pymodaq 5.0.5__py3-none-any.whl → 5.1.0a0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of pymodaq might be problematic. Click here for more details.
- pymodaq/control_modules/daq_move.py +77 -64
- pymodaq/control_modules/daq_move_ui.py +16 -15
- pymodaq/control_modules/daq_viewer.py +95 -87
- pymodaq/control_modules/daq_viewer_ui.py +22 -23
- pymodaq/control_modules/mocks.py +2 -2
- pymodaq/control_modules/move_utility_classes.py +28 -19
- pymodaq/control_modules/thread_commands.py +138 -0
- pymodaq/control_modules/utils.py +88 -20
- pymodaq/control_modules/viewer_utility_classes.py +8 -17
- pymodaq/dashboard.py +90 -27
- pymodaq/examples/qt_less_standalone_module.py +48 -11
- pymodaq/extensions/__init__.py +7 -3
- pymodaq/extensions/adaptive/__init__.py +2 -0
- pymodaq/extensions/adaptive/adaptive_optimization.py +159 -0
- pymodaq/extensions/adaptive/loss_function/_1d_loss_functions.py +73 -0
- pymodaq/extensions/adaptive/loss_function/_2d_loss_functions.py +86 -0
- pymodaq/extensions/adaptive/loss_function/__init__.py +3 -0
- pymodaq/extensions/adaptive/loss_function/loss_factory.py +106 -0
- pymodaq/extensions/adaptive/utils.py +97 -0
- pymodaq/extensions/bayesian/__init__.py +1 -1
- pymodaq/extensions/bayesian/acquisition/__init__.py +2 -0
- pymodaq/extensions/bayesian/acquisition/acquisition_function_factory.py +71 -0
- pymodaq/extensions/bayesian/acquisition/base_acquisition_function.py +86 -0
- pymodaq/extensions/bayesian/bayesian_optimization.py +121 -0
- pymodaq/extensions/bayesian/utils.py +27 -286
- pymodaq/extensions/daq_logger/daq_logger.py +7 -12
- pymodaq/extensions/daq_logger/h5logging.py +1 -1
- pymodaq/extensions/daq_scan.py +18 -47
- pymodaq/extensions/h5browser.py +3 -34
- pymodaq/extensions/optimizers_base/__init__.py +0 -0
- pymodaq/extensions/{bayesian/bayesian_optimisation.py → optimizers_base/optimizer.py} +441 -334
- pymodaq/extensions/optimizers_base/thread_commands.py +20 -0
- pymodaq/extensions/optimizers_base/utils.py +378 -0
- pymodaq/extensions/pid/pid_controller.py +6 -10
- pymodaq/extensions/utils.py +12 -0
- pymodaq/utils/data.py +1 -0
- pymodaq/utils/gui_utils/loader_utils.py +2 -0
- pymodaq/utils/h5modules/module_saving.py +134 -22
- pymodaq/utils/leco/daq_move_LECODirector.py +73 -73
- pymodaq/utils/leco/daq_xDviewer_LECODirector.py +36 -84
- pymodaq/utils/leco/director_utils.py +25 -10
- pymodaq/utils/leco/leco_director.py +65 -26
- pymodaq/utils/leco/pymodaq_listener.py +118 -68
- pymodaq/utils/leco/utils.py +24 -24
- pymodaq/utils/managers/modules_manager.py +37 -8
- pymodaq/utils/scanner/scanners/_1d_scanners.py +0 -38
- pymodaq/utils/scanner/scanners/_2d_scanners.py +0 -58
- {pymodaq-5.0.5.dist-info → pymodaq-5.1.0a0.dist-info}/METADATA +4 -3
- {pymodaq-5.0.5.dist-info → pymodaq-5.1.0a0.dist-info}/RECORD +52 -38
