pymc-extras 0.4.0__py3-none-any.whl → 0.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pymc_extras/distributions/__init__.py +5 -5
- pymc_extras/distributions/histogram_utils.py +1 -1
- pymc_extras/inference/__init__.py +8 -1
- pymc_extras/inference/dadvi/__init__.py +0 -0
- pymc_extras/inference/dadvi/dadvi.py +261 -0
- pymc_extras/inference/fit.py +5 -0
- pymc_extras/inference/laplace_approx/find_map.py +16 -8
- pymc_extras/inference/laplace_approx/idata.py +5 -2
- pymc_extras/inference/laplace_approx/laplace.py +1 -0
- pymc_extras/printing.py +1 -1
- pymc_extras/statespace/__init__.py +4 -4
- pymc_extras/statespace/core/__init__.py +1 -1
- pymc_extras/statespace/core/representation.py +8 -8
- pymc_extras/statespace/core/statespace.py +94 -23
- pymc_extras/statespace/filters/__init__.py +3 -3
- pymc_extras/statespace/filters/kalman_filter.py +16 -11
- pymc_extras/statespace/models/DFM.py +849 -0
- pymc_extras/statespace/models/SARIMAX.py +138 -74
- pymc_extras/statespace/models/VARMAX.py +248 -57
- pymc_extras/statespace/models/__init__.py +2 -2
- pymc_extras/statespace/models/structural/__init__.py +4 -4
- pymc_extras/statespace/models/structural/components/autoregressive.py +49 -24
- pymc_extras/statespace/models/structural/components/cycle.py +48 -28
- pymc_extras/statespace/models/structural/components/level_trend.py +61 -29
- pymc_extras/statespace/models/structural/components/measurement_error.py +22 -5
- pymc_extras/statespace/models/structural/components/regression.py +47 -18
- pymc_extras/statespace/models/structural/components/seasonality.py +278 -95
- pymc_extras/statespace/models/structural/core.py +27 -8
- pymc_extras/statespace/utils/constants.py +19 -14
- pymc_extras/statespace/utils/data_tools.py +1 -1
- {pymc_extras-0.4.0.dist-info → pymc_extras-0.5.0.dist-info}/METADATA +1 -1
- {pymc_extras-0.4.0.dist-info → pymc_extras-0.5.0.dist-info}/RECORD +34 -31
- {pymc_extras-0.4.0.dist-info → pymc_extras-0.5.0.dist-info}/WHEEL +0 -0
- {pymc_extras-0.4.0.dist-info → pymc_extras-0.5.0.dist-info}/licenses/LICENSE +0 -0
|
@@ -120,7 +120,7 @@ class StructuralTimeSeries(PyMCStateSpace):
|
|
|
120
120
|
initial_trend = pm.Normal('initial_trend', sigma=10, dims=ss_mod.param_dims['initial_trend'])
|
|
121
121
|
sigma_trend = pm.HalfNormal('sigma_trend', sigma=1, dims=ss_mod.param_dims['sigma_trend'])
|
|
122
122
|
|
|
123
|
-
seasonal_coefs = pm.Normal('
|
|
123
|
+
seasonal_coefs = pm.Normal('params_seasonal', sigma=1, dims=ss_mod.param_dims['params_seasonal'])
|
|
124
124
|
sigma_seasonal = pm.HalfNormal('sigma_seasonal', sigma=1)
|
|
125
125
|
|
|
126
126
|
sigma_obs = pm.Exponential('sigma_obs', 1, dims=ss_mod.param_dims['sigma_obs'])
|
|
@@ -310,16 +310,20 @@ class StructuralTimeSeries(PyMCStateSpace):
|
|
|
310
310
|
|
|
311
311
|
for i, (name, s) in enumerate(zip(names, state_slices)):
|
|
312
312
|
obs_idx = info[name]["obs_state_idx"]
|
|
313
|
+
|
|
313
314
|
if obs_idx is None:
|
|
314
315
|
continue
|
|
315
316
|
|
|
316
317
|
X = data[..., s]
|
|
318
|
+
|
|
317
319
|
