py +1 -1
- pymoo/core/individual.py +8 -7
- pymoo/core/replacement.py +5 -5
- pymoo/core/survival.py +1 -1
- pymoo/core/variable.py +9 -9
- pymoo/cython/calc_perpendicular_distance.cp310-win_amd64.pyd +0 -0
- pymoo/cython/calc_perpendicular_distance.cpp +27467 -0
- pymoo/cython/calc_perpendicular_distance.pyx +67 -0
- pymoo/cython/decomposition.cp310-win_amd64.pyd +0 -0
- pymoo/cython/decomposition.cpp +28877 -0
- pymoo/cython/decomposition.pyx +165 -0
- pymoo/cython/hv.cp310-win_amd64.pyd +0 -0
- pymoo/cython/hv.cpp +27559 -0
- pymoo/cython/hv.pyx +18 -0
- pymoo/cython/info.cp310-win_amd64.pyd +0 -0
- pymoo/cython/info.cpp +6653 -0
- pymoo/cython/info.pyx +5 -0
- pymoo/cython/mnn.cp310-win_amd64.pyd +0 -0
- pymoo/cython/mnn.cpp +30117 -0
- pymoo/cython/mnn.pyx +273 -0
- pymoo/cython/non_dominated_sorting.cp310-win_amd64.pyd +0 -0
- pymoo/cython/non_dominated_sorting.cpp +35256 -0
- pymoo/cython/non_dominated_sorting.pyx +645 -0
- pymoo/cython/pruning_cd.cp310-win_amd64.pyd +0 -0
- pymoo/cython/pruning_cd.cpp +29277 -0
- pymoo/cython/pruning_cd.pyx +197 -0
- pymoo/cython/stochastic_ranking.cp310-win_amd64.pyd +0 -0
- pymoo/cython/stochastic_ranking.cpp +27872 -0
- pymoo/cython/stochastic_ranking.pyx +49 -0
- pymoo/cython/vendor/hypervolume.cpp +1621 -0
- pymoo/docs.py +1 -1
- pymoo/operators/crossover/ox.py +1 -1
- pymoo/operators/selection/rnd.py +2 -2
- pymoo/operators/selection/tournament.py +5 -5
- pymoo/optimize.py +2 -2
- pymoo/problems/dynamic/df.py +4 -4
- pymoo/problems/single/traveling_salesman.py +1 -1
- pymoo/util/misc.py +2 -2
- pymoo/util/mnn.py +2 -2
- pymoo/util/nds/fast_non_dominated_sort.py +5 -3
- pymoo/util/nds/non_dominated_sorting.py +2 -2
- pymoo/util/normalization.py +5 -8
- pymoo/util/ref_dirs/energy.py +4 -2
- pymoo/util/ref_dirs/reduction.py +1 -1
- pymoo/util/reference_direction.py +3 -2
- pymoo/util/value_functions.py +719 -0
- pymoo/util/vf_dominator.py +99 -0
- pymoo/version.py +1 -1
- pymoo/visualization/heatmap.py +3 -3
- pymoo/visualization/pcp.py +1 -1
- pymoo/visualization/radar.py +1 -1
- {pymoo-0.6.1.3.dist-info → pymoo-0.6.1.5.dev0.dist-info}/METADATA +12 -13
- {pymoo-0.6.1.3.dist-info → pymoo-0.6.1.5.dev0.dist-info}/RECORD +65 -45
- {pymoo-0.6.1.3.dist-info → pymoo-0.6.1.5.dev0.dist-info}/WHEEL +1 -1
- {pymoo-0.6.1.3.dist-info → pymoo-0.6.1.5.dev0.dist-info/licenses}/LICENSE +0 -0
- {pymoo-0.6.1.3.dist-info → pymoo-0.6.1.5.dev0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,67 @@
|
|
|
1
|
+
# distutils: language = c++
|
|
2
|
+
# cython: language_level=2, boundscheck=False, wraparound=False, cdivision=True
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
import numpy as np
|
|
6
|
+
from libcpp.vector cimport vector
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
def calc_perpendicular_distance(double[:,:] P, double[:,:] L):
|
|
11
|
+
return np.array(c_calc_perpendicular_distance(P, L))
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
cdef extern from "math.h":
|
|
15
|
+
double sqrt(double m)
|
|
16
|
+
double pow(double base, double exponent)
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
cdef double c_norm(double[:] v):
|
|
20
|
+
cdef:
|
|
21
|
+
double val
|
|
22
|
+
int i
|
|
23
|
+
val = 0
|
|
24
|
+
for i in range(v.shape[0]):
|
|
25
|
+
val += pow(v[i], 2)
|
|
26
|
+
val = sqrt(val)
|
|
27
|
+
return val
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
cdef double[:,:] c_calc_perpendicular_distance(double[:,:] P, double[:,:] L):
|
|
31
|
+
cdef :
|
|
32
|
+
int s_L, s_P, n_dim, i, j, k
|
|
33
|
+
double[:,:] M
|
|
34
|
+
vector[double] N
|
|
35
|
+
double norm, dot, perp_dist, norm_scalar_proj
|
|
36
|
+
|
|
37
|
+
s_L = L.shape[0]
|
|
38
|
+
s_P = P.shape[0]
|
|
39
|
+
n_dim = L.shape[1]
|
|
40
|
+
|
|
41
|
+
M = np.zeros((s_P, s_L), dtype=np.float64)
|
|
42
|
+
|
|
43
|
+
for i in range(s_L):
|
|
44
|
+
|
|
45
|
+
norm = c_norm(L[i, :])
|
|
46
|
+
|
|
47
|
+
N = vector[double](n_dim)
|
|
48
|
+
for k in range(n_dim):
|
|
49
|
+
N[k] = L[i, k] / norm
|
|
50
|
+
|
|
51
|
+
for j in range(s_P):
|
|
52
|
+
|
|
53
|
+
dot = 0
|
|
54
|
+
for k in range(n_dim):
|
|
55
|
+
dot += L[i, k] * P[j, k]
|
|
56
|
+
norm_scalar_proj = dot / norm
|
|
57
|
+
|
|
58
|
+
perp_dist = 0
|
|
59
|
+
for k in range(n_dim):
|
|
60
|
+
perp_dist += pow(norm_scalar_proj * N[k] - P[j, k], 2)
|
|
61
|
+
perp_dist = sqrt(perp_dist)
|
|
62
|
+
|
|
63
|
+
M[j, i] = perp_dist
|
|
64
|
+
|
|
65
|
+
return M
|
|
66
|
+
|
|
67
|
+
|
|
Binary file
|