pymc-extras 0.6.0__py3-none-any.whl → 0.8.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (31) hide show
  1. pymc_extras/distributions/timeseries.py +10 -10
  2. pymc_extras/inference/dadvi/dadvi.py +14 -83
  3. pymc_extras/inference/laplace_approx/laplace.py +187 -159
  4. pymc_extras/inference/pathfinder/pathfinder.py +12 -7
  5. pymc_extras/inference/smc/sampling.py +2 -2
  6. pymc_extras/model/marginal/distributions.py +4 -2
  7. pymc_extras/model/marginal/marginal_model.py +12 -2
  8. pymc_extras/prior.py +3 -3
  9. pymc_extras/statespace/core/properties.py +276 -0
  10. pymc_extras/statespace/core/statespace.py +182 -45
  11. pymc_extras/statespace/filters/distributions.py +19 -34
  12. pymc_extras/statespace/filters/kalman_filter.py +13 -12
  13. pymc_extras/statespace/filters/kalman_smoother.py +2 -2
  14. pymc_extras/statespace/models/DFM.py +179 -168
  15. pymc_extras/statespace/models/ETS.py +177 -151
  16. pymc_extras/statespace/models/SARIMAX.py +149 -152
  17. pymc_extras/statespace/models/VARMAX.py +134 -145
  18. pymc_extras/statespace/models/__init__.py +8 -1
  19. pymc_extras/statespace/models/structural/__init__.py +30 -8
  20. pymc_extras/statespace/models/structural/components/autoregressive.py +87 -45
  21. pymc_extras/statespace/models/structural/components/cycle.py +119 -80
  22. pymc_extras/statespace/models/structural/components/level_trend.py +95 -42
  23. pymc_extras/statespace/models/structural/components/measurement_error.py +27 -17
  24. pymc_extras/statespace/models/structural/components/regression.py +105 -68
  25. pymc_extras/statespace/models/structural/components/seasonality.py +138 -100
  26. pymc_extras/statespace/models/structural/core.py +397 -286
  27. pymc_extras/statespace/models/utilities.py +5 -20
  28. {pymc_extras-0.6.0.dist-info → pymc_extras-0.8.0.dist-info}/METADATA +4 -4
  29. {pymc_extras-0.6.0.dist-info → pymc_extras-0.8.0.dist-info}/RECORD +31 -30
  30. {pymc_extras-0.6.0.dist-info → pymc_extras-0.8.0.dist-info}/WHEEL +0 -0
  31. {pymc_extras-0.6.0.dist-info → pymc_extras-0.8.0.dist-info}/licenses/LICENSE +0 -0
@@ -1,3 +1,4 @@
1
+ from collections.abc import Sequence
1
2
  from typing import cast as type_cast
2
3
 
3
4
  import numpy as np
@@ -6,31 +7,12 @@ import pytensor.tensor as pt
6
7
  from pytensor.tensor import TensorVariable
7
8
 
8
9
  from pymc_extras.statespace.utils.constants import (
9
- ALL_STATE_AUX_DIM,
10
- ALL_STATE_DIM,
11
10
  LONG_MATRIX_NAMES,
12
11
  MATRIX_NAMES,
13
- OBS_STATE_AUX_DIM,
14
- OBS_STATE_DIM,
15
- SHOCK_AUX_DIM,
16
- SHOCK_DIM,
17
12
  VECTOR_VALUED,
18
13
  )
19
14
 
20
15
 
21
- def make_default_coords(ss_mod):
22
- coords = {
23
- ALL_STATE_DIM: ss_mod.state_names,
24
- ALL_STATE_AUX_DIM: ss_mod.state_names,
25
- OBS_STATE_DIM: ss_mod.observed_states,
26
- OBS_STATE_AUX_DIM: ss_mod.observed_states,
27
- SHOCK_DIM: ss_mod.shock_names,
28
- SHOCK_AUX_DIM: ss_mod.shock_names,
29
- }
30
-
31
- return coords
32
-
33
-
34
16
  def cleanup_states(states: list[str]) -> list[str]:
35
17
  """
36
18
  Remove meaningless symbols from state names
@@ -672,8 +654,11 @@ def get_exog_dims_from_idata(exog_name, idata):
672
654
  return exog_dims
673
655
 
674
656
 
675
- def validate_names(names: list[str], var_name: str, optional: bool = True) -> None:
657
+ def validate_names(names: Sequence[str] | None, var_name: str, optional: bool = True) -> None:
676
658
  if names is None:
677
659
  if optional:
678
660
  return None
661
+
679
662
  raise ValueError(f"Must specify {var_name}")
663
+
664
+ return None
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: pymc-extras
3
- Version: 0.6.0
3
+ Version: 0.8.0
4
4
  Summary: A home for new additions to PyMC, which may include unusual probability distribitions, advanced model fitting algorithms, or any code that may be inappropriate to include in the pymc repository, but may want to be made available to users.