if info[name]["combine_hidden_states"]:
|
|
318
|
-
|
|
319
|
-
|
|
320
|
+
sum_idx_joined = np.flatnonzero(obs_idx)
|
|
321
|
+
sum_idx_split = np.split(sum_idx_joined, info[name]["k_endog"])
|
|
322
|
+
for sum_idx in sum_idx_split:
|
|
323
|
+
result.append(X[..., sum_idx].sum(axis=-1)[..., None])
|
|
320
324
|
else:
|
|
321
|
-
|
|
322
|
-
for j
|
|
325
|
+
n_components = len(self.state_names[s])
|
|
326
|
+
for j in range(n_components):
|
|
323
327
|
result.append(X[..., j, None])
|
|
324
328
|
|
|
325
329
|
return np.concatenate(result, axis=-1)
|
|
@@ -332,7 +336,15 @@ class StructuralTimeSeries(PyMCStateSpace):
|
|
|
332
336
|
|
|
333
337
|
for i, (name, s) in enumerate(zip(names, state_slices)):
|
|
334
338
|
if info[name]["combine_hidden_states"]:
|
|
335
|
-
|
|
339
|
+
if self.k_endog == 1:
|
|
340
|
+
result.append(name)
|
|
341
|
+
else:
|
|
342
|
+
# If there are multiple observed states, we will combine per hidden state, preserving the
|
|
343
|
+
# observed state names. Note this happens even if this *component* has only 1 state for consistency,
|
|
344
|
+
# as long as the statespace model has multiple observed states.
|
|
345
|
+
result.extend(
|
|
346
|
+
[f"{name}[{obs_name}]" for obs_name in info[name]["observed_state_names"]]
|
|
347
|
+
)
|
|
336
348
|
else:
|
|
337
349
|
comp_names = self.state_names[s]
|
|
338
350
|
result.extend([f"{name}[{comp_name}]" for comp_name in comp_names])
|
|
@@ -350,7 +362,7 @@ class StructuralTimeSeries(PyMCStateSpace):
|
|
|
350
362
|
Returns
|
|
351
363
|
-------
|
|
352
364
|
idata: Dataset
|
|
353
|
-
|
|
365
|
+
A Dataset object with hidden states transformed to represent only the "interpretable" subcomponents
|
|
354
366
|
of the structural model.
|
|
355
367
|
|
|
356
368
|
Notes
|
|
@@ -459,6 +471,10 @@ class Component:
|
|
|
459
471
|
obs_state_idxs : np.ndarray | None, optional
|
|
460
472
|
Indices indicating which states contribute to observed variables. If None,
|
|
461
473
|
defaults to None.
|
|
474
|
+
share_states : bool, optional
|
|
475
|
+
Whether states are shared across multiple endogenous variables in multivariate
|
|
476
|
+
models. When True, the same latent states affect all observed variables.
|
|
477
|
+
Default is False.
|
|
462
478
|
|
|
463
479
|
Examples
|
|
464
480
|
--------
|
|
@@ -500,10 +516,12 @@ class Component:
|
|
|
500
516
|
combine_hidden_states=True,
|
|
501
517
|
component_from_sum=False,
|
|
502
518
|
obs_state_idxs=None,
|
|
519
|
+
share_states: bool = False,
|
|
503
520
|
):
|
|
504
521
|
self.name = name
|
|
505
522
|
self.k_endog = k_endog
|
|
506
523
|
self.k_states = k_states
|
|
524
|
+
self.share_states = share_states
|
|
507
525
|
self.k_posdef = k_posdef
|
|
508
526
|
self.measurement_error = measurement_error
|
|
509
527
|
|
|
@@ -540,11 +558,12 @@ class Component:
|
|
|
540
558
|
self._component_info = {
|
|
541
559
|
self.name: {
|
|
542
560
|
"k_states": self.k_states,
|
|
543
|
-
"
|
|
561
|
+
"k_endog": self.k_endog,
|
|
544
562
|
"k_posdef": self.k_posdef,
|
|
545
563
|
