pymoo 0.6.1.2__cp39-cp39-win_amd64.whl → 0.6.1.5.dev0__cp39-cp39-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of pymoo might be problematic. Click here for more details.
- pymoo/algorithms/moo/age.py +13 -7
- pymoo/algorithms/moo/age2.py +49 -19
- pymoo/algorithms/moo/ctaea.py +2 -2
- pymoo/algorithms/moo/kgb.py +9 -9
- pymoo/algorithms/moo/nsga2.py +0 -4
- pymoo/algorithms/moo/nsga3.py +2 -2
- pymoo/algorithms/moo/pinsga2.py +370 -0
- pymoo/algorithms/moo/rnsga3.py +2 -2
- pymoo/algorithms/soo/nonconvex/es.py +3 -2
- pymoo/config.py +1 -1
- pymoo/core/algorithm.py +1 -1
- pymoo/core/individual.py +8 -7
- pymoo/core/replacement.py +5 -5
- pymoo/core/survival.py +1 -1
- pymoo/core/variable.py +9 -9
- pymoo/cython/calc_perpendicular_distance.cp39-win_amd64.pyd +0 -0
- pymoo/cython/calc_perpendicular_distance.cpp +27467 -0
- pymoo/cython/calc_perpendicular_distance.pyx +67 -0
- pymoo/cython/decomposition.cp39-win_amd64.pyd +0 -0
- pymoo/cython/decomposition.cpp +28877 -0
- pymoo/cython/decomposition.pyx +165 -0
- pymoo/cython/hv.cp39-win_amd64.pyd +0 -0
- pymoo/cython/hv.cpp +27559 -0
- pymoo/cython/hv.pyx +18 -0
- pymoo/cython/info.cp39-win_amd64.pyd +0 -0
- pymoo/cython/info.cpp +6653 -0
- pymoo/cython/info.pyx +5 -0
- pymoo/cython/mnn.cp39-win_amd64.pyd +0 -0
- pymoo/cython/mnn.cpp +30117 -0
- pymoo/cython/mnn.pyx +273 -0
- pymoo/cython/non_dominated_sorting.cp39-win_amd64.pyd +0 -0
- pymoo/cython/non_dominated_sorting.cpp +35256 -0
- pymoo/cython/non_dominated_sorting.pyx +645 -0
- pymoo/cython/pruning_cd.cp39-win_amd64.pyd +0 -0
- pymoo/cython/pruning_cd.cpp +29277 -0
- pymoo/cython/pruning_cd.pyx +197 -0
- pymoo/cython/stochastic_ranking.cp39-win_amd64.pyd +0 -0
- pymoo/cython/stochastic_ranking.cpp +27872 -0
- pymoo/cython/stochastic_ranking.pyx +49 -0
- pymoo/cython/vendor/hypervolume.cpp +1621 -0
- pymoo/docs.py +1 -1
- pymoo/gradient/grad_autograd.py +2 -2
- pymoo/operators/crossover/ox.py +1 -1
- pymoo/operators/selection/rnd.py +2 -2
- pymoo/operators/selection/tournament.py +5 -5
- pymoo/optimize.py +2 -2
- pymoo/problems/dynamic/df.py +4 -4
- pymoo/problems/single/traveling_salesman.py +1 -1
- pymoo/util/misc.py +2 -2
- pymoo/util/mnn.py +2 -2
- pymoo/util/nds/fast_non_dominated_sort.py +5 -3
- pymoo/util/nds/non_dominated_sorting.py +2 -2
- pymoo/util/normalization.py +5 -8
- pymoo/util/ref_dirs/energy.py +4 -2
- pymoo/util/ref_dirs/reduction.py +1 -1
- pymoo/util/reference_direction.py +3 -2
- pymoo/util/value_functions.py +719 -0
- pymoo/util/vf_dominator.py +99 -0
- pymoo/version.py +1 -1
- pymoo/visualization/heatmap.py +3 -3
- pymoo/visualization/pcp.py +1 -1
- pymoo/visualization/radar.py +1 -1
- {pymoo-0.6.1.2.dist-info → pymoo-0.6.1.5.dev0.dist-info}/METADATA +13 -16