5
5
  Project-URL: Documentation, https://pymc-extras.readthedocs.io/
6
6
  Project-URL: Repository, https://github.com/pymc-devs/pymc-extras.git
@@ -235,8 +235,8 @@ Requires-Python: >=3.11
235
235
  Requires-Dist: better-optimize>=0.1.5
236
236
  Requires-Dist: preliz>=0.20.0
237
237
  Requires-Dist: pydantic>=2.0.0
238
- Requires-Dist: pymc>=5.26.1
239
- Requires-Dist: pytensor>=2.35.1
238
+ Requires-Dist: pymc>=5.27.1
239
+ Requires-Dist: pytensor>=2.37.0
240
240
  Requires-Dist: scikit-learn
241
241
  Provides-Extra: complete
242
242
  Requires-Dist: dask[complete]<2025.1.1; extra == 'complete'
@@ -245,7 +245,7 @@ Provides-Extra: dask-histogram
245
245
  Requires-Dist: dask[complete]<2025.1.1; extra == 'dask-histogram'
246
246
  Requires-Dist: xhistogram; extra == 'dask-histogram'
247
247
  Provides-Extra: dev
248
- Requires-Dist: blackjax; extra == 'dev'
248
+ Requires-Dist: blackjax>=0.12; extra == 'dev'
249
249
  Requires-Dist: dask[all]<2025.1.1; extra == 'dev'
250
250
  Requires-Dist: pytest-mock; extra == 'dev'
251
251
  Requires-Dist: pytest>=6.0; extra == 'dev'
@@ -3,12 +3,12 @@ pymc_extras/deserialize.py,sha256=lA5Nc3ZMjlq8sXVBzJLdb3ZkK_PsJNkaH-QhBcQZcd4,59
3
3
  pymc_extras/linearmodel.py,sha256=KkvZ_DBXOD6myPgVNzu742YV0OzDK449_pDqNC5yae4,3975
4
4
  pymc_extras/model_builder.py,sha256=cypRVbSR2XE7xDU2mL2MfjNXoyruAwtKbuUEhzmWPao,26460
5
5
  pymc_extras/printing.py,sha256=bFOANgsOWDk0vbRMvm2h_D5TsT7OiSojdG7tvyfCw28,6506
6
- pymc_extras/prior.py,sha256=SyBGmZ6XZKpBd8E2tGGZjWvki0ngh1-_h8rLOTTv4hI,44276
6
+ pymc_extras/prior.py,sha256=cu6VWZejvYGll_yFc4lGJ4YOrc9ro7LXkbiQ4LPxU9E,44331
7
7
  pymc_extras/distributions/__init__.py,sha256=Cge3AP7gzD6qTJY7v2tYRtSgn-rlnIo7wQBgf3IfKQ8,1377
8
8
  pymc_extras/distributions/continuous.py,sha256=bCXOgnw2Vh_FbYOHCqB0c3ozFVay5Qwua2A211kvWNQ,11251
9
9
  pymc_extras/distributions/discrete.py,sha256=HNi-K0_hnNWTcfyBkWGh26sc71FwBgukQ_EjGAaAOjY,13036
10
10
  pymc_extras/distributions/histogram_utils.py,sha256=kkZHu1F_2qMfOEzwNP4K6QYA_xEKUk9cChImOQ2Nkjs,5847
11
- pymc_extras/distributions/timeseries.py,sha256=R9htJ24LCFe5zyR9v6nX7S8iFmSMoQKSIGnLWZ1849Y,12747
11
+ pymc_extras/distributions/timeseries.py,sha256=WysWtUchfObTGmKduF47bUBqV_g1kW-uAx4_oKENgDg,12709
12
12
  pymc_extras/distributions/multivariate/__init__.py,sha256=E8OeLW9tTotCbrUjEo4um76-_WQD56PehsPzkKmhfyA,93
13
13
  pymc_extras/distributions/multivariate/r2d2m2cp.py,sha256=5SzvD41pu-EWyWlDNz4AR4Sl8MkyC-1dYwkADFh5Avg,16009