"observed_state_names": self.observed_state_names,
|
|
546
564
|
"combine_hidden_states": combine_hidden_states,
|
|
547
565
|
"obs_state_idx": obs_state_idxs,
|
|
566
|
+
"share_states": self.share_states,
|
|
548
567
|
}
|
|
549
568
|
}
|
|
550
569
|
|
|
@@ -12,6 +12,9 @@ MA_PARAM_DIM = "lag_ma"
|
|
|
12
12
|
SEASONAL_AR_PARAM_DIM = "seasonal_lag_ar"
|
|
13
13
|
SEASONAL_MA_PARAM_DIM = "seasonal_lag_ma"
|
|
14
14
|
ETS_SEASONAL_DIM = "seasonal_lag"
|
|
15
|
+
FACTOR_DIM = "factor"
|
|
16
|
+
ERROR_AR_PARAM_DIM = "error_lag_ar"
|
|
17
|
+
EXOG_STATE_DIM = "exogenous"
|
|
15
18
|
|
|
16
19
|
NEVER_TIME_VARYING = ["initial_state", "initial_state_cov", "a0", "P0"]
|
|
17
20
|
VECTOR_VALUED = ["initial_state", "state_intercept", "obs_intercept", "a0", "c", "d"]
|
|
@@ -38,14 +41,16 @@ SHORT_NAME_TO_LONG = dict(zip(MATRIX_NAMES, LONG_MATRIX_NAMES))
|
|
|
38
41
|
LONG_NAME_TO_SHORT = dict(zip(LONG_MATRIX_NAMES, MATRIX_NAMES))
|
|
39
42
|
|
|
40
43
|
FILTER_OUTPUT_NAMES = [
|
|
41
|
-
"
|
|
42
|
-
"
|
|
43
|
-
"
|
|
44
|
-
"
|
|
44
|
+
"filtered_states",
|
|
45
|
+
"predicted_states",
|
|
46
|
+
"filtered_covariances",
|
|
47
|
+
"predicted_covariances",
|
|
48
|
+
"predicted_observed_states",
|
|
49
|
+
"predicted_observed_covariances",
|
|
45
50
|
]
|
|
46
51
|
|
|
47
|
-
SMOOTHER_OUTPUT_NAMES = ["
|
|
48
|
-
OBSERVED_OUTPUT_NAMES = ["
|
|
52
|
+
SMOOTHER_OUTPUT_NAMES = ["smoothed_states", "smoothed_covariances"]
|
|
53
|
+
OBSERVED_OUTPUT_NAMES = ["predicted_observed_states", "predicted_observed_covariances"]
|
|
49
54
|
|
|
50
55
|
MATRIX_DIMS = {
|
|
51
56
|
"x0": (ALL_STATE_DIM,),
|
|
@@ -60,14 +65,14 @@ MATRIX_DIMS = {
|
|
|
60
65
|
}
|
|
61
66
|
|
|
62
67
|
FILTER_OUTPUT_DIMS = {
|
|
63
|
-
"
|
|
64
|
-
"
|
|
65
|
-
"
|
|
66
|
-
"
|
|
67
|
-
"
|
|
68
|
-
"
|
|
69
|
-
"
|
|
70
|
-
"
|
|
68
|
+
"filtered_states": (TIME_DIM, ALL_STATE_DIM),
|
|
69
|
+
"smoothed_states": (TIME_DIM, ALL_STATE_DIM),
|
|
70
|
+
"predicted_states": (TIME_DIM, ALL_STATE_DIM),
|
|
71
|
+
"filtered_covariances": (TIME_DIM, ALL_STATE_DIM, ALL_STATE_AUX_DIM),
|
|
72
|
+
"smoothed_covariances": (TIME_DIM, ALL_STATE_DIM, ALL_STATE_AUX_DIM),
|
|
73
|
+
"predicted_covariances": (TIME_DIM, ALL_STATE_DIM, ALL_STATE_AUX_DIM),
|
|
74
|
+
"predicted_observed_states": (TIME_DIM, OBS_STATE_DIM),
|
|
75
|
+
"predicted_observed_covariances": (TIME_DIM, OBS_STATE_DIM, OBS_STATE_AUX_DIM),
|
|
71
76
|
}
|
|
72
77
|
|
|
73
78
|
POSITION_DERIVATIVE_NAMES = ["level", "trend", "acceleration", "jerk", "snap", "crackle", "pop"]
|
|
@@ -53,7 +53,7 @@ def _validate_data_shape(data_shape, n_obs, obs_coords=None, check_col_names=Fal
|
|
|
53
53
|
if len(missing_cols) > 0:
|
|
54
54
|
raise ValueError(
|
|
55
55
|
"Columns of DataFrame provided as data do not match state names. The following states were"
|
|
56
|
-
f
|
|
56
|
+
f"not found: {', '.join(missing_cols)}. This may result in unexpected results in complex"
|
|
57
57
|
f"statespace models"
|
|
58
58
|
)
|
|
59
59
|
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: pymc-extras
|
|
3
|
-
Version: 0.
