pymc-extras 0.4.1__py3-none-any.whl → 0.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -17,7 +17,7 @@ from pymc_extras.statespace.utils.constants import (
17
17
  ALL_STATE_AUX_DIM,
18
18
  ALL_STATE_DIM,
19
19
  AR_PARAM_DIM,
20
- EXOGENOUS_DIM,
20
+ EXOG_STATE_DIM,
21
21
  MA_PARAM_DIM,
22
22
  OBS_STATE_DIM,
23
23
  SARIMAX_STATE_STRUCTURES,
@@ -315,7 +315,7 @@ class BayesianSARIMAX(PyMCStateSpace):
315
315
  def data_info(self) -> dict[str, dict[str, Any]]:
316
316
  info = {
317
317
  "exogenous_data": {
318
- "dims": (TIME_DIM, EXOGENOUS_DIM),
318
+ "dims": (TIME_DIM, EXOG_STATE_DIM),
319
319
  "shape": (None, self.k_exog),
320
320
  }
321
321
  }
@@ -403,7 +403,7 @@ class BayesianSARIMAX(PyMCStateSpace):
403
403
  "ma_params": (MA_PARAM_DIM,),
404
404
  "seasonal_ar_params": (SEASONAL_AR_PARAM_DIM,),
405
405
  "seasonal_ma_params": (SEASONAL_MA_PARAM_DIM,),
406
- "beta_exog": (EXOGENOUS_DIM,),
406
+ "beta_exog": (EXOG_STATE_DIM,),
407
407
  }
408
408
  if self.k_endog == 1:
409
409
  coord_map["sigma_state"] = None
@@ -438,7 +438,7 @@ class BayesianSARIMAX(PyMCStateSpace):
438
438
  if self.Q > 0:
439
439
  coords.update({SEASONAL_MA_PARAM_DIM: list(range(1, self.Q + 1))})
440
440
  if self.k_exog > 0:
441
- coords.update({EXOGENOUS_DIM: self.exog_state_names})
441
+ coords.update({EXOG_STATE_DIM: self.exog_state_names})
442
442
  return coords
443
443
 
444
444
  def _stationary_initialization(self):
@@ -14,7 +14,7 @@ from pymc_extras.statespace.utils.constants import (
14
14
  ALL_STATE_AUX_DIM,
15
15
  ALL_STATE_DIM,
16
16
  AR_PARAM_DIM,
17
- EXOGENOUS_DIM,
17
+ EXOG_STATE_DIM,
18
18
  MA_PARAM_DIM,
19
19
  OBS_STATE_AUX_DIM,
20
20
  OBS_STATE_DIM,
@@ -342,7 +342,7 @@ class BayesianVARMAX(PyMCStateSpace):
342
342
  if isinstance(self.exog_state_names, list):
343
343
  info = {
344
344
  "exogenous_data": {
345
- "dims": (TIME_DIM, EXOGENOUS_DIM),
345
+ "dims": (TIME_DIM, EXOG_STATE_DIM),
346
346
  "shape": (None, self.k_exog),
347
347
  }
348
348
  }
@@ -350,7 +350,7 @@ class BayesianVARMAX(PyMCStateSpace):
350
350
  elif isinstance(self.exog_state_names, dict):
351
351
  info = {
352
352
  f"{endog_state}_exogenous_data": {
353
- "dims": (TIME_DIM, f"{EXOGENOUS_DIM}_{endog_state}"),
353
+ "dims": (TIME_DIM, f"{EXOG_STATE_DIM}_{endog_state}"),
354
354
  "shape": (None, len(exog_names)),
355
355
  }
356
356
  for endog_state, exog_names in self.exog_state_names.items()
@@ -399,10 +399,10 @@ class BayesianVARMAX(PyMCStateSpace):
399
399
  coords.update({MA_PARAM_DIM: list(range(1, self.q + 1))})
400
400
 