- {pymoo-0.6.1.2.dist-info → pymoo-0.6.1.5.dev0.dist-info}/RECORD +67 -47
- {pymoo-0.6.1.2.dist-info → pymoo-0.6.1.5.dev0.dist-info}/WHEEL +1 -1
- {pymoo-0.6.1.2.dist-info → pymoo-0.6.1.5.dev0.dist-info/licenses}/LICENSE +0 -0
- {pymoo-0.6.1.2.dist-info → pymoo-0.6.1.5.dev0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,165 @@
|
|
|
1
|
+
# distutils: language = c++
|
|
2
|
+
# cython: language_level=2, boundscheck=False, wraparound=False, cdivision=True
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
import numpy as np
|
|
6
|
+
from libcpp.vector cimport vector
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
# -----------------------------------------------------------
|
|
10
|
+
# INTERFACE
|
|
11
|
+
# -----------------------------------------------------------
|
|
12
|
+
|
|
13
|
+
def calc_perpendicular_distance(double[:,:] P, double[:,:] L):
|
|
14
|
+
return np.array(c_calc_perpendicular_distance(P, L))
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
def pbi(double[:,:] F, double[:,:] weights, double[:] ideal_point, double theta, double eps=1e-10):
|
|
18
|
+
return np.array(c_pbi(F, weights, ideal_point, theta, eps), dtype=np.float64)
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
def calc_distance_to_weights(F, weights, utopian_point=None):
|
|
22
|
+
|
|
23
|
+
if utopian_point is None:
|
|
24
|
+
utopian_point = np.zeros(F.shape[1])
|
|
25
|
+
|
|
26
|
+
norm = np.linalg.norm(weights, axis=1)
|
|
27
|
+
|
|
28
|
+
d1, d2 = np.zeros(F.shape[0]), np.zeros(F.shape[0])
|
|
29
|
+
|
|
30
|
+
F = F - utopian_point
|
|
31
|
+
c_d1(d1, F, weights, norm)
|
|
32
|
+
c_d2(d2, F, weights, d1, norm)
|
|
33
|
+
|
|
34
|
+
return d1, d2
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
# -----------------------------------------------------------
|
|
38
|
+
# IMPLEMENTATION
|
|
39
|
+
# -----------------------------------------------------------
|
|
40
|
+
|
|
41
|
+
cdef extern from "math.h":
|
|
42
|
+
double sqrt(double m)
|
|
43
|
+
double pow(double base, double exponent)
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
cdef double c_norm(double[:] v):
|
|
49
|
+
cdef:
|
|
50
|
+
double val
|
|
51
|
+
int i
|
|
52
|
+
|
|
53
|
+
val = 0
|
|
54
|
+
for i in range(v.shape[0]):
|
|
55
|
+
val += pow(v[i], 2)
|
|
56
|
+
val = sqrt(val)
|
|
57
|
+
return val
|
|
58
|
+
|
|
59
|
+
|
|
60
|
+
cdef double[:,:] c_calc_perpendicular_distance(double[:,:] P, double[:,:] L):
|
|
61
|
+
cdef :
|
|
62
|
+
int s_L, s_P, n_dim, i, j, k
|
|
63
|
+
double[:,:] M
|
|
64
|
+
vector[double] N
|
|
65
|
+
double norm, dot, perp_dist, norm_scalar_proj
|
|
66
|
+
|
|
67
|
+
s_L = L.shape[0]
|
|
68
|
+