|
|
3
|
+
Version: 0.5.0
|
|
4
4
|
Summary: A home for new additions to PyMC, which may include unusual probability distribitions, advanced model fitting algorithms, or any code that may be inappropriate to include in the pymc repository, but may want to be made available to users.
|
|
5
5
|
Project-URL: Documentation, https://pymc-extras.readthedocs.io/
|
|
6
6
|
Project-URL: Repository, https://github.com/pymc-devs/pymc-extras.git
|
|
@@ -2,12 +2,12 @@ pymc_extras/__init__.py,sha256=YsR6OG72aW73y6dGS7w3nGGMV-V-ImHkmUOXKMPfMRA,1230
|
|
|
2
2
|
pymc_extras/deserialize.py,sha256=dktK5gsR96X3zAUoRF5udrTiconknH3uupiAWqkZi0M,5937
|
|
3
3
|
pymc_extras/linearmodel.py,sha256=KkvZ_DBXOD6myPgVNzu742YV0OzDK449_pDqNC5yae4,3975
|
|
4
4
|
pymc_extras/model_builder.py,sha256=sAw77fxdiy046BvDPjocuMlbJ0Efj-CDAGtmcwYmoG0,26361
|
|
5
|
-
pymc_extras/printing.py,sha256=
|
|
5
|
+
pymc_extras/printing.py,sha256=bFOANgsOWDk0vbRMvm2h_D5TsT7OiSojdG7tvyfCw28,6506
|
|
6
6
|
pymc_extras/prior.py,sha256=0XbyRRVuS7aKY5gmvJr_iq4fGyHrRDeI_OjWu_O7CTA,39449
|
|
7
|
-
pymc_extras/distributions/__init__.py,sha256=
|
|
7
|
+
pymc_extras/distributions/__init__.py,sha256=Cge3AP7gzD6qTJY7v2tYRtSgn-rlnIo7wQBgf3IfKQ8,1377
|
|
8
8
|
pymc_extras/distributions/continuous.py,sha256=530wvcO-QcYVdiVN-iQRveImWfyJzzmxiZLMVShP7w4,11251
|
|
9
9
|
pymc_extras/distributions/discrete.py,sha256=HNi-K0_hnNWTcfyBkWGh26sc71FwBgukQ_EjGAaAOjY,13036
|
|
10
|
-
pymc_extras/distributions/histogram_utils.py,sha256=
|
|
10
|
+
pymc_extras/distributions/histogram_utils.py,sha256=xvCc19nlOmeb9PLZDcsR5PRdmcr5sRefZlPlCvxmGfM,5814
|
|
11
11
|
pymc_extras/distributions/timeseries.py,sha256=M5MZ-nik_tgkaoZ1hdUGEZ9g04DQyVLwszVJqSKwNcY,12719
|
|
12
12
|
pymc_extras/distributions/multivariate/__init__.py,sha256=E8OeLW9tTotCbrUjEo4um76-_WQD56PehsPzkKmhfyA,93
|
|
13
13
|
pymc_extras/distributions/multivariate/r2d2m2cp.py,sha256=bUj9bB-hQi6CpaJfvJjgNPi727uTbvAdxl9fm1zNBqY,16005
|
|
@@ -15,12 +15,14 @@ pymc_extras/distributions/transforms/__init__.py,sha256=FUp2vyRE6_2eUcQ_FVt5Dn0-
|
|
|
15
15
|
pymc_extras/distributions/transforms/partial_order.py,sha256=oEZlc9WgnGR46uFEjLzKEUxlhzIo2vrUUbBE3vYrsfQ,8404
|
|
16
16
|
pymc_extras/gp/__init__.py,sha256=sFHw2y3lEl5tG_FDQHZUonQ_k0DF1JRf0Rp8dpHmge0,745
|
|
17
17
|
pymc_extras/gp/latent_approx.py,sha256=cDEMM6H1BL2qyKg7BZU-ISrKn2HJe7hDaM4Y8GgQDf4,6682
|
|
18
|
-
pymc_extras/inference/__init__.py,sha256=
|
|
19
|
-
pymc_extras/inference/fit.py,sha256=
|
|
18
|
+