- {pymodaq-5.0.5.dist-info → pymodaq-5.1.0a0.dist-info}/entry_points.txt +0 -2
- pymodaq/utils/leco/desktop.ini +0 -2
- {pymodaq-5.0.5.dist-info → pymodaq-5.1.0a0.dist-info}/WHEEL +0 -0
- {pymodaq-5.0.5.dist-info → pymodaq-5.1.0a0.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,20 @@
|
|
|
1
|
+
from pymodaq_utils.enums import StrEnum
|
|
2
|
+
|
|
3
|
+
|
|
4
|
+
class OptimizerToRunner(StrEnum):
|
|
5
|
+
""" Allowed Generic commands sent from an Optimizer to its thread running class
|
|
6
|
+
|
|
7
|
+
"""
|
|
8
|
+
START = 'start'
|
|
9
|
+
RUN = 'run'
|
|
10
|
+
STOP = 'stop'
|
|
11
|
+
STOPPING = 'stopping'
|
|
12
|
+
BOUNDS = 'bounds'
|
|
13
|
+
|
|
14
|
+
PREDICTION = 'prediction'
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
class OptimizerThreadStatus(StrEnum):
|
|
18
|
+
|
|
19
|
+
ADD_DATA = "add_data"
|
|
20
|
+
|
|
@@ -0,0 +1,378 @@
|
|
|
1
|
+
# -*- coding: utf-8 -*-
|
|
2
|
+
"""
|
|
3
|
+
Created the 31/08/2023
|
|
4
|
+
|
|
5
|
+
@author: Sebastien Weber
|
|
6
|
+
"""
|
|
7
|
+
import abc
|
|
8
|
+
from abc import ABC
|
|
9
|
+
from typing import List, TYPE_CHECKING, Union, Dict, Tuple, Iterable
|
|
10
|
+
from pathlib import Path
|
|
11
|
+
import importlib
|
|
12
|
+
import pkgutil
|
|
13
|
+
import inspect
|
|
14
|
+
import numpy as np
|
|
15
|
+
from collections import namedtuple
|
|
16
|
+
|
|
17
|
+
from pymodaq_utils.abstract import abstract_attribute
|
|
18
|
+
from pymodaq_utils.utils import find_dict_in_list_from_key_val, get_entrypoints
|
|
19
|
+
from pymodaq_utils.logger import set_logger, get_module_name
|
|
20
|
+
from pymodaq_utils.enums import BaseEnum
|
|
21
|
+
from pymodaq_utils.config import BaseConfig
|
|
22
|
+
|
|
23
|
+
from pymodaq_gui.plotting.data_viewers.viewer import ViewersEnum
|
|
24
|
+
from pymodaq_gui.managers.parameter_manager import Parameter
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
from pymodaq_data.data import (DataToExport, DataCalculated,
|
|
28
|
+
DataRaw, Axis)
|
|
29
|
+
|
|
30
|
+
from pymodaq.utils.data import DataActuator, DataToActuators
|
|
31
|
+
from pymodaq.utils.managers.modules_manager import ModulesManager
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
logger = set_logger(get_module_name(__file__))
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
class StopType(BaseEnum):
|
|
38
|
+
Predict = 0
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
StoppingParameters = namedtuple('StoppingParameters',
|
|
42
|
+
['niter', 'stop_type', 'tolerance', 'npoints'])
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
class GenericAlgorithm(abc.ABC):
|
|
46
|
+
|
|
47
|
+
def __init__(self, ini_random: int):
|
|
48
|
+
|
|
49
|
+
self._algo = abstract_attribute() #could be a Bayesian on Adapative algorithm
|
|
50
|
+
self._prediction = abstract_attribute() # could be an acquisition function...