14
14
  pymc_extras/distributions/transforms/__init__.py,sha256=FUp2vyRE6_2eUcQ_FVt5Dn0-vy5I-puV-Kz13-QtLNc,104
@@ -18,25 +18,25 @@ pymc_extras/gp/latent_approx.py,sha256=cDEMM6H1BL2qyKg7BZU-ISrKn2HJe7hDaM4Y8GgQD
18
18
  pymc_extras/inference/__init__.py,sha256=hI3yqfEVzoUNlCpL1z579F9EqM-NlPTzMfHj8IKY-xE,1009
19
19
  pymc_extras/inference/fit.py,sha256=hNTqLms_mTdjfnCEVIHMcMiPZ3fkU3HEEkbt6LWWhLw,1443
20
20
  pymc_extras/inference/dadvi/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
21
- pymc_extras/inference/dadvi/dadvi.py,sha256=Ry1Of_zo0eURVKbWE0U7NDmb7HQ2I_PWBFQcyowAXbE,11799
21
+ pymc_extras/inference/dadvi/dadvi.py,sha256=rERiyMn1ywEerWJ8rq3WNZKtKEpX2lHAdqApatZyJpQ,9698
22
22
  pymc_extras/inference/laplace_approx/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
23
23
  pymc_extras/inference/laplace_approx/find_map.py,sha256=fbK0swDsSBo7pP1TBokREa2wkK1ajL_gLVVuREHH33k,13658
24
24
  pymc_extras/inference/laplace_approx/idata.py,sha256=Dxj6A8aJXn8c24vD_PZmMgIgrwEmaYDlbw5UAJq0Nyw,14172
25
- pymc_extras/inference/laplace_approx/laplace.py,sha256=suSxCibVry1p3VjdvG9I_9QxazKdcKKT-xmCN1qXNRA,19706
25
+ pymc_extras/inference/laplace_approx/laplace.py,sha256=1IHNYhL8CMvuvU90RmLSIRF8NI4GLlTz_FcRb1t79Bw,20381
26
26
  pymc_extras/inference/laplace_approx/scipy_interface.py,sha256=Crhix_dLA8Y_NvuUDmVQnKWAWGjufmQwDLh-bK9dz_o,10235
27
27
  pymc_extras/inference/pathfinder/__init__.py,sha256=FhAYrCWNx_dCrynEdjg2CZ9tIinvcVLBm67pNx_Y3kA,101
28
28
  pymc_extras/inference/pathfinder/idata.py,sha256=muAPc9JeI8ZmpjzSp9tSj-uNrcsoNkYb4raJqjgf5UQ,18636
29
29
  pymc_extras/inference/pathfinder/importance_sampling.py,sha256=NwxepXOFit3cA5zEebniKdlnJ1rZWg56aMlH4MEOcG4,6264
30
30
  pymc_extras/inference/pathfinder/lbfgs.py,sha256=GOoJBil5Kft_iFwGNUGKSeqzI5x_shA4KQWDwgGuQtQ,7110
31
- pymc_extras/inference/pathfinder/pathfinder.py,sha256=3fYq3cgchwXxTEehT2PLu32r7hP7vAMoPpOS7TYpZ-w,67193
31
+ pymc_extras/inference/pathfinder/pathfinder.py,sha256=MP71xjc3PSsgknEdfbRMXPpRfiXlMebqhBbnSQkXMPg,67344
32
32
  pymc_extras/inference/smc/__init__.py,sha256=wyaT4NJl1YsSQRLiDy-i0Jq3CbJZ2BQd4nnCk-dIngY,603
33
- pymc_extras/inference/smc/sampling.py,sha256=AYwmKqGoV6pBtKnh9SUbBKbN7VcoFgb3MmNWV7SivMA,15365
33
+ pymc_extras/inference/smc/sampling.py,sha256=eyRIFPf--tcPpuHPNCxGZNQZVd7MazR4l9aURNY87S0,15385
34
34
  pymc_extras/model/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
35
35
  pymc_extras/model/model_api.py,sha256=UHMfQXxWBujeSiUySU0fDUC5Sd_BjT8FoVz3iBxQH_4,2400