pymc_extras/inference/__init__.py,sha256=hI3yqfEVzoUNlCpL1z579F9EqM-NlPTzMfHj8IKY-xE,1009
|
|
19
|
+
pymc_extras/inference/fit.py,sha256=hNTqLms_mTdjfnCEVIHMcMiPZ3fkU3HEEkbt6LWWhLw,1443
|
|
20
|
+
pymc_extras/inference/dadvi/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
21
|
+
pymc_extras/inference/dadvi/dadvi.py,sha256=eUMManCDwPNuyxPU5fETF6H5AkqB3a5VPtT7aCwyMJA,7978
|
|
20
22
|
pymc_extras/inference/laplace_approx/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
21
|
-
pymc_extras/inference/laplace_approx/find_map.py,sha256=
|
|
22
|
-
pymc_extras/inference/laplace_approx/idata.py,sha256
|
|
23
|
-
pymc_extras/inference/laplace_approx/laplace.py,sha256=
|
|
23
|
+
pymc_extras/inference/laplace_approx/find_map.py,sha256=8ebnnHBVuFlAIAElkipT8njOvVSkuq0T28UMqhvQQPU,14446
|
|
24
|
+
pymc_extras/inference/laplace_approx/idata.py,sha256=--2QKYGb-o7uFUtTMrIxWGKfE-6uxJGbRONMZKc1HMk,13362
|
|
25
|
+
pymc_extras/inference/laplace_approx/laplace.py,sha256=nRbtpmlI4GY2h26slXBOvSJLufN5s40yvxYxPTF--i8,18808
|
|
24
26
|
pymc_extras/inference/laplace_approx/scipy_interface.py,sha256=qMxYodmmxaUGsOp1jc7HxBJc6L8NnmFT2Fd4UNNXu2c,8835
|
|
25
27
|
pymc_extras/inference/pathfinder/__init__.py,sha256=FhAYrCWNx_dCrynEdjg2CZ9tIinvcVLBm67pNx_Y3kA,101
|
|
26
28
|
pymc_extras/inference/pathfinder/importance_sampling.py,sha256=NwxepXOFit3cA5zEebniKdlnJ1rZWg56aMlH4MEOcG4,6264
|
|
@@ -38,41 +40,42 @@ pymc_extras/model/transforms/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NM
|
|
|
38
40
|
pymc_extras/model/transforms/autoreparam.py,sha256=_NltGWmNqi_X9sHCqAvWcBveLTPxVy11-wENFTcN6kk,12377
|
|
39
41
|
pymc_extras/preprocessing/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
40
42
|
pymc_extras/preprocessing/standard_scaler.py,sha256=Vajp33ma6OkwlU54JYtSS8urHbMJ3CRiRFxZpvFNuus,600
|
|
41
|
-
pymc_extras/statespace/__init__.py,sha256=
|
|
42
|
-
pymc_extras/statespace/core/__init__.py,sha256=
|
|
43
|
+
pymc_extras/statespace/__init__.py,sha256=PxV8i4aa2XJarRM6aKU14_bEY1AoLu4bNXIBy_E1rRw,431
|
|
44
|
+
pymc_extras/statespace/core/__init__.py,sha256=LEhkqdMZzzcTyzYml45IM4ykWoCdbWWj2c29IpM_ey8,309
|
|
43
45
|
pymc_extras/statespace/core/compile.py,sha256=9FZfE8Bi3VfElxujfOIKRVvmyL9M5R0WfNEqPc5kbVQ,1603
|
|
44
|
-
pymc_extras/statespace/core/representation.py,sha256=
|
|
45
|
-
pymc_extras/statespace/core/statespace.py,sha256=
|
|
46
|
-
pymc_extras/statespace/filters/__init__.py,sha256=
|
|
46
|
+
pymc_extras/statespace/core/representation.py,sha256=boY-jjlkd3KuuO2XiSuV-GwEAyEqRJ9267H72AmE3BU,18956
|
|
47