|
|
51
|
+
|
|
52
|
+
self._next_point: np.ndarray = None
|
|
53
|
+
self._suggested_coordinates: List[np.ndarray] = []
|
|
54
|
+
self.ini_random_points = ini_random
|
|
55
|
+
|
|
56
|
+
@abc.abstractmethod
|
|
57
|
+
def set_prediction_function(self, kind: str='', **kwargs):
|
|
58
|
+
""" Set/Load a given function/class to predict next probed points"""
|
|
59
|
+
|
|
60
|
+
@abc.abstractmethod
|
|
61
|
+
def update_prediction_function(self):
|
|
62
|
+
""" Update the parameters of the prediction function (kappa decay for instance)"""
|
|
63
|
+
|
|
64
|
+
def set_acquisition_function(self, kind: str, **kwargs):
|
|
65
|
+
""" Deprecated"""
|
|
66
|
+
self.set_prediction_function(kind, **kwargs)
|
|
67
|
+
|
|
68
|
+
def update_acquisition_function(self):
|
|
69
|
+
""" deprecated"""
|
|
70
|
+
self.update_prediction_function()
|
|
71
|
+
|
|
72
|
+
@property
|
|
73
|
+
def _acquisition(self):
|
|
74
|
+
""" deprecated """
|
|
75
|
+
return self._prediction
|
|
76
|
+
|
|
77
|
+
@property
|
|
78
|
+
def tradeoff(self):
|
|
79
|
+
return self._prediction.tradeoff
|
|
80
|
+
|
|
81
|
+
@property
|
|
82
|
+
@abc.abstractmethod
|
|
83
|
+
def bounds(self) -> List[np.ndarray]:
|
|
84
|
+
pass
|
|
85
|
+
|
|
86
|
+
@bounds.setter
|
|
87
|
+
def bounds(self, bounds: Union[Dict[str, Tuple[float, float]], Iterable[np.ndarray]]):
|
|
88
|
+
if isinstance(bounds, dict):
|
|
89
|
+
self._algo.set_bounds(bounds)
|
|
90
|
+
else:
|
|
91
|
+
self._algo.set_bounds(self._algo.space.array_to_params(np.array(bounds)))
|
|
92
|
+
|
|
93
|
+
def get_random_point(self) -> np.ndarray:
|
|
94
|
+
""" Get a random point coordinates in the defined bounds"""
|
|
95
|
+
point = []
|
|
96
|
+
for bound in self.bounds:
|
|
97
|
+
point.append((np.max(bound) - np.min(bound)) * np.random.random_sample() +
|
|
98
|
+
np.min(bound))
|
|
99
|
+
return np.array(point)
|
|
100
|
+
|
|
101
|
+
def ask(self) -> list[np.ndarray]:
|
|
102
|
+
""" Predict next actuator values to probe
|
|
103
|
+
|
|
104
|
+
Return a list of numpy array, one per actuator. In general these array are 0D
|
|
105
|
+
"""
|
|
106
|
+
try:
|
|
107
|
+
self._next_point = self.prediction_ask()
|
|
108
|
+
except:
|
|
109
|
+
self.ini_random_points -= 1
|
|
110
|
+
self._next_point = self.get_random_point()
|
|
111
|
+
self._suggested_coordinates.append(self._next_point)
|
|
112
|
+
return [np.atleast_1d(value) for value in self._next_point]
|
|
113
|
+
|
|
114
|
+
@abc.abstractmethod
|
|
115
|
+
def prediction_ask(self) -> np.ndarray:
|
|
116
|
+
""" Ask the prediction function or algo to provide the next point to probe"""
|
|
117
|
+
|
|
118
|
+
@abc.abstractmethod
|
|
119
|
+
def tell(self, function_value: float):
|
|
120
|
+
""" Add next points and function value into the algo"""
|
|
121
|
+
|
|
122
|
+
@property
|
|
123
|
+
@abc.abstractmethod
|
|
124
|
+
def best_fitness(self) -> float:
|
|
125
|
+
pass
|
|
126
|
+
|
|
127
|
+
@property
|
|
128
|
+
@abc.abstractmethod
|
|
129
|
+
def best_individual(self) -> Union[np.ndarray, None]:
|
|
130
|
+
pass
|
|
131
|
+
|
|
132
|
+
@abc.abstractmethod
|
|
133
|
+
def stopping(self, ind_iter: int, stopping_parameters: StoppingParameters) -> bool:
|
|
134
|
+
pass
|
|
135
|
+
|
|
136
|
+
|
|
137
|
+
class OptimizerModelGeneric(ABC):
|
|
138
|
+
|
|
139
|
+
optimization_algorithm: GenericAlgorithm = None
|
|
140
|
+
|
|
141
|
+
actuators_name: List[str] = []
|
|
142
|
+
detectors_name: List[str] = []
|
|
143
|
+
|
|
144
|
+
observables_dim: List[ViewersEnum] = []
|
|
145
|
+
|
|
146
|
+
params = [] # to be subclassed
|
|
147
|
+
|
|
148
|
+
def __init__(self, optimization_controller):
|
|
149