401
401
  if isinstance(self.exog_state_names, list):
402
- coords[EXOGENOUS_DIM] = self.exog_state_names
402
+ coords[EXOG_STATE_DIM] = self.exog_state_names
403
403
  elif isinstance(self.exog_state_names, dict):
404
404
  for name, exog_names in self.exog_state_names.items():
405
- coords[f"{EXOGENOUS_DIM}_{name}"] = exog_names
405
+ coords[f"{EXOG_STATE_DIM}_{name}"] = exog_names
406
406
 
407
407
  return coords
408
408
 
@@ -428,12 +428,12 @@ class BayesianVARMAX(PyMCStateSpace):
428
428
  del coord_map["x0"]
429
429
 
430
430
  if isinstance(self.exog_state_names, list):
431
- coord_map["beta_exog"] = (OBS_STATE_DIM, EXOGENOUS_DIM)
431
+ coord_map["beta_exog"] = (OBS_STATE_DIM, EXOG_STATE_DIM)
432
432
  elif isinstance(self.exog_state_names, dict):
433
433
  # If each state has its own exogenous variables, each parameter needs it own dim, since we expect the
434
434
  # dim labels to all be different (otherwise we'd be in the list case).
435
435
  for name in self.exog_state_names.keys():
436
- coord_map[f"beta_{name}"] = (f"{EXOGENOUS_DIM}_{name}",)
436
+ coord_map[f"beta_{name}"] = (f"{EXOG_STATE_DIM}_{name}",)
437
437
 
438
438
  return coord_map
439
439
 
@@ -12,7 +12,9 @@ MA_PARAM_DIM = "lag_ma"
12
12
  SEASONAL_AR_PARAM_DIM = "seasonal_lag_ar"
13
13
  SEASONAL_MA_PARAM_DIM = "seasonal_lag_ma"
14
14
  ETS_SEASONAL_DIM = "seasonal_lag"
15
- EXOGENOUS_DIM = "exogenous"
15
+ FACTOR_DIM = "factor"
16
+ ERROR_AR_PARAM_DIM = "error_lag_ar"
17
+ EXOG_STATE_DIM = "exogenous"
16
18
 