36
36
  pymc_extras/model/marginal/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
37
- pymc_extras/model/marginal/distributions.py,sha256=iM1yT7_BmivgUSloQPKE2QXGPgjvLqDMY_OTBGsdAWg,15563
37
+ pymc_extras/model/marginal/distributions.py,sha256=mf6Czm6av2nCydu6uKqjamKFPD8efWJmNlTMy4Ojrvk,15621
38
38
  pymc_extras/model/marginal/graph_analysis.py,sha256=Ft7RZC126R0TW2GuFdgb9uN-JSgDGTeffs-UuPcDHQE,15884
39
- pymc_extras/model/marginal/marginal_model.py,sha256=oIdikaSnefCkyMxmzAe222qGXNucxZpHYk7548fK6iA,23631
39
+ pymc_extras/model/marginal/marginal_model.py,sha256=Wgfcq6hplACU4Kh8aKT2P_kz_yo7r0wIVTupZQtQUKw,23969
40
40
  pymc_extras/model/transforms/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
41
41
  pymc_extras/model/transforms/autoreparam.py,sha256=_NltGWmNqi_X9sHCqAvWcBveLTPxVy11-wENFTcN6kk,12377
42
42
  pymc_extras/preprocessing/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -44,29 +44,30 @@ pymc_extras/preprocessing/standard_scaler.py,sha256=Vajp33ma6OkwlU54JYtSS8urHbMJ
44
44
  pymc_extras/statespace/__init__.py,sha256=PxV8i4aa2XJarRM6aKU14_bEY1AoLu4bNXIBy_E1rRw,431
45
45
  pymc_extras/statespace/core/__init__.py,sha256=LEhkqdMZzzcTyzYml45IM4ykWoCdbWWj2c29IpM_ey8,309
46
46
  pymc_extras/statespace/core/compile.py,sha256=GB2H7sE28OdQ6GmNIjtq1R1Oua2GPf6kWJ7IPuYJaNA,1607
47
+ pymc_extras/statespace/core/properties.py,sha256=pDWjWY4u4cilLtZ7SkhVS_6ouzH7TwPgnJgEwYhbiTw,8118
47
48
  pymc_extras/statespace/core/representation.py,sha256=boY-jjlkd3KuuO2XiSuV-GwEAyEqRJ9267H72AmE3BU,18956
48
- pymc_extras/statespace/core/statespace.py,sha256=yu7smA5w7l1LFNjTwuKLnGarGLx4HEPJKQ9ZMDbWhDY,108161
49
+ pymc_extras/statespace/core/statespace.py,sha256=Q-sj7Lf5EiIjULQoaHq6140VDtXx4oCdiQQicVWtIVA,112457
49
50
  pymc_extras/statespace/filters/__init__.py,sha256=F0EtZUhArp23lj3upy6zB0mDTjLIjwGh0pKmMny0QfY,420
50
- pymc_extras/statespace/filters/distributions.py,sha256=-s1c5s2zm6FMc0UqKSrWnJzIF4U5bvJT_3mMNTyV_ak,11927
51
- pymc_extras/statespace/filters/kalman_filter.py,sha256=0Ei_ZSogSAAC9OQn4v0tvUqvRZFHh6V3Wx8013-POBQ,31542
52
- pymc_extras/statespace/filters/kalman_smoother.py,sha256=Q1mwKeZPEMQL3BK2IvGwLfblGGQrfJ2t60fzll1Pung,4128
51
+ pymc_extras/statespace/filters/distributions.py,sha256=h98bstdTF3K4P4VAJBflGnyvokOw7j7ZHK5S2aoJFOw,11305
52
+ pymc_extras/statespace/filters/kalman_filter.py,sha256=NF-raNqf5m5szoirhYvghMT8ViFU24h7VwTO51nIW3E,31560
53