|
+
self.optimization_controller = optimization_controller # instance of the pid_controller using this model
|
|
150
|
+
self.modules_manager: ModulesManager = optimization_controller.modules_manager
|
|
151
|
+
|
|
152
|
+
self.settings = self.optimization_controller.settings.child('models', 'model_params') # set of parameters
|
|
153
|
+
self.check_modules(self.modules_manager)
|
|
154
|
+
|
|
155
|
+
def check_modules(self, modules_manager):
|
|
156
|
+
for act in self.actuators_name:
|
|
157
|
+
if act not in modules_manager.actuators_name:
|
|
158
|
+
logger.warning(f'The actuator {act} defined in the model is'
|
|
159
|
+
f' not present in the Dashboard')
|
|
160
|
+
return False
|
|
161
|
+
for det in self.detectors_name:
|
|
162
|
+
if det not in modules_manager.detectors_name:
|
|
163
|
+
logger.warning(f'The detector {det} defined in the model is'
|
|
164
|
+
f' not present in the Dashboard')
|
|
165
|
+
|
|
166
|
+
def update_detector_names(self):
|
|
167
|
+
names = self.optimization_controller.settings.child(
|
|
168
|
+
'main_settings', 'detector_modules').value()['selected']
|
|
169
|
+
self.data_names = []
|
|
170
|
+
for name in names:
|
|
171
|
+
name = name.split('//')
|
|
172
|
+
self.data_names.append(name)
|
|
173
|
+
|
|
174
|
+
def update_settings(self, param: Parameter):
|
|
175
|
+
"""
|
|
176
|
+
Get a parameter instance whose value has been modified by a user on the UI
|
|
177
|
+
To be overwritten in child class
|
|
178
|
+
"""
|
|
179
|
+
...
|
|
180
|
+
|
|
181
|
+
def update_plots(self):
|
|
182
|
+
""" Called when updating the live plots """
|
|
183
|
+
pass
|
|
184
|
+
|
|
185
|
+
def ini_model_base(self):
|
|
186
|
+
self.modules_manager.selected_actuators_name = self.actuators_name
|
|
187
|
+
self.modules_manager.selected_detectors_name = self.detectors_name
|
|
188
|
+
|
|
189
|
+
self.ini_model()
|
|
190
|
+
|
|
191
|
+
def ini_model(self):
|
|
192
|
+
""" To be subclassed
|
|
193
|
+
|
|
194
|
+
Initialize whatever is needed by your custom model
|
|
195
|
+
"""
|
|
196
|
+
raise NotImplementedError
|
|
197
|
+
|
|
198
|
+
def runner_initialized(self):
|
|
199
|
+
""" To be subclassed
|
|
200
|
+
|
|
201
|
+
Initialize whatever is needed by your custom model after the optimization runner is
|
|
202
|
+
initialized
|
|
203
|
+
"""
|
|
204
|
+
pass
|
|
205
|
+
|
|
206
|
+
def convert_input(self, measurements: DataToExport) -> float:
|
|
207
|
+
"""
|
|
208
|
+
Convert the measurements in the units to be fed to the Optimisation Controller
|
|
209
|
+
Parameters
|
|
210
|
+
----------
|
|
211
|
+
measurements: DataToExport
|
|
212
|
+
data object exported from the detectors from which the model extract a float value
|
|
213
|
+
(fitness) to be fed to the algorithm
|
|
214
|
+
|
|
215
|
+
Returns
|
|
216
|
+
-------
|
|
217
|
+
float
|
|
218
|
+
|
|
219
|
+
"""
|
|
220
|
+
raise NotImplementedError
|
|
221
|
+
|
|
222
|
+
def convert_output(self, outputs: List[np.ndarray], best_individual=None) -> DataToActuators:
|
|
223
|
+
""" Convert the output of the Optimisation Controller in units to be fed into the actuators
|
|
224
|
+
Parameters
|
|
225
|
+
----------
|
|
226
|
+
outputs: list of numpy ndarray
|
|
227
|
+
output value from the controller from which the model extract a value of the same units as the actuators
|
|
228
|
+
best_individual: np.ndarray
|
|
229
|
+
the coordinates of the best individual so far
|
|
230
|
+
Returns
|
|
231
|
+
-------
|
|
232
|
+
DataToActuatorOpti: derived from DataToExport. Contains value to be fed to the actuators with a a mode
|
|
233
|
+
attribute, either 'rel' for relative or 'abs' for absolute.