17
19
  NEVER_TIME_VARYING = ["initial_state", "initial_state_cov", "a0", "P0"]
18
20
  VECTOR_VALUED = ["initial_state", "state_intercept", "obs_intercept", "a0", "c", "d"]
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: pymc-extras
3
- Version: 0.4.1
3
+ Version: 0.5.0
4
4
  Summary: A home for new additions to PyMC, which may include unusual probability distribitions, advanced model fitting algorithms, or any code that may be inappropriate to include in the pymc repository, but may want to be made available to users.
5
5
  Project-URL: Documentation, https://pymc-extras.readthedocs.io/
6
6
  Project-URL: Repository, https://github.com/pymc-devs/pymc-extras.git
@@ -15,12 +15,14 @@ pymc_extras/distributions/transforms/__init__.py,sha256=FUp2vyRE6_2eUcQ_FVt5Dn0-
15
15
  pymc_extras/distributions/transforms/partial_order.py,sha256=oEZlc9WgnGR46uFEjLzKEUxlhzIo2vrUUbBE3vYrsfQ,8404
16
16
  pymc_extras/gp/__init__.py,sha256=sFHw2y3lEl5tG_FDQHZUonQ_k0DF1JRf0Rp8dpHmge0,745
17
17
  pymc_extras/gp/latent_approx.py,sha256=cDEMM6H1BL2qyKg7BZU-ISrKn2HJe7hDaM4Y8GgQDf4,6682
18
- pymc_extras/inference/__init__.py,sha256=sy1JYQGNZNvPs-3jVFfbFQTW0iCIrbjH3aHBpx1HQi0,917
19
- pymc_extras/inference/fit.py,sha256=U_jfzuyjk5bV6AvOxtOKzBg-q4z-_BOR06Hn38T0W6E,1328
18
+ pymc_extras/inference/__init__.py,sha256=hI3yqfEVzoUNlCpL1z579F9EqM-NlPTzMfHj8IKY-xE,1009
19
+ pymc_extras/inference/fit.py,sha256=hNTqLms_mTdjfnCEVIHMcMiPZ3fkU3HEEkbt6LWWhLw,1443
20
+ pymc_extras/inference/dadvi/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
21
+ pymc_extras/inference/dadvi/dadvi.py,sha256=eUMManCDwPNuyxPU5fETF6H5AkqB3a5VPtT7aCwyMJA,7978
20
22
  pymc_extras/inference/laplace_approx/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
21
- pymc_extras/inference/laplace_approx/find_map.py,sha256=fP8DQ21OZbkUiBaq-TXGe7CtH0umupFacRC3qReoiKU,14022
22
- pymc_extras/inference/laplace_approx/idata.py,sha256=P_GyodNJy2yr6FBYBqSoMShW2CKKuljBTFY1jOAHEKE,13332
23
- pymc_extras/inference/laplace_approx/laplace.py,sha256=V49TdsCYGxt7Evg7Ml2qtHW0xeZYP5YjCOBaewTvJog,18778
23
+ pymc_extras/inference/laplace_approx/find_map.py,sha256=8ebnnHBVuFlAIAElkipT8njOvVSkuq0T28UMqhvQQPU,14446
24
+ pymc_extras/inference/laplace_approx/idata.py,sha256=--2QKYGb-o7uFUtTMrIxWGKfE-6uxJGbRONMZKc1HMk,13362
25
+ pymc_extras/inference/laplace_approx/laplace.py,sha256=nRbtpmlI4GY2h26slXBOvSJLufN5s40yvxYxPTF--i8,18808
24
26
  pymc_extras/inference/laplace_approx/scipy_interface.py,sha256=qMxYodmmxaUGsOp1jc7HxBJc6L8NnmFT2Fd4UNNXu2c,8835
25
27
  pymc_extras/inference/pathfinder/__init__.py,sha256=FhAYrCWNx_dCrynEdjg2CZ9tIinvcVLBm67pNx_Y3kA,101
26
28
  pymc_extras/inference/pathfinder/importance_sampling.py,sha256=NwxepXOFit3cA5zEebniKdlnJ1rZWg56aMlH4MEOcG4,6264
@@ -48,9 +50,10 @@ pymc_extras/statespace/filters/distributions.py,sha256=-s1c5s2zm6FMc0UqKSrWnJzIF
48
50
  pymc_extras/statespace/filters/kalman_filter.py,sha256=rgpgF4KZXX5M8yRwblrt2SEINKgoXgiKNfKkbl7ZU9Y,31464
49
51
  pymc_extras/statespace/filters/kalman_smoother.py,sha256=5jlSZAPveJzD5Q8omnpn7Gb1jgElBMgixGR7H9zoH8U,4183