+ pymc_extras/statespace/filters/kalman_smoother.py,sha256=JmnvXwHVzWTdmtgECTJY0FJOFZG6O9aEfRoSTWEeU2s,4111
53
54
  pymc_extras/statespace/filters/utilities.py,sha256=BBMDeWBcJWZfGc9owuMsOedVIXVDQ8Z2eMiU9vWeVr0,1494
54
- pymc_extras/statespace/models/DFM.py,sha256=EiZ3x4iFPGeha8bPp1tok4us8Z6UVUu1sFmKIM1i0xc,36458
55
- pymc_extras/statespace/models/ETS.py,sha256=LEsSKzbfm9Ol8UZQjNurcrM1CLQyozKfJtby7AzsDeI,27667
56
- pymc_extras/statespace/models/SARIMAX.py,sha256=CNac0LVOqE6qM40YKZ4KdYF6EUR2gZfR5H__AdPDFOs,24558
57
- pymc_extras/statespace/models/VARMAX.py,sha256=i9r4DcIl2MWH8JWG4u5T3k3Oe8aXHYld43d8sIqO_pg,22374
58
- pymc_extras/statespace/models/__init__.py,sha256=DUwPrwfnz9AUbgZOFvZeUpWEw5FiPAK5X9x7vZrRWqY,319
59
- pymc_extras/statespace/models/utilities.py,sha256=D1VMCXzwlNChfk-x4f9cOhfsK_xOoBBhmRzpjdx0tEs,27329
60
- pymc_extras/statespace/models/structural/__init__.py,sha256=jvbczE1IeNkhW7gMQ2vF2BhhKHeYyfD90mV-Awko-Vs,811
61
- pymc_extras/statespace/models/structural/core.py,sha256=n0cbP8_-NFLmflFF4x37AyOOIHcY5iylRrgTzjyOAhM,35374
55
+ pymc_extras/statespace/models/DFM.py,sha256=FPIBOJaHDv-WYZgkQTtRUCCw96KagRY_gD2jXcxdfbM,36829
56
+ pymc_extras/statespace/models/ETS.py,sha256=J27qKunJDc__7_T7UP5RJz_Ga3Ku4ozkz34LwFE2ieg,28593
57
+ pymc_extras/statespace/models/SARIMAX.py,sha256=INxC0Jp5vHAf9rGMrj7VN4ol4m1d5DWcQtlevcAghpA,24269
58
+ pymc_extras/statespace/models/VARMAX.py,sha256=a-39jN1zi7jLe5jtz9rspV9yCPjDRvpiMDYz_AL5L9A,21866
59
+ pymc_extras/statespace/models/__init__.py,sha256=8ocvgETetsikaKf-Y9K50_Yjf8emU5xkMrz_5oLwmrc,435
60
+ pymc_extras/statespace/models/utilities.py,sha256=Ak_pJxcUUdniXcXVYdBoOtoNNPQEJIBB3GYf_lNn8bI,26932
61
+ pymc_extras/statespace/models/structural/__init__.py,sha256=NlegsutNOzfM2239mi0vvmq69_9_V4Y3JceywvoZZ10,1342
62
+ pymc_extras/statespace/models/structural/core.py,sha256=S-ZOhlt9zwyt1pch1N-nswLwhMOyutaIalG5eB59k40,38858
62
63
  pymc_extras/statespace/models/structural/utils.py,sha256=Eze34Z0iXJzDC_gZEY2mHrp2VIYu8rHV915vM4U5Sn4,359
63
64
  pymc_extras/statespace/models/structural/components/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
64
- pymc_extras/statespace/models/structural/components/autoregressive.py,sha256=qlV38eJtjejYi9ujiCyUWfeSbFBXdNvi-hgKx57OQ28,8048
65
- pymc_extras/statespace/models/structural/components/cycle.py,sha256=qEiGFGMEXKS2Tl_zgzKIp77ijGXCVq6UIHEZp_ErHSQ,13931
66
- pymc_extras/statespace/models/structural/components/level_trend.py,sha256=7glYX_tKOJPq6uB1NBuPQFFZGkhcwK4GMZUBTcU0xIY,11357
67