s_P = P.shape[0]
|
|
69
|
+
n_dim = L.shape[1]
|
|
70
|
+
|
|
71
|
+
M = np.zeros((s_P, s_L), dtype=np.float64)
|
|
72
|
+
|
|
73
|
+
for i in range(s_L):
|
|
74
|
+
|
|
75
|
+
norm = c_norm(L[i, :])
|
|
76
|
+
|
|
77
|
+
N = vector[double](n_dim)
|
|
78
|
+
for k in range(n_dim):
|
|
79
|
+
N[k] = L[i, k] / norm
|
|
80
|
+
|
|
81
|
+
for j in range(s_P):
|
|
82
|
+
|
|
83
|
+
dot = 0
|
|
84
|
+
for k in range(n_dim):
|
|
85
|
+
dot += L[i, k] * P[j, k]
|
|
86
|
+
norm_scalar_proj = dot / norm
|
|
87
|
+
|
|
88
|
+
perp_dist = 0
|
|
89
|
+
for k in range(n_dim):
|
|
90
|
+
perp_dist += pow(norm_scalar_proj * N[k] - P[j, k], 2)
|
|
91
|
+
perp_dist = sqrt(perp_dist)
|
|
92
|
+
|
|
93
|
+
M[j, i] = perp_dist
|
|
94
|
+
|
|
95
|
+
return M
|
|
96
|
+
|
|
97
|
+
|
|
98
|
+
|
|
99
|
+
cdef vector[double] c_pbi(double[:,:] F, double[:,:] weights, double[:] ideal_point, double theta, double eps):
|
|
100
|
+
cdef:
|
|
101
|
+
double d1, d2, f_max, norm
|
|
102
|
+
int i, j, n_dim
|
|
103
|
+
vector[double] pbi
|
|
104
|
+
|
|
105
|
+
n_points = F.shape[0]
|
|
106
|
+
n_obj = F.shape[1]
|
|
107
|
+
pbi = vector[double](n_points)
|
|
108
|
+
|
|
109
|
+
for i in range(n_points):
|
|
110
|
+
|
|
111
|
+
norm = c_norm(weights[i,:])
|
|
112
|
+
|
|
113
|
+
d1 = 0
|
|
114
|
+
for j in range(n_obj):
|
|
115
|
+
d1 += (F[i,j] - ideal_point[j] + eps) * weights[i,j]
|
|
116
|
+
d1 = d1 / norm
|
|
117
|
+
|
|
118
|
+
d2 = 0
|
|
119
|
+
for j in range(n_obj):
|
|
120
|
+
d2 += pow(F[i,j] - ideal_point[j] + eps - (d1 * weights[i,j] / norm), 2.0)
|
|
121
|
+
d2 = sqrt(d2)
|
|
122
|
+
|
|
123
|
+
pbi[i] = d1 + theta * d2
|
|
124
|
+
|
|
125
|
+
return pbi
|
|
126
|
+
|
|
127
|
+
|
|
128
|
+
|
|
129
|
+
|
|
130
|
+
cdef void c_d1(double[:] d1, double[:,:] F, double[:,:] weights, double[:] norm):
|
|
131
|
+
cdef:
|
|
132
|
+
double val
|
|
133
|
+
int i, j
|
|
134
|
+
|
|
135
|
+
n_points = F.shape[0]
|
|
136
|
+
n_obj = F.shape[1]
|
|
137
|
+
|
|
138
|
+
for i in range(n_points):
|
|
139
|
+
|
|
140
|
+
val = 0
|
|
141
|
+
for j in range(n_obj):
|
|
142
|
+
val += F[i,j] * weights[i,j]
|
|
143
|
+
d1[i] = val / norm[i]
|
|
144
|
+
|
|
145
|
+
|
|
146
|
+
|
|
147
|
+
|
|
148
|
+
cdef void c_d2(double[:] d2, double[:,:] F, double[:,:] weights, double[:] d1, double[:] norm):
|
|
149
|
+
cdef:
|
|
150
|
+
double val
|
|
151
|
+
int i, j
|
|
152
|
+
|
|
153
|
+
n_points = F.shape[0]
|
|
154
|
+
n_obj = F.shape[1]
|
|
155
|
+
|
|
156
|
+
for i in range(n_points):
|
|
157
|
+
|
|
158
|
+
val = 0
|
|
159
|
+
for j in range(n_obj):
|
|
160
|
+
val += pow(F[i,j] - (d1[i] * weights[i,j] / norm[i]), 2.0)
|
|
161
|
+
d2[i] = sqrt(val)
|
|
162
|
+
|
|
163
|
+
|
|
164
|
+
|
|
165
|
+
|
|
Binary file
|