|
|
234
|
+
|
|
235
|
+
"""
|
|
236
|
+
raise NotImplementedError
|
|
237
|
+
|
|
238
|
+
|
|
239
|
+
class OptimizerModelDefault(OptimizerModelGeneric):
|
|
240
|
+
|
|
241
|
+
actuators_name: List[str] = [] # to be populated dynamically at instantiation
|
|
242
|
+
detectors_name: List[str] = [] # to be populated dynamically at instantiation
|
|
243
|
+
|
|
244
|
+
params = [{'title': 'Optimizing signal', 'name': 'optimizing_signal', 'type': 'group',
|
|
245
|
+
'children': [
|
|
246
|
+
{'title': 'Get data', 'name': 'data_probe', 'type': 'action'},
|
|
247
|
+
{'title': 'Optimize 0Ds:', 'name': 'optimize_0d', 'type': 'itemselect',
|
|
248
|
+
'checkbox': True},
|
|
249
|
+
]},]
|
|
250
|
+
|
|
251
|
+
def __init__(self, optimization_controller):
|
|
252
|
+
self.actuators_name = optimization_controller.modules_manager.actuators_name
|
|
253
|
+
self.detectors_name = optimization_controller.modules_manager.detectors_name
|
|
254
|
+
super().__init__(optimization_controller)
|
|
255
|
+
|
|
256
|
+
self.settings.child('optimizing_signal', 'data_probe').sigActivated.connect(
|
|
257
|
+
self.optimize_from)
|
|
258
|
+
|
|
259
|
+
def ini_model(self):
|
|
260
|
+
pass
|
|
261
|
+
|
|
262
|
+
def optimize_from(self):
|
|
263
|
+
self.modules_manager.get_det_data_list()
|
|
264
|
+
data0D = self.modules_manager.settings['data_dimensions', 'det_data_list0D']
|
|
265
|
+
data0D['selected'] = data0D['all_items']
|
|
266
|
+
self.settings.child('optimizing_signal', 'optimize_0d').setValue(data0D)
|
|
267
|
+
|
|
268
|
+
def update_settings(self, param: Parameter):
|
|
269
|
+
pass
|
|
270
|
+
|
|
271
|
+
def convert_input(self, measurements: DataToExport) -> float:
|
|
272
|
+
""" Convert the measurements in the units to be fed to the Optimisation Controller
|
|
273
|
+
|
|
274
|
+
Parameters
|
|
275
|
+
----------
|
|
276
|
+
measurements: DataToExport
|
|
277
|
+
data object exported from the detectors from which the model extract a float value
|
|
278
|
+
(fitness) to be fed to the algorithm
|
|
279
|
+
|
|
280
|
+
Returns
|
|
281
|
+
-------
|
|
282
|
+
float
|
|
283
|
+
|
|
284
|
+
"""
|
|
285
|
+
data_name: str = self.settings['optimizing_signal', 'optimize_0d']['selected'][0]
|
|
286
|
+
origin, name = data_name.split('/')
|
|
287
|
+
return float(measurements.get_data_from_name_origin(name, origin).data[0][0])
|
|
288
|
+
|
|
289
|
+
def convert_output(self, outputs: List[np.ndarray], best_individual=None) -> DataToActuators:
|
|
290
|
+
""" Convert the output of the Optimisation Controller in units to be fed into the actuators
|
|
291
|
+
Parameters
|
|
292
|
+
----------
|
|
293
|
+
outputs: list of numpy ndarray
|
|
294
|
+
output value from the controller from which the model extract a value of the same units as the actuators
|
|
295
|
+
best_individual: np.ndarray
|
|
296
|
+
the coordinates of the best individual so far
|
|
297
|
+
|
|
298
|
+
Returns
|
|
299
|
+
-------
|
|
300
|
+
DataToActuators: derived from DataToExport. Contains value to be fed to the actuators
|
|
301
|
+
with a mode attribute, either 'rel' for relative or 'abs' for absolute.