50
52
  pymc_extras/statespace/filters/utilities.py,sha256=iwdaYnO1cO06t_XUjLLRmqb8vwzzVH6Nx1iyZcbJL2k,1584
53
+ pymc_extras/statespace/models/DFM.py,sha256=Ibwdq6SBs24nX9I1KVwVK8o8CTnw2Baw97giccPoYNc,37435
51
54
  pymc_extras/statespace/models/ETS.py,sha256=08sbiuNvKdxcgKzS7jWj-z4jf-su73WFkYc8sKkGdEs,28538
52
- pymc_extras/statespace/models/SARIMAX.py,sha256=Yppz_k1ZyZuKPC62WIye6K7luw44cP-dog73VVkw0L4,25096
53
- pymc_extras/statespace/models/VARMAX.py,sha256=7obJFXES9t9NONlcUQoeJ9TCqyoDlVat9FkPviQhAq0,25947
55
+ pymc_extras/statespace/models/SARIMAX.py,sha256=Y_s9g9-BlQp2U5yJHpLhO1tX_Jamis046voCRpvAl-M,25100
56
+ pymc_extras/statespace/models/VARMAX.py,sha256=Kc-46MuNcpI05TnHw7bhJXlYd0L8W_5Gh_Sh7Hnvoa4,25954
54
57
  pymc_extras/statespace/models/__init__.py,sha256=DUwPrwfnz9AUbgZOFvZeUpWEw5FiPAK5X9x7vZrRWqY,319
55
58
  pymc_extras/statespace/models/utilities.py,sha256=jpUYByAy6rMFP7l56uST1SEYchRa-clsFQ-At_1NLSw,27123
56
59
  pymc_extras/statespace/models/structural/__init__.py,sha256=jvbczE1IeNkhW7gMQ2vF2BhhKHeYyfD90mV-Awko-Vs,811
@@ -64,7 +67,7 @@ pymc_extras/statespace/models/structural/components/measurement_error.py,sha256=
64
67
  pymc_extras/statespace/models/structural/components/regression.py,sha256=27PRV9I64_VXIyjUi7pRr_gbk7sSI5DfJ4FBAbq5WCM,9856
65
68
  pymc_extras/statespace/models/structural/components/seasonality.py,sha256=soXJIZ2xewUhSUb5s2MGnxvnQCcir7ZgbgkSr94xEvc,26987
66
69
  pymc_extras/statespace/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
67
- pymc_extras/statespace/utils/constants.py,sha256=-4vCXo7-X3IuzdcplWBrAV9m9tm8JngcgoE-8imGmj0,2518
70
+ pymc_extras/statespace/utils/constants.py,sha256=Dj1XpY_u5EliyStGrEFq5jmA5d_EMHCT4teaifxiTko,2577
68
71
  pymc_extras/statespace/utils/coord_tools.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
69
72
  pymc_extras/statespace/utils/data_tools.py,sha256=Tomur7d8WCKlMXUCrPqufqVTKUe_nLLCHdipsM9pmaI,6620
70
73
  pymc_extras/utils/__init__.py,sha256=yxI9cJ7fCtVQS0GFw0y6mDGZIQZiK53vm3UNKqIuGSk,758
@@ -72,7 +75,7 @@ pymc_extras/utils/linear_cg.py,sha256=KkXhuimFsrKtNd_0By2ApxQQQNm5FdBtmDQJOVbLYk
72
75
  pymc_extras/utils/model_equivalence.py,sha256=8QIftID2HDxD659i0RXHazQ-l2Q5YegCRLcDqb2p9Pc,2187
73
76
  pymc_extras/utils/prior.py,sha256=QlWVr7uKIK9VncBw7Fz3YgaASKGDfqpORZHc-vz_9gQ,6841
74
77
  pymc_extras/utils/spline.py,sha256=qGq0gcoMG5dpdazKFzG0RXkkCWP8ADPPXN-653-oFn4,4820
75
- pymc_extras-0.4.1.dist-info/METADATA,sha256=TpuX_8nEFjQfPlC51u_2EvQV3XwHAvgYCQMKYzeVU_E,18898
76
- pymc_extras-0.4.1.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
77
- pymc_extras-0.4.1.dist-info/licenses/LICENSE,sha256=WjiLhUKEysJvy5e9jk6WwFv9tmAPtnov1uJ6gcH1kIs,11720
78
- pymc_extras-0.4.1.dist-info/RECORD,,
78
+ pymc_extras-0.5.0.dist-info/METADATA,sha256=QgyaW4YCVtVl6FpnEITD06o_Vrzek8RJYHY1pr2Rdok,18898
79
+ pymc_extras-0.5.0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
80
+ pymc_extras-0.5.0.dist-info/licenses/LICENSE,sha256=WjiLhUKEysJvy5e9jk6WwFv9tmAPtnov1uJ6gcH1kIs,11720
81
+ pymc_extras-0.5.0.dist-info/RECORD,,