|
+
pymc_extras/statespace/core/statespace.py,sha256=yu7smA5w7l1LFNjTwuKLnGarGLx4HEPJKQ9ZMDbWhDY,108161
|
|
48
|
+
pymc_extras/statespace/filters/__init__.py,sha256=F0EtZUhArp23lj3upy6zB0mDTjLIjwGh0pKmMny0QfY,420
|
|
47
49
|
pymc_extras/statespace/filters/distributions.py,sha256=-s1c5s2zm6FMc0UqKSrWnJzIF4U5bvJT_3mMNTyV_ak,11927
|
|
48
|
-
pymc_extras/statespace/filters/kalman_filter.py,sha256=
|
|
50
|
+
pymc_extras/statespace/filters/kalman_filter.py,sha256=rgpgF4KZXX5M8yRwblrt2SEINKgoXgiKNfKkbl7ZU9Y,31464
|
|
49
51
|
pymc_extras/statespace/filters/kalman_smoother.py,sha256=5jlSZAPveJzD5Q8omnpn7Gb1jgElBMgixGR7H9zoH8U,4183
|
|
50
52
|
pymc_extras/statespace/filters/utilities.py,sha256=iwdaYnO1cO06t_XUjLLRmqb8vwzzVH6Nx1iyZcbJL2k,1584
|
|
53
|
+
pymc_extras/statespace/models/DFM.py,sha256=Ibwdq6SBs24nX9I1KVwVK8o8CTnw2Baw97giccPoYNc,37435
|
|
51
54
|
pymc_extras/statespace/models/ETS.py,sha256=08sbiuNvKdxcgKzS7jWj-z4jf-su73WFkYc8sKkGdEs,28538
|
|
52
|
-
pymc_extras/statespace/models/SARIMAX.py,sha256=
|
|
53
|
-
pymc_extras/statespace/models/VARMAX.py,sha256=
|
|
54
|
-
pymc_extras/statespace/models/__init__.py,sha256=
|
|
55
|
+
pymc_extras/statespace/models/SARIMAX.py,sha256=Y_s9g9-BlQp2U5yJHpLhO1tX_Jamis046voCRpvAl-M,25100
|
|
56
|
+
pymc_extras/statespace/models/VARMAX.py,sha256=Kc-46MuNcpI05TnHw7bhJXlYd0L8W_5Gh_Sh7Hnvoa4,25954
|
|
57
|
+
pymc_extras/statespace/models/__init__.py,sha256=DUwPrwfnz9AUbgZOFvZeUpWEw5FiPAK5X9x7vZrRWqY,319
|
|
55
58
|
pymc_extras/statespace/models/utilities.py,sha256=jpUYByAy6rMFP7l56uST1SEYchRa-clsFQ-At_1NLSw,27123
|
|
56
|
-
pymc_extras/statespace/models/structural/__init__.py,sha256=
|
|
57
|
-
pymc_extras/statespace/models/structural/core.py,sha256=
|
|
59
|
+
pymc_extras/statespace/models/structural/__init__.py,sha256=jvbczE1IeNkhW7gMQ2vF2BhhKHeYyfD90mV-Awko-Vs,811
|
|
60
|
+
pymc_extras/statespace/models/structural/core.py,sha256=n0cbP8_-NFLmflFF4x37AyOOIHcY5iylRrgTzjyOAhM,35374
|
|
58
61
|
pymc_extras/statespace/models/structural/utils.py,sha256=Eze34Z0iXJzDC_gZEY2mHrp2VIYu8rHV915vM4U5Sn4,359
|
|
59
62
|
pymc_extras/statespace/models/structural/components/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
60
|
-
pymc_extras/statespace/models/structural/components/autoregressive.py,sha256=
|
|
61
|
-
pymc_extras/statespace/models/structural/components/cycle.py,sha256=
|
|
62
|
-
pymc_extras/statespace/models/structural/components/level_trend.py,sha256=
|
|
63
|
-
pymc_extras/statespace/models/structural/components/measurement_error.py,sha256=