|
|
302
|
+
|
|
303
|
+
"""
|
|
304
|
+
return DataToActuators(
|
|
305
|
+
'outputs', mode='abs',
|
|
306
|
+
data=[DataActuator(self.modules_manager.actuators_name[ind],
|
|
307
|
+
data=float(outputs[ind][0])) for ind in range(len(outputs))])
|
|
308
|
+
|
|
309
|
+
|
|
310
|
+
|
|
311
|
+
|
|
312
|
+
def get_optimizer_models(model_name=None):
|
|
313
|
+
"""
|
|
314
|
+
Get Optimizer Models as a list to instantiate Control Actuators per degree of liberty in the model
|
|
315
|
+
|
|
316
|
+
Returns
|
|
317
|
+
-------
|
|
318
|
+
list: list of disct containting the name and python module of the found models
|
|
319
|
+
"""
|
|
320
|
+
models_import = []
|
|
321
|
+
discovered_models = get_entrypoints(group='pymodaq.models')
|
|
322
|
+
if len(discovered_models) > 0:
|
|
323
|
+
for pkg in discovered_models:
|
|
324
|
+
try:
|
|
325
|
+
module = importlib.import_module(pkg.value)
|
|
326
|
+
module_name = pkg.value
|
|
327
|
+
|
|
328
|
+
for mod in pkgutil.iter_modules([
|
|
329
|
+
str(Path(module.__file__).parent.joinpath('models'))]):
|
|
330
|
+
try:
|
|
331
|
+
model_module = importlib.import_module(f'{module_name}.models.{mod.name}',
|
|
332
|
+
module)
|
|
333
|
+
classes = inspect.getmembers(model_module, inspect.isclass)
|
|
334
|
+
for name, klass in classes:
|
|
335
|
+
if issubclass(klass, OptimizerModelGeneric):
|
|
336
|
+
if find_dict_in_list_from_key_val(models_import, 'name', mod.name)\
|
|
337
|
+
is None:
|
|
338
|
+
models_import.append({'name': klass.__name__,
|
|
339
|
+
'module': model_module,
|
|
340
|
+
'class': klass})
|
|
341
|
+
|
|
342
|
+
except Exception as e:
|
|
343
|
+
logger.warning(str(e))
|
|
344
|
+
|
|
345
|
+
except Exception as e:
|
|
346
|
+
logger.warning(f'Impossible to import the {pkg.value} optimizer model: {str(e)}')
|
|
347
|
+
|
|
348
|
+
if find_dict_in_list_from_key_val(models_import, 'name', 'OptimizerModelDefault') \
|
|
349
|
+
is None:
|
|
350
|
+
models_import.append({'name': 'OptimizerModelDefault',
|
|
351
|
+
'module': inspect.getmodule(OptimizerModelDefault),
|
|
352
|
+
'class': OptimizerModelDefault})
|
|
353
|
+
if model_name is None:
|
|
354
|
+
return models_import
|
|
355
|
+
else:
|
|
356
|
+
return find_dict_in_list_from_key_val(models_import, 'name', model_name)
|
|
357
|
+
|
|
358
|
+
|
|
359
|
+
class OptimizerConfig(BaseConfig):
|
|
360
|
+
"""Main class to deal with configuration values for this plugin
|
|
361
|
+
|
|
362
|
+
To b subclassed for real implementation if needed, see Optimizer class attribute config_saver
|
|
363
|
+
"""
|
|
364
|
+
config_template_path = None
|
|
365
|
+
config_name = f"optimizer_settings"
|
|
366
|
+
|
|
367
|
+
|
|
368
|
+
def find_key_in_nested_dict(dic, key):
|
|
369
|
+
stack = [dic]
|
|
370
|
+
while stack:
|
|
371
|
+
d = stack.pop()
|
|
372
|
+
if key in d:
|
|
373
|
+
return d[key]
|
|
374
|
+
for v in d.values():
|
|
375
|
+
if isinstance(v, dict):
|
|
376
|
+
stack.append(v)
|
|
377
|
+
if isinstance(v, list):
|
|
378
|
+
stack += v
|
|
@@ -126,7 +126,7 @@ class DAQ_PID(CustomExt):
|
|
|
126
126
|
if self.settings['main_settings', 'pid_controls', 'output_limits', 'output_limit_max_enabled']:
|
|
127
127
|
output_limits[1] = self.settings['main_settings', 'pid_controls', 'output_limits', 'output_limit_max']
|
|
128
128
|
|
|
129
|
-
self.