- pymc_extras/statespace/models/structural/components/measurement_error.py,sha256=5LHDx3IplNrWSGcsY3xJLywKPosTqr42jlrvm80ZApM,5316
68
- pymc_extras/statespace/models/structural/components/regression.py,sha256=U2zlVY31WbhFCime69aN6R3VKPlNVf5HNTfIjfiPy-M,8949
69
- pymc_extras/statespace/models/structural/components/seasonality.py,sha256=soXJIZ2xewUhSUb5s2MGnxvnQCcir7ZgbgkSr94xEvc,26987
65
+ pymc_extras/statespace/models/structural/components/autoregressive.py,sha256=XpaA5rKv9WZjqUeS7ue4yJniF-zWrfOG7GSwNVg88OY,9179
66
+ pymc_extras/statespace/models/structural/components/cycle.py,sha256=5dcJ_6VjxFQ2ZUO19RVyh8nArwHGNTZFd2uLCTJsta0,14952
67
+ pymc_extras/statespace/models/structural/components/level_trend.py,sha256=eo7NIAOuM4mFeuA3ev9tBQzGzPcPu6tjNVCY0fZvA6Q,13082
68
+ pymc_extras/statespace/models/structural/components/measurement_error.py,sha256=1f6mpQWD7ElDhG3XN44J7o4e-xq81oWrUaDA_oBTnHk,5625
69
+ pymc_extras/statespace/models/structural/components/regression.py,sha256=pbp_1EmcMxKqf6ikGq7F1pOijelJiR938HKml26g3kw,9981
70
+ pymc_extras/statespace/models/structural/components/seasonality.py,sha256=h3R2G8KxsmgcCujs9mBJgJeXeTopRGLMRNlxMX253cM,28338
70
71
  pymc_extras/statespace/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
71
72
  pymc_extras/statespace/utils/constants.py,sha256=Dj1XpY_u5EliyStGrEFq5jmA5d_EMHCT4teaifxiTko,2577
72
73
  pymc_extras/statespace/utils/coord_tools.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -76,7 +77,7 @@ pymc_extras/utils/linear_cg.py,sha256=KkXhuimFsrKtNd_0By2ApxQQQNm5FdBtmDQJOVbLYk
76
77
  pymc_extras/utils/model_equivalence.py,sha256=9MLwSj7VwxxKupzmEkKBbwGD1X0WM2FGcGIpfb8bViw,2197
77
78
  pymc_extras/utils/prior.py,sha256=mnuFpamp04eQJuTU5NyB2PfCG5r-1McSmQGwQXSR_Lg,6670
78
79
  pymc_extras/utils/spline.py,sha256=R0u3eAcV5bRmD2YSLqDm0qnaJbEuf3V38OZ7amV7-Tc,4732
79
- pymc_extras-0.6.0.dist-info/METADATA,sha256=Dn4Xwbebxw8QiFA0veLrEktkowKsAx06h00p7Epec1E,18898
80
- pymc_extras-0.6.0.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
81
- pymc_extras-0.6.0.dist-info/licenses/LICENSE,sha256=WjiLhUKEysJvy5e9jk6WwFv9tmAPtnov1uJ6gcH1kIs,11720
82
- pymc_extras-0.6.0.dist-info/RECORD,,
80
+ pymc_extras-0.8.0.dist-info/METADATA,sha256=_aigNVZF-Z-BSkS0nT45vHbZPnPC16H7RsRtYiP9b0Q,18904
81
+ pymc_extras-0.8.0.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
82
+ pymc_extras-0.8.0.dist-info/licenses/LICENSE,sha256=WjiLhUKEysJvy5e9jk6WwFv9tmAPtnov1uJ6gcH1kIs,11720
83
+ pymc_extras-0.8.0.dist-info/RECORD,,