|
|
64
|
-
pymc_extras/statespace/models/structural/components/regression.py,sha256=
|
|
65
|
-
pymc_extras/statespace/models/structural/components/seasonality.py,sha256=
|
|
63
|
+
pymc_extras/statespace/models/structural/components/autoregressive.py,sha256=HkS5an5fuNOBGcjHFNMUVNJrF1BNnlpQxvmPq_5dD0s,8021
|
|
64
|
+
pymc_extras/statespace/models/structural/components/cycle.py,sha256=qEiGFGMEXKS2Tl_zgzKIp77ijGXCVq6UIHEZp_ErHSQ,13931
|
|
65
|
+
pymc_extras/statespace/models/structural/components/level_trend.py,sha256=7glYX_tKOJPq6uB1NBuPQFFZGkhcwK4GMZUBTcU0xIY,11357
|
|
66
|
+
pymc_extras/statespace/models/structural/components/measurement_error.py,sha256=5LHDx3IplNrWSGcsY3xJLywKPosTqr42jlrvm80ZApM,5316
|
|
67
|
+
pymc_extras/statespace/models/structural/components/regression.py,sha256=27PRV9I64_VXIyjUi7pRr_gbk7sSI5DfJ4FBAbq5WCM,9856
|
|
68
|
+
pymc_extras/statespace/models/structural/components/seasonality.py,sha256=soXJIZ2xewUhSUb5s2MGnxvnQCcir7ZgbgkSr94xEvc,26987
|
|
66
69
|
pymc_extras/statespace/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
67
|
-
pymc_extras/statespace/utils/constants.py,sha256=
|
|
70
|
+
pymc_extras/statespace/utils/constants.py,sha256=Dj1XpY_u5EliyStGrEFq5jmA5d_EMHCT4teaifxiTko,2577
|
|
68
71
|
pymc_extras/statespace/utils/coord_tools.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
69
|
-
pymc_extras/statespace/utils/data_tools.py,sha256=
|
|
72
|
+
pymc_extras/statespace/utils/data_tools.py,sha256=Tomur7d8WCKlMXUCrPqufqVTKUe_nLLCHdipsM9pmaI,6620
|
|
70
73
|
pymc_extras/utils/__init__.py,sha256=yxI9cJ7fCtVQS0GFw0y6mDGZIQZiK53vm3UNKqIuGSk,758
|
|
71
74
|
pymc_extras/utils/linear_cg.py,sha256=KkXhuimFsrKtNd_0By2ApxQQQNm5FdBtmDQJOVbLYkA,10056
|
|
72
75
|
pymc_extras/utils/model_equivalence.py,sha256=8QIftID2HDxD659i0RXHazQ-l2Q5YegCRLcDqb2p9Pc,2187
|
|
73
76
|
pymc_extras/utils/prior.py,sha256=QlWVr7uKIK9VncBw7Fz3YgaASKGDfqpORZHc-vz_9gQ,6841
|
|
74
77
|
pymc_extras/utils/spline.py,sha256=qGq0gcoMG5dpdazKFzG0RXkkCWP8ADPPXN-653-oFn4,4820
|
|
75
|
-
pymc_extras-0.
|
|
76
|
-
pymc_extras-0.
|
|
77
|
-
pymc_extras-0.
|
|
78
|
-
pymc_extras-0.
|
|
78
|
+
pymc_extras-0.5.0.dist-info/METADATA,sha256=QgyaW4YCVtVl6FpnEITD06o_Vrzek8RJYHY1pr2Rdok,18898
|
|
79
|
+
pymc_extras-0.5.0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
|
80
|
+
pymc_extras-0.5.0.dist-info/licenses/LICENSE,sha256=WjiLhUKEysJvy5e9jk6WwFv9tmAPtnov1uJ6gcH1kIs,11720
|
|
81
|
+
pymc_extras-0.5.0.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|