|
|
129
|
+
self.runner_thread = QThread()
|
|
130
130
|
pid_runner = PIDRunner(self.model_class, self.modules_manager, setpoints=self.setpoints,
|
|
131
131
|
params=dict(Kp=self.settings['main_settings', 'pid_controls', 'pid_constants',
|
|
132
132
|
'kp'],
|
|
@@ -140,24 +140,20 @@ class DAQ_PID(CustomExt):
|
|
|
140
140
|
auto_mode=False),
|
|
141
141
|
)
|
|
142
142
|
|
|
143
|
-
self.
|
|
143
|
+
self.runner_thread.pid_runner = pid_runner
|
|
144
144
|
pid_runner.pid_output_signal.connect(self.process_output)
|
|
145
145
|
pid_runner.status_sig.connect(self.thread_status)
|
|
146
146
|
self.command_pid.connect(pid_runner.queue_command)
|
|
147
147
|
|
|
148
|
-
pid_runner.moveToThread(self.
|
|
148
|
+
pid_runner.moveToThread(self.runner_thread)
|
|
149
149
|
|
|
150
|
-
self.
|
|
150
|
+
self.runner_thread.start()
|
|
151
151
|
self.get_action('pid_led').set_as_true()
|
|
152
152
|
self.enable_controls_pid_run(True)
|
|
153
153
|
|
|
154
154
|
else:
|
|
155
155
|
if hasattr(self, 'PIDThread'):
|
|
156
|
-
|
|
157
|
-
try:
|
|
158
|
-
self.PIDThread.quit()
|
|
159
|
-
except Exception:
|
|
160
|
-
pass
|
|
156
|
+
self.exit_runner_thread()
|
|
161
157
|
self.get_action('pid_led').set_as_false()
|
|
162
158
|
self.enable_controls_pid_run(False)
|
|
163
159
|
|
|
@@ -462,7 +458,7 @@ class DAQ_PID(CustomExt):
|
|
|
462
458
|
"""
|
|
463
459
|
try:
|
|
464
460
|
try:
|
|
465
|
-
self.
|
|
461
|
+
self.runner_thread.exit()
|
|
466
462
|
except Exception as e:
|
|
467
463
|
print(e)
|
|
468
464
|
|
pymodaq/extensions/utils.py
CHANGED
|
@@ -78,6 +78,11 @@ class CustomExt(CustomApp):
|
|
|
78
78
|
super().__init__(parent)
|
|
79
79
|
|
|
80
80
|
self.dashboard = dashboard
|
|
81
|
+
self.runner_thread : QtCore.QThread = None
|
|
82
|
+
|
|
83
|
+
@property
|
|
84
|
+
def splash(self):
|
|
85
|
+
return self.dashboard.splash_sc
|
|
81
86
|
|
|
82
87
|
@property
|
|
83
88
|
def modules_manager(self) -> ModulesManager:
|
|
@@ -91,3 +96,10 @@ class CustomExt(CustomApp):
|
|
|
91
96
|
"""
|
|
92
97
|
if self.dashboard is not None:
|
|
93
98
|
return self.dashboard.modules_manager
|
|
99
|
+
|
|
100
|
+
def exit_runner_thread(self, duration : int = 5000):
|
|
101
|
+
self.runner_thread.quit()
|
|
102
|
+
terminated = self.runner_thread.wait(duration)
|
|
103
|
+
if not terminated:
|
|
104
|
+
self.runner_thread.terminate()
|
|
105
|
+
self.runner_thread.wait()
|
pymodaq/utils/data.py
CHANGED
|
@@ -53,6 +53,8 @@ def load_dashboard_with_preset(preset_name: str, extension_name: str) -> \
|
|
|
53
53
|
extension = dashboard.load_pid_module()
|
|
54
54
|
elif extension_name == 'Bayesian':
|
|
55
55
|
extension = dashboard.load_bayesian()
|
|
56
|
+
elif extension_name == 'AdaptiveScan':
|
|
57
|
+
extension = dashboard.load_adaptive()
|
|
56
58
|
else:
|
|
57
59
|
extension = dashboard.load_extension_from_name(extension_name)
|
|
58
60
|
else:
|